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About This Manual 
Congratulations on your purchase of the PASS package! PASS offers: 

• Easy parameter entry. 

• A comprehensive list of power analysis routines that are accurate and verified, yet are 
quick and easy to learn and use. 

• Straightforward procedures for creating paper printouts and file copies of both the 
numerical and graphical reports. 

Our goal is that with the help of these user's guides, you will be up and running on PASS quickly. 
After reading the quick start manual (at the front of User's Guide I) you will only need to refer to 
the chapters corresponding to the procedures you want to use. The discussion of each procedure 
includes one or more tutorials that will take you step-by-step through the tasks necessary to run 
the procedure. 

I believe you will find that these user’s guides provides a quick, easy, efficient, and effective way 
for first-time PASS users to get up and running.  

I look forward to any suggestions you have to improve the usefulness of this manual and/or the 
PASS system. Meanwhile, good computing! 

 

 Jerry Hintze, Author 



   

PASS License Agreement 
Important: The enclosed Power Analysis and Sample Size software program (PASS) is licensed by NCSS to customers for 
their use only on the terms set forth below. Your purchase and use of the PASS system indicates your acceptance of these 
terms. 
 
1. LICENSE. NCSS hereby agrees to grant you a non-exclusive license to use the accompanying PASS program 
subject to the terms and restrictions set forth in this License Agreement. 
 
2. COPYRIGHT. PASS and its documentation are copyrighted. You may not copy or otherwise reproduce any part of 
PASS or its documentation, except that you may load PASS into a computer as an essential step in executing it on the 
computer and make backup copies for your use on the same computer. 
 
3. BACKUP POLICY. PASS may be backed up by you for your use on the same machine for which PASS was 
purchased. 
 
4. RESTRICTIONS ON USE AND TRANSFER. The original and any backup copies of PASS and its 
documentation are to be used only in connection with a single user.  This user may load PASS onto several machines for 
his/her convenience (such as a desktop and laptop computer), but only for use by the licensee. You may physically transfer 
PASS from one computer to another, provided that PASS is used in connection with only one user. You may not distribute 
copies of PASS or its documentation to others. You may transfer this license together with the original and all backup 
copies of PASS and its documentation, provided that the transferee agrees to be bound by the terms of this License 
Agreement. PASS licenses may not be transferred more frequently than once in twelve months. Neither PASS nor its 
documentation may be modified or translated without written permission from NCSS. 
 You may not use, copy, modify, or transfer PASS, or any copy, modification, or merged portion, in whole or in part, 
except as expressly provided for in this license. 
 
5. NO WARRANTY OF PERFORMANCE. NCSS does not and cannot warrant the performance or results that may 
be obtained by using PASS. Accordingly, PASS and its documentation are licensed "as is" without warranty as to their 
performance, merchantability, or fitness for any particular purpose. The entire risk as to the results and performance of 
PASS is assumed by you. Should PASS prove defective, you (and not NCSS nor its dealer) assume the entire cost of all 
necessary servicing, repair, or correction. 
 
6.  LIMITED WARRANTY ON CD. To the original licensee only, NCSS warrants the medium on which PASS is 
recorded to be free from defects in materials and faulty workmanship under normal use and service for a period of ninety 
days from the date PASS is delivered. If, during this ninety-day period, a defect in a CD should occur, the CD may be 
returned to NCSS at its address, or to the dealer from which PASS was purchased, and NCSS will replace the CD without 
charge to you, provided that you have sent a copy of your receipt for PASS. Your sole and exclusive remedy in the event 
of a defect is expressly limited to the replacement of the CD as provided above. 
 Any implied warranties of merchantability and fitness for a particular purpose are limited in duration to a period of 
ninety (90) days from the date of delivery. If the failure of a CD has resulted from accident, abuse, or misapplication of the 
CD, NCSS shall have no responsibility to replace the CD under the terms of this limited warranty. This limited warranty 
gives you specific legal rights, and you may also have other rights which vary from state to state. 
 
7. LIMITATION OF LIABILITY.  Neither NCSS nor anyone else who has been involved in the creation, production, 
or delivery of PASS shall be liable for any direct, incidental, or consequential damages, such as, but not limited to, loss of 
anticipated profits or benefits, resulting from the use of PASS or arising out of any breach of any warranty. Some states do 
not allow the exclusion or limitation of direct, incidental, or consequential damages, so the above limitation may not apply 
to you. 
 
8. TERM. The license is effective until terminated. You may terminate it at any time by destroying PASS and 
documentation together with all copies, modifications, and merged portions in any form. It will also terminate if you fail to 
comply with any term or condition of this License Agreement. You agree upon such termination to destroy PASS and 
documentation together with all copies, modifications, and merged portions in any form. 
 
9. YOUR USE OF PASS ACKNOWLEDGES that you have read this customer license agreement and agree to its 
terms. You further agree that the license agreement is the complete and exclusive statement of the agreement between us 
and supersedes any proposal or prior agreement, oral or written, and any other communications between us relating to the 
subject matter of this agreement. 
 
Dr. Jerry L. Hintze & NCSS, Kaysville, Utah 



Preface 
PASS (Power Analysis and Sample Size) is an advanced, easy-to-use statistical analysis software 
package. The system was designed and written by Dr. Jerry L. Hintze over the last Seventeen 
years. Dr. Hintze drew upon his experience both in teaching statistics at the university level and 
in various types of statistical consulting. 

The present version, written for 32-bit versions of Microsoft Windows (Vista, XP, NT, ME, 2000, 
98, etc.) computer systems, is the result of several iterations. Experience over the years with 
several different types of users has helped the program evolve into its present form. 

NCSS maintains a website at www.ncss.com where we make the latest edition of PASS available 
for free downloading. The software is password protected, so only users with valid serial numbers 
may use this downloaded edition. We hope that you will download the latest edition routinely and 
thus avoid any bugs that have been corrected since you purchased your copy. 

We believe PASS to be an accurate, exciting, easy-to-use program. If you find any portion which 
you feel needs to be changed, please let us know. Also, we openly welcome suggestions for 
additions and enhancements. 

Verification 
All calculations used in this program have been extensively tested and verified. First, they have 
been verified against the original journal article or textbook that contained the formulas. Second, 
they have been verified against second and third sources when these exist. 

 

http://www.ncss.com/
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Chapter 400 

Inequality Tests 
for One Mean 
(One-Sample or 
Paired T-Test) 
Introduction 
The one-sample t test is used to test whether the mean of a population is greater than, less than, or 
not equal to a specific value. Because the t distribution is used to calculate critical values for the 
test, this test is often called the one-sample t test. If the standard deviation is known, the normal 
distribution is used instead of the t distribution and the test is officially known as the z test. 

When the data are differences between paired values, this test is known as the paired t test. 

This module also calculates the power of the nonparametric analog of the t test, the Wilcoxon test.  

Test Procedure 
1.  Find the critical value. Assume that the true mean is M0. Choose a value Ta  so that the 

probability of rejecting H0  when H0  is true is equal to a specified value called α . Using 
the t distribution, select Ta  so that ( )Pr t Ta> = α . This value is found using a t 
probability table or a computer program (like PASS).  

2. Select a sample of n items from the population and compute the t statistic. Call this 
value T. If T  reject the null hypothesis that the mean equals M0 in favor of an 
alternative hypothesis that the mean equals M1 where M1 > M0.  

Ta>

Following is a specific example. Suppose we want to test the hypothesis that a variable, X, has a 
mean of 100 versus the alternative hypothesis that the mean is greater than 100. Suppose that 
previous studies have shown that the standard deviation, σ , is 40. A random sample of 100 
individuals is used.  
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We first compute the critical value, T . The value of  that yields a Ta α  = 0.05 is 106.6. If the mean 
computed from a sample is greater than 106.6, reject the hypothesis that the mean is 100. 
Otherwise, do not reject the hypothesis. We call the region greater than 106.6 the Rejection Region 
and values less than or equal to 106.6 the Acceptance Region of the significance test. 

Now suppose that you want to compute the power of this testing procedure. In order to compute 
the power, we must specify an alternative 
value for the mean. We decide to compute 
the power if the true mean were 110. Figure 
2 shows how to compute the power in this 
case. 

Figure 1 - Finding Alpha 

 

The power is the probability of rejecting  
when the true mean is 110. Since we reject 

 when the calculated mean is greater than 
106.6, the probability of a Type-II error 
(called 

H0

H0

β ) is given by the dark, shaded area 
of the second graph. This value is 0.196. The 
power is equal to 1 - β  or 0.804. 

 

 

 

 

Note that there are six parameters that may 
be varied in this situation: two means, 
standard deviation, alpha, beta, and the 
sample size. 

Figure 2 - Finding Beta 

 



Inequality Tests for One Mean (One-Sample or Paired T-Test)  400-3 

Assumptions 
This section describes the assumptions that are made when you use one of these tests. The key 
assumption relates to normality or non-normality of the data. One of the reasons for the 
popularity of the t test is its robustness in the face of assumption violation. However, if an 
assumption is not met even approximately, the significance levels and the power of the t test are 
invalidated. Unfortunately, in practice it often happens that several assumptions are not met. This 
makes matters even worse! Hence, take the steps to check the assumptions before you make 
important decisions based on these tests. 

One-Sample T Test Assumptions 
The assumptions of the one-sample t test are: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. 

3. The sample is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample.  

Paired T Test Assumptions 
The assumptions of the paired t test are:  

1. The data are continuous (not discrete). 

2. The data, i.e., the differences for the matched-pairs, follow a normal probability 
distribution. 

3. The sample of pairs is a simple random sample from its population. Each individual in 
the population has an equal probability of being selected in the sample.  

Wilcoxon Signed-Rank Test Assumptions 
The assumptions of the Wilcoxon signed-rank test are as follows (note that the difference is 
between a data value and the hypothesized median or between the two data values of a pair):  

1. The differences are continuous (not discrete). 

2. The distribution of each difference is symmetric. 

3. The differences are mutually independent. 

4. The differences all have the same median. 

5. The measurement scale is at least interval. 

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can often ignore the 
continuous variable assumption. Perhaps the greatest restriction is that your data come from a 
random sample of the population. If you do not have a random sample, your significance levels 
will probably be incorrect. 
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Technical Details 

Standard Deviation Known 
When the standard deviation is known, the power is calculated as follows for a directional 
alternative (one-tailed test) in which M1 > M0.  

1. Find zα  such that , where ( )1− =Φ zα α ( )Φ x  is the area under the standardized normal 
curve to the left of x. 

2. Calculate: aX = M0 z
n

+ α
σ

. 

3. Calculate: a
az = X - M1

n
σ . 

4. Power = . ( )1− Φ za

Standard Deviation Unknown 
When the standard deviation is unknown, the power is calculated as follows for a directional 
alternative (one-tailed test) in which M1 > M0.  

1. Find tα  such that , where ( )1− =T tdf α α ( )T tdf α  is the area under a central-t curve to 
the left of x and df = n - 1. 

2. Calculate: x = M0 + t
n

.a α
σ

 

3. Calculate the noncentrality parameter: λ σ= M1 M0

n

.−
 

4. Calculate: a
at = x - M1

n

+σ λ . 

5. Calculate: Power = , where ( )1− ′T tdf a,λ ( )′T xdf ,λ  is the area under a noncentral-t curve 
with degrees of freedom df and noncentrality parameter λ  to the left of x. 



Inequality Tests for One Mean (One-Sample or Paired T-Test)  400-5 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  
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Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Means 

Mean0 (Null or Baseline) 
This option specifies one or more values of the mean corresponding to the null hypothesis. If you 
are analyzing a paired t test, this value should be zero.  

Only the difference between Mean0 and Mean1 is used in the calculations. 

Means1 (Alternative) 
This option specifies one or more values of the mean corresponding to the alternative hypothesis. 
If you are analyzing a paired t test, this value represents the mean difference that you are 
interested in. 

Only the difference between Mean0 and Mean1 is used in the calculations. 

Effect Size – Standard Deviation 

Standard Deviation 
This option specifies one or more values of the standard deviation. This must be a positive value. 
Be sure to use the standard deviation of X and not the standard deviation of the mean (the 
standard error). 

When this value is not known, you must supply an estimate of it. PASS includes a special module 
for estimating the standard deviation. This module may be loaded by pressing the SD button. 
Refer to the Standard Deviation Estimator chapter for further details. 

Known Standard Deviation 
This option specifies whether the standard deviation (sigma) is known or unknown. In almost all 
experimental situations, the standard deviation is not known. However, great calculation 
efficiencies are obtained if the standard deviation is assumed to be known.  

When this box is checked, the program performs its calculations assuming that the standard 
deviation is known. This results in the use of the normal distribution in all probability 
calculations. Calculations using this option will be much faster than for the unknown standard 
deviation case. The results for either case will be close when the sample size is over 30. 

When this box is not checked, the program assumes that the standard deviation is not known and 
will be estimated from the data when the t test is run. This results in probability calculations using 
the noncentral-t distribution. This distribution requires a lot more calculations than does the 
normal distribution. 

The calculation speed comes into play whenever the Find option is set to something besides Beta. 
In these cases, the program uses a special searching algorithm which requires numerous 
iterations. You will note a real difference in calculation speed depending on whether this option is 
checked. 
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A reasonable strategy would be to leave this option checked while you are experimenting with the 
parameters and then turn it off when you are ready for your final results. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always : Mean0 = Mean1. H0

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Ha: Mean0 <> Mean1 
This is the most common selection. It yields the two-tailed t test. Use this option when you 
are testing whether the means are different but you do not want to specify beforehand which 
mean is larger. Many scientific journals require two-tailed tests. 

• Ha: Mean0 < Mean1 
This option yields a one-tailed t test. Use it when you are only interested in the case in which 
Mean1 is greater than Mean0. 

• Ha: Mean0 > Mean1 
This options yields a one-tailed t test. Use it when you are only interested in the case in which 
Mean1 is less than Mean0. 

Nonparametric Adjustment 
This option makes appropriate sample size adjustments for the Wilcoxon test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Wilcoxon test may be 
made using the standard t test formulations with a simple adjustment to the sample size. The size 
of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

• Ignore 
Do not make a Wilcoxon adjustment. This indicates that you want to analyze a t test, not the 
Wilcoxon test. 

• Uniform 
Make the Wilcoxon sample size adjustment assuming the uniform distribution. Since the 
factor is one, this option performs the same as Ignore. It is included for completeness. 

• Double Exponential 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the double 
exponential distribution. 
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• Logistic 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the logistic 
distribution. 

• Normal 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the normal 
distribution. 

Population Size 
This is the number of subjects in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 

When a finite population size is specified, the standard deviation is reduced according to the 
formula:  

σ σ1
2 21= n

N
−⎛

⎝⎜
⎞
⎠⎟

 

where n is the sample size, N is the population size, σ  is the original standard deviation, and σ1  
is the new standard deviation.  

The quantity n/N is often called the sampling fraction. The quantity 1−⎛
⎝⎜

⎞
⎠⎟

n
N

 is called the finite 

population correction factor. 

Example 1 – Power after a Study 
This example will cover the situation in which you are calculating the power of a t test on data 
that have already been collected and analyzed. For example, you might be playing the role of a 
reviewer, looking at the power of t test from a study you are reviewing. In this case, you would 
not vary the means, standard deviation, or sample size since they are given by the experiment. 
Instead, you investigate the power of the significance tests. You might look at the impact of 
different alpha values on the power.   

Suppose an experiment involving 100 individuals yields the following summary statistics: 

Hypothesized mean (M0) 100.0 
Sample mean (M1) 110.0 
Sample standard deviation 40.0 
Sample size 100 

Given the above data, analyze the power of a t test which tests the hypothesis that the population 
mean is 100 versus the alternative hypothesis that the population mean is 110. Consider the power 
at significance levels 0.01, 0.05, 0.10 and sample sizes 20 to 120 by 20. 

Note that we have set M1 equal to the sample mean. In this case, we are studying the power of the 
t test for a mean difference the size of that found in the experimental data. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (One-Sample or Paired T-
Test) procedure window by clicking on Means, then One Mean, then Inequality Tests, then 
Specify using Differences (One-Sample T-Test). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.01  0.05  0.10 
N (Sample Size) ......................................20 to 120 by 20 
Mean0 (Null or Baseline).........................100 
Mean1 (Alternative).................................110 
S (Standard Deviation)............................40 
Known Standard Deviation .....................Unchecked 
Alternative Hypothesis ............................Ha: Mean0 <> Mean1 
Nonparametric Adjustment ..................... Ignore 
Population Size .......................................Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
Unknown standard deviation. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.06051 20 0.01000 0.93949 100.0 110.0 40.0 0.250 
0.14435 40 0.01000 0.85565 100.0 110.0 40.0 0.250 
0.24401 60 0.01000 0.75599 100.0 110.0 40.0 0.250 
0.34953 80 0.01000 0.65047 100.0 110.0 40.0 0.250 
0.45316 100 0.01000 0.54684 100.0 110.0 40.0 0.250 
0.54958 120 0.01000 0.45042 100.0 110.0 40.0 0.250 
0.18590 20 0.05000 0.81410 100.0 110.0 40.0 0.250 
0.33831 40 0.05000 0.66169 100.0 110.0 40.0 0.250 
0.47811 60 0.05000 0.52189 100.0 110.0 40.0 0.250 
0.59828 80 0.05000 0.40172 100.0 110.0 40.0 0.250 
0.69698 100 0.05000 0.30302 100.0 110.0 40.0 0.250 
0.77532 120 0.05000 0.22468 100.0 110.0 40.0 0.250 
0.28873 20 0.10000 0.71127 100.0 110.0 40.0 0.250 
0.46435 40 0.10000 0.53565 100.0 110.0 40.0 0.250 
0.60636 60 0.10000 0.39364 100.0 110.0 40.0 0.250 
0.71639 80 0.10000 0.28361 100.0 110.0 40.0 0.250 
0.79900 100 0.10000 0.20100 100.0 110.0 40.0 0.250 
0.85952 120 0.10000 0.14048 100.0 110.0 40.0 0.250 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Mean0 is the value of the population mean under the null hypothesis. It is arbitrary. 
Mean1 is the value of the population mean under the alternative hypothesis. It is relative to Mean0. 
Sigma is the standard deviation of the population. It measures the variability in the population. 
Effect Size, |Mean0-Mean1|/Sigma, is the relative magnitude of the effect under the alternative. 
 
Summary Statements 
A sample size of 20 achieves 6% power to detect a difference of -10.0 between the null 
hypothesis mean of 100.0 and the alternative hypothesis mean of 110.0 with an estimated 
standard deviation of 40.0 and with a significance level (alpha) of 0.01000 using a two-sided 
one-sample t-test. 

 

This report shows the values of each of the parameters, one scenario per row. The values of 
power and beta were calculated from the other parameters. 
The definitions of each column are given in the Report Definitions section. 

Plots Section 
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This plot shows the relationship between sample size and power for various values of alpha.  
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Example 2 – Finding the Sample Size 
This example will consider the situation in which you are planning a study that will use the one-
sample t test and want to determine an appropriate sample size. This example is more subjective 
than the first because you now have to obtain estimates of all the parameters. In the first example, 
these estimates were provided by the data.  

In studying deaths from SIDS (Sudden Infant Death Syndrome), one hypothesis put forward is 
that infants dying of SIDS weigh less than normal at birth. Suppose the average birth weight of 
infants is 3300 grams with a standard deviation of 663 grams. Use an alpha of 0.05 and power of 
both 0.80 and 0.90. How large a sample of SIDS infants will be needed to detect a drop in 
average weight of 25%? Of 10%? Of 5%? Note that applying these percentages to the average 
weight of 3300 yields 2475, 2970, and 3135. 

Although a one-sided hypothesis is being considered, sample size estimates will assume a two-
sided alternative to keep the research design in line with other studies. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (One-Sample or Paired T-
Test) procedure window by clicking on Means, then One Mean, then Inequality Tests, then 
Specify using Differences (One-Sample T-Test). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Mean0 (Null or Baseline).........................3300 
Mean1 (Alternative).................................2475 2970 3135 
S (Standard Deviation)............................663 
Known Standard Deviation .....................Unchecked 
Alternative Hypothesis ............................Ha: Mean0 <> Mean1 
Nonparametric Adjustment ..................... Ignore 
Population Size .......................................Infinite 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.90307 9 0.05000 0.09693 3300.0 2475.0 663.0 1.244 
0.85339 8 0.05000 0.14661 3300.0 2475.0 663.0 1.244 
0.90409 45 0.05000 0.09591 3300.0 2970.0 663.0 0.498 
0.80426 34 0.05000 0.19574 3300.0 2970.0 663.0 0.498 
0.90070 172 0.05000 0.09930 3300.0 3135.0 663.0 0.249 
0.80105 129 0.05000 0.19895 3300.0 3135.0 663.0 0.249 

 

This report shows the values of each of the parameters, one scenario per row. Since there were 
three values of Mean1 and two values of beta, there are a total of six rows in the report.  
We were solving for the sample size, N. Notice that the increase in sample size seems to be most 
directly related to the difference between the two means. The difference in beta values does not 
seem to be as influential, especially at the smaller sample sizes. 

Note that even though we set the beta values at 0.1 and 0.2, these are not the beta values that were 
achieved. This happens because N can only take on integer values. The program selects the first 
value of N that gives at least the values of alpha and beta that were desired. 

Example 3 – Finding the Minimum Detectable Difference 
This example will consider the situation in which you want to determine how small of a 
difference between the two means can be detected by the t test with specified values of the other 
parameters.  

Continuing with the previous example, suppose about 50 SIDS deaths occur in a particular area 
per year. Using 50 as the sample size, 0.05 as alpha, and 0.20 as beta, how large of a difference 
between the means is detectable? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (One-Sample or Paired T-
Test) procedure window by clicking on Means, then One Mean, then Inequality Tests, then 
Specify using Differences (One-Sample T-Test). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example3 from the 
Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Mean1 (Search<Mean0) 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Sample Size) ......................................50 
Mean0 (Null or Baseline).........................3300 
Mean1 (Alternative)................................. Ignored since this is the Find setting 
S (Standard Deviation)............................663 
Known Standard Deviation .....................Unchecked 
Alternative Hypothesis ............................Ha: Mean0 <> Mean1 
Nonparametric Adjustment ..................... Ignore 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80000 50 0.05000 0.20000 3300.0 3032.0 663.0 0.404 

 

With a sample of 50, a difference of 3300 - 3032 = 268 would be detectable. This difference 
represents about an 8% decrease in weight.  

Example 4 – Paired T Test 
Usually, a researcher designs a study to compare two or more groups of subjects, so the one 
sample case described in this chapter occurs infrequently. However, there is a popular research 
design that does lead to the single mean test: paired observations.  

For example, suppose researchers want to study the impact of an exercise program on the 
individual’s weight. To do so they randomly select N individuals, weigh them, put them through 
the exercise program, and weigh them again. The variable of interest is not their actual weight, 
but how much their weight changed.  

In this design, the data are analyzed using a one-sample t test on the differences between the 
paired observations. The null hypothesis is that the average difference is zero. The alternative 
hypothesis is that the average difference is some nonzero value. 

To study the impact of an exercise program on weight loss, the researchers decide to conduct a 
study that will be analyzed using the paired t test. A sample of individuals will be weighed before 
and after a specified exercise program that will last three months. The difference in their weights 
will be analyzed. 
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Past experiments of this type have had standard deviations in the range of 10 to 15 pounds. The 
researcher wants to detect a difference of 5 pounds or more. Alpha values of 0.01 and 0.05 will be 
tried. Beta is set to 0.20 so that the power is 80%. How large of a sample must the researchers 
take? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (One-Sample or Paired T-
Test) procedure window by clicking on Means, then One Mean, then Inequality Tests, then 
Specify using Differences (One-Sample T-Test). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example4 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.01 0.05 
N (Sample Size) ......................................Ignored since this is the Find setting. 
Mean0 (Null or Baseline).........................0 
Mean1 (Alternative).................................-5 
S (Standard Deviation)............................10 12.5 15 
Known Standard Deviation......................Unchecked 
Alternative Hypothesis ............................Ha: Mean0 <> Mean1 
Nonparametric Adjustment......................Ignore 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80939 51 0.01000 0.19061 0.0 -5.0 10.0 0.500 
0.80778 34 0.05000 0.19222 0.0 -5.0 10.0 0.500 
0.80434 77 0.01000 0.19566 0.0 -5.0 12.5 0.400 
0.80779 52 0.05000 0.19221 0.0 -5.0 12.5 0.400 
0.80252 109 0.01000 0.19748 0.0 -5.0 15.0 0.333 
0.80230 73 0.05000 0.19770 0.0 -5.0 15.0 0.333 
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The report shows the values of each of the parameters, one scenario per row. We were solving for 
the sample size, N.  
Note that depending on our choice of assumptions, the sample size ranges from 34 to 109. Hence, 
the researchers have to make a careful determination of which standard deviation and significance 
level should be used. 

Example 5 – Wilcoxon Test 
The Wilcoxon test, a nonparametric analog of the paired comparison t test, is recommended when 
the distribution of the data is symmetrical, but not normal. A study by Al-Sunduqchi (1990) 
showed that sample size and power calculations for the Wilcoxon test can be made using the 
standard t test results with a simple adjustment to the sample size.  

Suppose the researchers in Example 4 want to compare sample size requirements of the t test with 
those of the Wilcoxon test. They would use the same values, only this time the Nonparametric 
Adjustment would be set to double exponential. The double exponential was selected because it 
requires the largest adjustment of the distributions available in PASS and they wanted to know 
what the largest adjustment was. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (One-Sample or Paired T-
Test) procedure window by clicking on Means, then One Mean, then Inequality Tests, then 
Specify using Differences (One-Sample T-Test). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example5 from the 
Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.01 0.05 
N (Sample Size) ......................................Ignored since this is the Find setting. 
Mean0 (Null or Baseline).........................0 
Mean1 (Alternative).................................-5 
S (Standard Deviation)............................10 12.5 15 
Known Standard Deviation......................Unchecked 
Alternative Hypothesis ............................Ha: Mean0 <> Mean1 
Nonparametric Adjustment......................Double Exponential 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80939 34 0.01000 0.19061 0.0 -5.0 10.0 0.500 
0.80778 22 0.05000 0.19222 0.0 -5.0 10.0 0.500 
0.80434 51 0.01000 0.19566 0.0 -5.0 12.5 0.400 
0.80779 34 0.05000 0.19221 0.0 -5.0 12.5 0.400 
0.80252 72 0.01000 0.19748 0.0 -5.0 15.0 0.333 
0.80230 48 0.05000 0.19770 0.0 -5.0 15.0 0.333 
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If you compare these sample size values with those of Example 4, you will find that these are 
about two-thirds of those required for the t test. This is the value of the adjustment factor for the 
Wilcoxon test when the underlying distribution is the double exponential.  
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Example 6 – Validation using Zar 
Zar (1984) pages 111-112 presents an example in which Mean0 = 0.0, Mean1 = 1.0, S = 1.25, 
alpha = 0.05, and N = 12. Zar obtains an approximate power of 0.72.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (One-Sample or Paired T-
Test) procedure window by clicking on Means, then One Mean, then Inequality Tests, then 
Specify using Differences (One-Sample T-Test). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example6 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting. 
Alpha .......................................................0.05 
N (Sample Size) ......................................12 
Mean0 (Null or Baseline).........................0 
Mean1 (Alternative).................................1 
S (Standard Deviation)............................1.25 
Known Standard Deviation .....................Unchecked 
Alternative Hypothesis ............................Ha: Mean0 <> Mean1 
Nonparametric Adjustment ..................... Ignore 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.71366 12 0.05000 0.28634 0.0 1.0 1.3 0.800 

 

The difference between the power computed by PASS of 0.71366 and the 0.72 computed by Zar 
is mostly due to Zar’s use of an approximation to the noncentral t distribution. 
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Example 7 – Validation using Machin 
Machin, Campbell, Fayers, and Pinol (1997) page 37 presents an example in which Mean0 = 0.0, 
Mean1 = 0.2, S = 1.0, alpha = 0.05, and beta = 0.20. They obtain a sample size of 199. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (One-Sample or Paired T-
Test) procedure window by clicking on Means, then One Mean, then Inequality Tests, then 
Specify using Differences (One-Sample T-Test). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example7 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Mean0 (Null or Baseline).........................0 
Mean1 (Alternative).................................0.2 
S (Standard Deviation)............................1.0 
Known Standard Deviation......................Unchecked 
Alternative Hypothesis ............................Ha: Mean0 <> Mean1 
Nonparametric Adjustment......................Ignore 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80169 199 0.05000 0.19831 0.0 0.2 1.0 0.200 

 

The sample size of 199 matches Machin’s result. 
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Chapter 405 

Inequality Tests 
for One 
Exponential Mean 
Introduction 
This program module designs studies for testing hypotheses about the mean of the exponential 
distribution. Such tests are often used in reliability acceptance testing, also called reliability 
demonstration testing.  

Results are calculated for plans that are time censored or failure censored, as well as for plans 
that use with replacement or without replacement sampling. We adopt the basic methodology 
outlined in Epstein (1960), Juran (1979), Bain and Engelhardt (1991), and Schilling (1982). 

Technical Details 
The test procedures described here make the assumption that lifetimes follow the exponential 
distribution. The density of the exponential distribution is written as 

f t t( ) exp= −⎛
⎝⎜

⎞
⎠⎟

1
θ θ

 

The parameter θ  is interpreted as average failure time, mean time to failure (MTTF), or mean 
time between failures (MTBF). Its reciprocal is the failure rate.  

The reliability, or probability that a unit continues running beyond time t, is 

R t e
t

( ) =
−
θ  

Hypothesis Test 
The relevant statistical hypothesis is H0 0 1:θ θ=  versus the one-sided alternative H1 0 1:θ θ> . Here, 
θ0  represents an acceptable (high) mean life usually set from the point of view of the producer and 
θ1  represents some unacceptable (low) mean life usually set from the point of view of the 
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consumer. The test procedure is to reject the null hypothesis if the observed mean life  is larger 
than a critical value selected to meet the error rate criterion. 

$θ

The error rates are often interpreted in reliability testing as risks. The consumer runs the risk that the 
study will fail to reject products that have a reliability less than they have specified. This consumer 
risk is β . Similarly, the producer runs the risk that the study will reject products that actually meet 
the consumer’s requirements. This producer risk is α .  

Fixed-Failure Sampling Plans 
Fixed failure plans are those in which a specified number of items, n, are observed until a specified 
number of items, , fail. The length of the study  is random. Failed items may, or may not, be 
immediately replaced (with replacement versus without replacement). 

r0 t0

The test statistic is the observed mean life  which is computed using $θ

$θ = =
∑ t

r

i
i all test items

0
 

where  is the elapsed time that the ith item is tested, whether measured until failure or until the 
study is completed. 

ti

For both with-replacement and without-replacement sampling,  follows the two-parameter 
gamma distribution with density 

$θ
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This may be converted to a standard, one-parameter gamma using the transformation  

x r y= 0 /θ  

However, because chi-square tables were more accessible, and because the gamma distribution 
may be transformed to the chi-square distribution, most results in the statistical literature are 
based on the chi-square distribution. That is, 2  is distributed as a chi-square random 
variable with 2  degrees of freedom.  

0r $ /θ θ

0r

Assuming that the testing of all n items begins at the same instant, the expected length of time 
needed to observe the first  failures is r0
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If you choose to solve the without replacement equation for n, you can make use of the 
approximation 
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Using the above results, sampling plans that meet the specified producer and consumer risk values 
may be found using the result (see Epstein (1960) page 437) that  is the smallest integer such that r0

χ
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θ
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,

,

2
2

1 2
2

1

0

0

0

r

r−

≥  for testing H1 0 1:θ θ>  

and 

χ
χ

θ
θ

β

α

,

,

2
2

1 2
2

0

1

0

0

r

r−

≥  for testing H1 0 1:θ θ<  

Note that the above formulation depends on  but not n. An appropriate value of n can be found 
by considering . Two options are available. 

r0

( )E t0

1.  The value of n is set (perhaps on economic grounds) and the value of ( )E t0  is calculated. 

2.  The value of ( )E t0  is set and the value of n is calculated. 

Fixed-Time Sampling Plans 
Fixed Time plans refer to those in which a specified number of items n are observed for a fixed 
length of time . The number of items failing r is recorded. Sampling can be with or without 
replacement. The accept/reject decision can be based on r or the observed mean life  which is 
computed using 

t0

$θ

$θ = =
∑ t

r

i
i all test items  

where  is the time that the ith item is being tested, whether measured until failure or until the 
study is completed. 

ti

With Replacement Sampling 
If failed items are immediately replaced with additional items, the distribution of r (and , since 

) follows the Poisson distribution. The probability distribution of r is given by the 
Poisson probability formula 

$θ
$ /θ = nt r0
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P r r r
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Thus, values of n and t  can be found which meet the 0 α  and β  requirements. 

Without Replacement Sampling 
If failed items are not replaced, the distributions of r and  are different and thus the power and 
sample size calculations depend on which statistic will be used. The probability distribution of r is 
given by the binomial formula 

$θ
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where 

p e t= − −1 0 /θ  

Thus, values of n and t  can be found which meet the 0 α  and β  requirements. Note that this 
formulation ignores the actual failure times. 

If  will be used as the test statistic, power calculations must be based on it. Bartholomew (1963) 
gave the following results for the case r > 0. 

$θ

( ) ( ) ( ) ( )Pr $ exp/θ θ
θθ≥ =

−
⎛
⎝
⎜
⎞
⎠
⎟

⎛
⎝
⎜
⎞
⎠
⎟ − − − +⎧

⎨
⎩

⎫
⎬
⎭−

= =

∞

∑ ∑ ∫C nt
k

n

i

k
i

W
e

n
k

k
i

t n k i g x x1
1

1
0

1 0

0 d  

where g(x) is the chi-square density function with 2k degrees of freedom and 
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The above equation is numerically unstable for large values of N, so we use the following 
approximation also given by Bartholomew (1961). This approximation is used when N > 30 or 
when the exact equation cannot be calculated. Bain and Engelhardt (1991)  page 140 suggest that 
this normal approximation can be used when p > 0.5 
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where 

u = −$θ θ
θ

 

p e t= − −1 0 /θ  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Select Power and Beta when you want to calculate the power of an experiment or test. 

Error Rates 

Power or Beta (Beta is Consumer’s Risk) 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
(consumer’s risk) is the probability of a type-II error, which occurs when a false null hypothesis 
is not rejected. In this procedure, a type-II error occurs when you fail to reject the null hypothesis 
of equal probabilities of the event of interest when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Producer’s Risk) 
This option specifies one or more values for the probability of a type-I error (alpha), also called 
the producer’s risk. A type-I error occurs when you reject the null hypothesis of equal 
probabilities when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Sample Size) 
Enter one or more values for the sample size N, the number of items in the study. Note that the 
sample size is arbitrary for sampling plans that are terminated after a fixed number of failures are 
observed. 

You may enter a range such as 10 to 100 by 10 or a list of values separated by commas or blanks. 

Test 

Alternative Hypothesis 
Specify the alternative hypothesis of the test. Since the null hypothesis is equality (a difference 
between theta0 and theta1 of zero), the alternative is all that needs to be specified. Usually, a one-
tailed option is selected for these designs. In fact, the two-tailed options are only available for 
time terminated experiments. 

Effect Size 

Theta0 (Baseline Mean Life) 
Enter one or more values for the mean life under the null hypothesis. This is sometimes called the 
producer’s mean life. This value is usually scaled in terms of elapsed time such as hours, days, or 
years. Of course, all time values must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure = − −1 0e t /θ  

so that 

( )( )θ =
−

−
t

P
0

1ln Failure
 

Only positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 
1000 by 100.’ 

Because the exponential function is used in the calculations, try to scale the numbers so they are 
less than 100. For example, instead of 720 days, use 7.2 hundreds of days. This will help to avoid 
numerical problems during the calculations. 

Theta1 (Alternative Mean Life) 
Enter one or more values for the mean life under the alternative hypothesis. This is sometimes 
called the consumer’s mean life. This value is usually scaled in terms of elapsed time such as 
hours, days, or years. Of course, all time values must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure = − −1 0e t /θ  
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so that 

( )( )θ =
−

−
t

P
0

1ln Failure
 

Any positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 1000 
by 100.’ 

Because the exponential function is used in the calculations, try to scale the numbers so they are 
less than 100. For example, instead of 720 days, use 7.2 hundreds of days. This will help to avoid 
numerical problems during the calculations. 

Sampling Plan 

Replacement Method 
When failures occur, they may be immediately replaced (With Replacement) with new items or 
not (Without Replacement). One of the assumptions of the exponential distribution is that the 
probability of failure does not depend on the previous running time. That is, it is assumed that 
there is no wear-out. Adopting ‘with replacement’ sampling will shorten the elapsed time of an 
experiment that is failure terminated. 

Termination Criterion 
This option specifies the method used to terminate the study or experiment. There are two basic 
choices: 

• Fixed failures (r) 
Terminate after r failures occur. This is also called failure terminated or Type-II Censoring. 

• Fixed time (t0) 
Terminate after an elapsed time of t0. This is also called time terminated or Type-I Censoring. 
This is the most common. 

In fixed failure sampling, N may be fixed while t0 varies or t0 may be fixed while N varies. All 
that matters is the product of these two quantities. 

In fixed time sampling, two test statistics are available: r and theta-hat. When sampling is without 
replacement, tests based on theta-hat are more powerful (require smaller sample size).  

r (Number of Failures) 
Enter one or more values for the rejection number of the test. If r or more items fail, the null 
hypothesis that Theta0 = Theta1 is rejected in favor of the alternative the Theta0 > Theta1.  

Note that this value is ignored for time terminated experiments, because the appropriate value is 
calculated. This value is also ignored in some situations in failure terminated experiments. 

t0 (Test Duration Time) 
Enter one or more values for the duration of the test. This value may be interpreted as the exact 
duration time, t0, or the expected duration time, E(t0), depending on the Termination Criterion 
and Replacement Method selected. 

These values must be positive and in the same time units as Theta0 and Theta1. 
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E(t0) based on Theta1 
When the experiment is failure terminated, the expected waiting time until r failures are observed, 
E(t0), is calculated. This value depends on the value of theta, the mean life. When checked, E(t0) 
calculations are based on Theta1. When unchecked, E(t0) calculations are based on Theta0. Either 
choice may be reasonable in a given situation. 

Example 1 – Power for Several Sample Sizes 
This example will calculate power for a time terminated, without replacement study in which the 
results will be analyzed using theta-hat. The study will be used to test the alternative hypothesis 
that Theta0 > Theta1, where Theta0 = 2.0 days and Theta1 = 1.0 days. The test duration is 1.0 
days. Funding for the study will allow for a sample size of up to 40 test items. The researchers 
decide to look at sample sizes of 10, 20, 30, and 40. Significance levels of 0.01 and 0.05 will be 
considered.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Exponential Mean procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Exponential Data. 
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.01 0.05 
N (Sample Size) ......................................10 to 40 by 10 
Alternative Hypothesis ............................Ha: Theta0 > Theta1 
Theta0 (Baseline Mean Life) ...................2 
Theta1 (Alternative Mean Life)................1 
Replacement Method ..............................Without Replacement 
Termination Criterion...............................Fixed Time using Theta-hat 
t0 (Test Duration Time) ...........................1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results 
Test Based on Theta-hat with Fixed Running Time t0 and Without Replacement Sampling.  
H0: Theta = Theta0. Ha: Theta = Theta1 < Theta0. Reject H0 if Theta-hat <= ThetaC. 
  Time   Target Actual Target Actual Theta 
Power N t0 Theta0 Theta1 Alpha Alpha Beta Beta C  
0.21695 10 1.000 2.0 1.0 0.01000 0.01000  0.78305 0.7  
0.45485 20 1.000 2.0 1.0 0.01000 0.01000  0.54515 1.0  
0.67159 30 1.000 2.0 1.0 0.01000 0.01000  0.32841 1.1  
0.80628 40 1.000 2.0 1.0 0.01000 0.01000  0.19372 1.2  
0.46940 10 1.000 2.0 1.0 0.05000 0.05000  0.53060 1.0  
0.71828 20 1.000 2.0 1.0 0.05000 0.05000  0.28172 1.2  
0.86665 30 1.000 2.0 1.0 0.05000 0.05000  0.13335 1.3  
0.93730 40 1.000 2.0 1.0 0.05000 0.05000  0.06270 1.4 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Alpha is the probability of rejecting a true null hypothesis.  
Beta is the probability of accepting a false null hypothesis.  
Theta0 is the Mean Life under the null hypothesis. 
Theta1 is the Mean Life under the alternative hypothesis. 
t0 is the test duration time. It provides the scale for Theta0 and Theta1. 
r is the number of failures. 
 
Summary Statements 
A sample size of 10 achieves 22% power to detect the difference between the null hypothesis 
mean lifetime of 2.0 and the alternative hypothesis mean lifetime of 1.0 at a 0.01000 
significance level (alpha) using a one-sided test based on the elapsed time. Failing items are 
not replaced with new items. The study is terminated when it has run for 1.000 time units. 
 

This report shows the power for each of the scenarios. The critical value, Theta C, is also 
provided. 

Plots Section 
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Example 2 – Validation using Epstein 
Epstein (1960), page 438, presents a table giving values of r necessary to meet risk criteria for 
various values of alpha, beta, theta0, and theta1 for the fixed failures case. Specifically, when 
theta0 = 5, theta1 = 2, beta = 0.05, and alpha = 0.01, 0.05, and 0.10, he finds r = 21, 14, and 11. 
We will now duplicate these results.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Exponential Mean procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Exponential Data. 
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................r 
Power ......................................................0.95 
Alpha .......................................................0.01 0.05 0.10 
N (Sample Size) ......................................20 (this value is ignored) 
Alternative Hypothesis ............................Ha: Theta0 > Theta1 
Theta0 (Baseline Mean Life) ...................5 
Theta1 (Alternative Mean Life)................2 
Replacement Method ..............................Without Replacement 
Termination Criterion...............................Fixed Failures, Fixed E(t0) 
t0 (Test Duration Time) ...........................1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results 
Test Based on Fixed Failures r, Fixed Expected Time E(t0), and Without Replacement Sampling.  
H0: Theta = Theta0. Ha: Theta = Theta1 < Theta0. Reject H0 if r >= r0. 
  Time   Target Actual Target Actual 
Power r0 / N E(t0) Theta0 Theta1 Alpha Alpha Beta Beta 
0.95841 21/115 1.000 5.0 2.0 0.01000 0.01000 0.05000 0.04159 
0.95956 14/77 1.000 5.0 2.0 0.05000 0.05000 0.05000 0.04044 
0.96221 11/60 1.000 5.0 2.0 0.10000 0.10000 0.05000 0.03779 
 

PASS has calculated 21, 14, and 11 for r as in Epstein. 

We should note that occasionally our results differ from those of Epstein. We have checked a few 
of these carefully by hand, and, in every case, we have found our results to be correct. 
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Chapter 410 

Inequality Tests 
for One Mean 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of several statistical tests of the 
hypothesis that the population mean is equal to a specific value versus the alternative that it is 
greater than, less than, or not equal to that value. The one-sample t-test is commonly used in this 
situation, but other tests have been developed for situations where the data are not normally 
distributed. These additional tests include the Wilcoxon signed-rank test, the sign test, and the 
computer-intensive bootstrap test. When the population follows the exponential distribution, a test 
based on this distribution should be used.  

The t-test assumes that the data are normally distributed. When this assumption does not hold, the t-
test is still used hoping that its robustness will produce accurate results. This procedure allows you 
to study the accuracy of various tests using simulation techniques. A wide variety of distributions 
can be simulated to allow you to assess the impact of various forms of non-normality on each test’s 
accuracy.  

The details of the power analysis of the t-test using analytic techniques are presented in the PASS 
chapter entitled “Inequality Tests for One Mean” and will not be duplicated here. This chapter will 
be confined to power analysis using computer simulation. 

Technical Details 
Computer simulation allows one to estimate the power and significance level that is actually 
achieved by a test procedure in situations that are not mathematically tractable. Computer 
simulation was once limited to mainframe computers. Currently, due to increased computer speeds, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are as follows. 

1. Specify the method by which the test is to be carried out. This includes specifying how the 
test statistic is calculated and how the significance level is specified. 



410-2  Inequality Tests for One Mean (Simulation) 

2. Generate a random sample, , from the distribution specified by the X X Xn1 2, , ,K
alternative hypothesis. Calculate the test statistic from the simulated data and determine if 
the null hypothesis is accepted or rejected. Each of these samples is used to calculate the 
power of the test. 

3. Generate a random sample, Y Y , from the distribution specified by the Yn1 2, , ,K null 
hypothesis. Calculate the test statistic from the simulated data and determine if the null 
hypothesis is accepted or rejected. Each of these samples is used to calculate the 
significance level of the test. 

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data lead to a rejection of the null hypothesis. The power is the proportion of simulation 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Data Distributions 
A wide variety of distributions may be studied. These distributions can vary in skewness, 
elongation, or other features such as bimodality. A detailed discussion of the distributions that may 
be used in the simulation is provided in the chapter ‘Data Simulator’.  

Test Statistics 
This section describes the test statistics that are available in this procedure. 

One-Sample t-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follows. 
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and M0 is the value of the mean hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (often 0.05), the null hypothesis is rejected. Otherwise, no conclusion can 
be reached. 
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Wilcoxon Signed-Rank Test 
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. This test 
assumes that the data follow a symmetric distribution. The test is computed using the following 
steps.  

1. Subtract the hypothesized mean, M0, from each data value. Rank the values according to 
their absolute values. 

2. Compute the sum of the positive ranks, Sp, and the sum of the negative ranks, Sn. The 
test statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 

W  =  n(n+ )
μ

1
4

 and W
i is  =  n(n+ )( n+ )  -  

t t1 2 1
24 48

3∑ ∑-
 

respectively, where ti represents the number of times the ith value occurs. 

4. Compute the z value using 

W

W
W s

Wz μ−
=  

For cases when n is less than 38, the significance level is found from a table of exact probabilities 
for the Wilcoxon test. When n is greater than or equal to 38, the significance of the test statistic is 
determined by comparing the z value to a normal probability table. If this p-value is less than a 
specified level (often 0.05), the null hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Sign Test  
The sign test is popular because it is simple to compute. This test assumes that the data all follow 
the same distribution. The test is computed using the following steps.  

1. Count the number of values strictly greater than M0. Call this value X. 

2. Count the number of values strictly less than M0. Call this value Y. 

3. Set m = X + Y. 

4. Under the null hypothesis, X is distributed as a binomial random variable with a 
proportion of 0.5 and sample size of m.  

The significance of X is calculated using binomial probabilities. 

Bootstrap Test  
The one-sample bootstrap procedure for testing whether the mean is equal to a specific value is 
given in Efron & Tibshirani (1993), pages 224-227. The bootstrap procedure is as follows.  

1. Compute the mean of the sample. Call it X . 

2. Compute the t-value using the standard t-test. The formula for this computation is 

t X M
sX

X

=
− 0
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where M0 is the hypothesized mean. 

3. Draw a random, with-replacement sample of size n from the original X values. Call this 
sample Y Y .  Yn1 2, , ,L

4. Compute the t-value of this bootstrap sample using the formula 

t Y X
sY

Y

=
−

 

5. For a two-tailed test, if t tY > x  then add one to a counter variable, A. 

6. Repeat steps 3 – 5 B times. B may be anywhere from 100 to 10,000. 

7. Compute the p-value of the bootstrap test as (A + 1) / (B + 1) 

8. Steps 1 – 7 complete one simulation iteration. Repeat these steps M times, where M is the 
number of simulations. The power and significance level are equal to the percent of the 
time the p-value is less than the nominal alpha of the test in their respective simulations. 

Note that the bootstrap test is a time-consuming test to analyze, especially if you set B to a value 
much larger than 100.  

Exponential Test 
The exponential distribution is a highly skewed distribution, so it is very different from the 
normal distribution. Thus, the t-test does not work well with exponential data.  

There is an exact test for the mean of a sample drawn from the exponential distribution. It is well 
known that a simple function of the mean of exponential data follows the chi-square distribution. 
This relationship is given in Epstein (1960) as 

2
0 2

2nX
M n~ χ  

This expression can be used to test hypotheses about the value of the mean, M0.  

Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, note that although the shape parameters are 
constant, the standard deviations are not. In cases such as this, the null and alternatives not only 
have different means, but different standard deviations! 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated using the values of the other parameters. 
Under most conditions, you would select either Power or N. 

Select Power when you want to estimate the power for a specific scenario.  

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level. This option can be very computationally intensive, and may take considerable time to 
complete. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  
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Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50 100 150 200 250 or 50 to 250 by 50.  

Test 

Test Type 
Specify which test statistic (t-test, Wilcoxon test, sign test, bootstrap test, or exponential test) is to 
be simulated. Although the t-test is the most commonly used test statistic, it is based on 
assumptions that may not be viable in many situations. For your data, you may find that one of 
the other tests is more accurate (actual alpha = target alpha) and more precise (higher power). 

Note that the bootstrap test is computationally intensive, so it can be very slow to evaluate. 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0: Mean = M0. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Mean <> M0 
This is the most common selection. It yields a two-tailed test. Use this option when you are 
testing whether the mean is different from a specified value, M0, but you do not want to 
specify beforehand whether it is smaller or larger. Most scientific journals require two-tailed 
tests. 

• Mean < M0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is less 
than M0. 

• Mean > M0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is 
greater than M0. 

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. Larger numbers of 
iterations result in longer running time and more accurate results. 

The precision of the simulated power estimates can be determined by recognizing that they follow 
the binomial distribution. Thus, confidence intervals may be constructed for power estimates. The 
following table gives an estimate of the precision that is achieved for various simulation sizes 
when the power is either 0.50 or 0.95. The table values are interpreted as follows: a 95% 
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confidence interval of the true power is given by the power reported by the simulation plus and 
minus the ‘Precision’ amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
  

Notice that a simulation size of 1000 gives a precision of plus or minus 0.014 when the true 
power is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a 
small amount of additional precision achieved.  

Effect Size 

Distribution Assuming H0 (Null Hypothesis) 
This option specifies the mean and distribution under the null hypothesis, H0. Usually, the mean 
is specified by entering ‘M0’ for the mean parameter in the distribution expression and then 
entering values for the M0 parameter described below. All of the distributions are parameterized 
so that the mean is entered first. For example, if you wanted to test whether the mean of a normal 
distributed variable is five, you could enter N(5, S) or N(M0, S) here. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value ‘M0’ is reserved for the value of the mean 
under the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,P3,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 
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Finding the Value of the Mean under H0 
The distributions have been parameterized in terms of their means, since this is the parameter 
being tested. The mean of a distribution created as a linear combination of other distributions is 
found by applying the linear combination to the individual means. However, the mean of a 
distribution created by multiplying or dividing other distributions is not necessarily equal to 
applying the same function to the individual means. For example, the mean of 4N(4, 5) + 2N(5, 
6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 4*4*2*5 = 160 (although 
it is close). 

Specifying the Mean for Paired (Matched) Data 
Depending on the formula that is entered, the mean is not necessarily the value of M0. For 
example, a common use of the one-group t-test is to test whether the mean of a set of differences 
is zero. Differences may be specified (ignoring the correlation between paired observations) as 
the difference between two normal distributions. This would be specified as N(M0, S) - N(M0, 
S). The mean of the resulting distribution is M0 – M0 = 0 (not M0). 

Distribution Assuming H1 (Alternative Hypothesis) 
This option specifies the mean and distribution under the alternative hypothesis, H1. That is, this 
is the actual (true) value of the mean at which the power is computed. Usually, the mean is 
specified by entering ‘M1’ for the mean parameter in the distribution expression and then 
entering values for the M1 parameter below. All of the distributions are parameterized so that the 
mean is entered first.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value ‘M1’ is reserved for the value of the mean 
under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,P3,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean under H1 
The distributions have been parameterized in terms of their means, since this is the parameter 
being tested. The mean of a distribution created as a linear combination of other distributions is 
found by applying the linear combination to the individual means. However, the mean of a 
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distribution created by multiplying or dividing other distributions is not necessarily equal to 
applying the same function to the individual means. For example, the mean of 4N(4, 5) + 2N(5, 
6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 4*4*2*5 = 160 (although 
it is close). 

Specifying the Mean for Paired (Matched) Data 
Depending on the formula that is entered, the mean is not necessarily the value of M1. For 
example, a common use of the one-group t-test is to test whether the mean of a set of differences 
is zero. Differences may be specified (ignoring the correlation between paired observations) as 
the difference between two normal distributions. This would be specified as N(M1, S) - N(M0, 
S). The mean of the resulting distribution is M1 – M0. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for the M0 in the distribution specifications given above. M0 is 
intended to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

Note that whether M0 is the mean of the simulated distribution depends on the formula you have 
entered. For example, N(M0, S) has a mean of M0, but N(M0, S)-N(M0, S) has a mean of zero. 

M1 (Mean|H1) 
These values are substituted for the M1 in the distribution specifications given above. M1 is 
intended to be the value of the mean hypothesized by the alternative hypothesis, H1. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

Note that whether M1 is the mean of the simulated distribution depends on the formula you have 
entered. For example, N(M1, S) has a mean of M1, but N(M1, S)-N(M0, S) has a mean of M1 -
M0. 

Parameter Values (S, A, B, C) 
Enter the numeric value(s) of parameter listed above. These values are substituted for the 
corresponding letter in the distribution specifications for H0 and H1. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter. 

Iterations Tab 
The Iterations tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is not 
reported. We recommend a value of at least 500. 
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Bootstrap Iterations  

Bootstrap Iterations 
Specify the number of iterations used in the bootstrap hypothesis test. This value is only used if 
the bootstrap test is displayed on the reports. The running time of the procedure depends heavily 
on the number of iterations specified here.  

Recommendations by authors of books discussing the bootstrap range from 100 to 10,000. If you 
enter a large (greater than 500) value, the procedure may take several hours to run. 

Example 1 – Power at Various Sample Sizes 
A researcher is planning an experiment to test whether the mean response level to a certain drug 
is significantly different from zero. The researcher wants to use a t-test with an alpha level of 
0.05. He wants to compute the power at various sample sizes from 5 to 40, assuming the true 
mean is one. He assumes that the data are normally distributed with a standard deviation of 2. 
Since this is an exploratory analysis, he sets the number of simulation iterations to 1000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (Simulation) procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Specify using 
Differences (Simulation). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................5 to 40 by 5 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Mean<>M0 
Simulations..............................................1000 
Distribution|H0 (Null Hypothesis) ............N(M0 S) 
Distribution|H1 (Alt Hypothesis) ..............N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................1 
S ..............................................................2 

Reports Tab 
Show Numeric Report .............................Checked 
Show Inc’s & 95% C.I.’s ..........................Checked 
Show Definitions .....................................Checked 
Show Plots ..............................................Checked 
Number of Summary Statements............1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.138 5 0.0 1.0 0.050 0.050 0.862 0.0 1.0 2.0    
(0.021) [0.117 0.159]   (0.014) [0.036 0.064]      
 
0.293 10 0.0 1.0 0.050 0.061 0.707 0.0 1.0 2.0    
(0.028) [0.265 0.321]   (0.015) [0.046 0.076]      
 
0.437 15 0.0 1.0 0.050 0.058 0.563 0.0 1.0 2.0    
(0.031) [0.406 0.468]   (0.014) [0.044 0.072]      
 
0.582 20 0.0 1.0 0.050 0.058 0.418 0.0 1.0 2.0    
(0.031) [0.551 0.613]   (0.014) [0.044 0.072]      
 
0.643 25 0.0 1.0 0.050 0.048 0.357 0.0 1.0 2.0    
(0.030) [0.613 0.673]   (0.013) [0.035 0.061]      
 
0.772 30 0.0 1.0 0.050 0.042 0.228 0.0 1.0 2.0    
(0.026) [0.746 0.798]   (0.012) [0.030 0.054]      
 
0.806 35 0.0 1.0 0.050 0.054 0.194 0.0 1.0 2.0    
(0.025) [0.781 0.831]   (0.014) [0.040 0.068]      
 
0.872 40 0.0 1.0 0.050 0.044 0.128 0.0 1.0 2.0    
(0.021) [0.851 0.893]   (0.013) [0.031 0.057]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 1000.   Simulation Run Time: 17.81 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Mean0 is the value of the mean assuming the null hypothesis. This is the value being tested. 
Mean1 is the actual value of the mean. The procedure tests whether Mean0 = Mean1. 
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  

 

This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha). Note that because these 
are results of a simulation study, the computed power and alpha will vary from run to run.  Thus, 
another report obtained using the same input parameters will be slightly different than the one 
above. 
The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence interval will decrease. 
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Plots Section 
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This plot shows the relationship between sample size and power.  

Example 2 – Finding the Sample Size for Skewed Data 
In studying deaths from SIDS (Sudden Infant Death Syndrome), one hypothesis put forward is 
that infants dying of SIDS weigh less than normal at birth. Suppose the average birth weight of 
infants is 3300 grams with a standard deviation of 663 grams. The researchers decide to examine 
the effect of a skewed distribution on the test used by adding skewness to the simulated data 
using Tukey’s Lambda distribution with a skewness factor of 0.5.  

Using the Data Simulator program, the researchers found that the actual standard deviation using 
the above parameters was almost 800. This occurs because adding skewness changes the standard 
deviation. They found that setting the standard deviation in Tukey’s Lambda distribution to 563 
resulted in a standard deviation in the data of about 663.  

A histogram of 10,000 pseudo-random values from this distribution appears as follows. 
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The researchers want to determine how large a sample of SIDS infants will be needed to detect a 
drop in average weight of 25%? Note that applying this percentage to the average weight of 3300 
yields 2475.Use an alpha of 0.05 and 80% power.  

Although a one-sided hypothesis might be considered, sample size estimates will assume a two-
sided alternative to keep the research design in line with other studies. To decrease the running 
time of this example, the number of simulation iterations is set to 1000. In practice, you would 
probably use a value of about 5000. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (Simulation) procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Specify using 
Differences (Simulation). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Mean<>M0 
Simulations..............................................1000 
Distribution|H0 (Null Hypothesis) ............L(M0 S G 0) 
Distribution|H1 (Alt Hypothesis) ..............L(M1 S G 0) 
M0 (Mean|H0) .........................................2475 
M1 (Mean|H1) .........................................3300 
S ..............................................................563 
G..............................................................0.5 (Note that parameter A was changed to G.) 

Reports Tab 
Show Numeric Report .............................Checked 
Show Inc’s & 95% C.I.’s ..........................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results of Search for N 
 

  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.817 6 2475.0 3300.0 0.050 0.073 0.183 2475.0 3300.0 563.0 0.5   
(0.024) [0.793 0.841]   (0.016) [0.057 0.089]      

 
The required sample size was 6. Notice how wide the confidence interval of power is. We re-ran 
this simulation several times and obtained sample sizes of 5, 6, and 7. Note that the actual alpha 
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value is between 0.057 and 0.089, which is definitely greater than 0.05. This shows one of the 
problems of using the t-test with a skewed distribution. 

To be more accurate and yet avoid the long running time of the search for N, a reasonable 
strategy would be to run simulations to obtain the powers using N’s from 4 to 10. The result of 
this study is displayed next. 

Numeric Results of Power Search for Various N 
 

  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.414 4 2475.0 3300.0 0.050 0.093 0.586 2475.0 3300.0 563.0 0.5   
(0.014) [0.400 0.428]   (0.008) [0.085 0.101]      
 
0.645 5 2475.0 3300.0 0.050 0.084 0.355 2475.0 3300.0 563.0 0.5   
(0.013) [0.632 0.658]   (0.008) [0.076 0.091]      
 
0.811 6 2475.0 3300.0 0.050 0.088 0.189 2475.0 3300.0 563.0 0.5   
(0.011) [0.800 0.822]   (0.008) [0.081 0.096]      
 
0.912 7 2475.0 3300.0 0.050 0.089 0.088 2475.0 3300.0 563.0 0.5   
(0.008) [0.905 0.920]   (0.008) [0.081 0.097]      
 
0.960 8 2475.0 3300.0 0.050 0.077 0.040 2475.0 3300.0 563.0 0.5   
(0.005) [0.955 0.966]   (0.007) [0.069 0.084]      
 
0.983 9 2475.0 3300.0 0.050 0.082 0.017 2475.0 3300.0 563.0 0.5   
(0.004) [0.979 0.987]   (0.008) [0.074 0.089]      
 
0.994 10 2475.0 3300.0 0.050 0.079 0.006 2475.0 3300.0 563.0 0.5   
(0.002) [0.992 0.996]   (0.007) [0.071 0.086]      

 
The sample size of 6 appears to meet the design parameters the best. The actual significance level 
still appears to be greater than 0.05. The researchers decide that they must use a smaller value of 
Alpha so that the actual alpha is about 0.05. After some experimentation, they find that setting 
Alpha to 0.025 results in the desired power and significance level. 

Numeric Results with Alpha = 0.025 
 

  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.593 6 2475.0 3300.0 0.025 0.057 0.407 2475.0 3300.0 563.0 0.5   
(0.014) [0.579 0.606]   (0.006) [0.051 0.064]      
 
0.754 7 2475.0 3300.0 0.025 0.058 0.246 2475.0 3300.0 563.0 0.5   
(0.012) [0.742 0.766]   (0.006) [0.051 0.064]      
 
0.862 8 2475.0 3300.0 0.025 0.049 0.138 2475.0 3300.0 563.0 0.5   
(0.010) [0.853 0.872]   (0.006) [0.043 0.055]      
 
0.929 9 2475.0 3300.0 0.025 0.044 0.071 2475.0 3300.0 563.0 0.5   
(0.007) [0.921 0.936]   (0.006) [0.039 0.050]      
 

It appears that a sample size of 8 with a Target Alpha of 0.025 will result in an experimental 
design with the characteristics the researchers wanted. 

Notice that when working with non-normal distributions, you must change both N and the Target 
Alpha to achieve the design you want! 
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Example 3 – Comparative results with Skewed Data 
Continuing with Example2, the researchers want to study the characteristics of various test 
statistics as the amount of skewness is increased. To do this, they let the skewness parameter of 
Tukey’s Lambda distribution vary between 0 and 1. The researchers realize that the standard 
deviation will change as the skewness parameter is increased, but they decide to ignore this 
complication. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (Simulation) procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Specify using 
Differences (Simulation). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example3 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................6 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Mean<>M0 
Simulations..............................................1000 
Distribution|H0 (Null Hypothesis) ............L(M0 S G 0) 
Distribution|H1 (Alt Hypothesis) ..............L(M1 S G 0) 
M0 (Mean|H0) .........................................2475 
M1 (Mean|H1) .........................................3300 
S ..............................................................563 
G..............................................................0.0 0.2 0.4 0.6 0.8 1.0 

Report Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 
Include T-Test Results ............................Checked 
Include Wilcoxon & Sign Test .................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Power Comparison for Testing One Mean = Mean0.   Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Tukey(M0 S G 0) 
H1 Distribution: Tukey(M1 S G 0) 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign   
N (Mean0) (Mean1) Alpha Power Power Power   
6 2475.0 3300.0 0.050 0.816 0.634 0.634   
6 2475.0 3300.0 0.050 0.852 0.705 0.705   
6 2475.0 3300.0 0.050 0.845 0.790 0.790   
6 2475.0 3300.0 0.050 0.779 0.839 0.839   
6 2475.0 3300.0 0.050 0.644 0.866 0.866   
6 2475.0 3300.0 0.050 0.466 0.757 0.757   
Number of Monte Carlo Iterations: 5000.   Simulation Run Time: 43.81 seconds. 

 
Alpha Comparison for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign   
N (Mean0) (Mean1) Alpha Alpha Alpha Alpha   
6 2475.0 3300.0 0.050 0.046 0.032 0.032   
6 2475.0 3300.0 0.050 0.058 0.035 0.035   
6 2475.0 3300.0 0.050 0.070 0.040 0.040   
6 2475.0 3300.0 0.050 0.095 0.056 0.056   
6 2475.0 3300.0 0.050 0.134 0.084 0.084   
6 2475.0 3300.0 0.050 0.173 0.107 0.107   
Number of Monte Carlo Iterations: 5000.   Simulation Run Time: 43.81 seconds. 

 
Several interesting trends become apparent from this study. First, for a sample size of 6, the 
power of the Wilcoxon test and the sign test are the same (this is not the case for larger sample 
sizes). The power of the t-test decreases as the amount of skewness increases. Unfortunately, we 
do not know if this was due to the increased variance, or the increased skewness. The power of 
the Wilcoxon and sign tests does not decrease—in fact, it increases until the skewness reaches 
0.6. Finally, the significance level is adversely impacted by the skewness. 

Example 4 – Validation using Zar 
Zar (1984), pages 111-112, presents an example in which Mean0 = 0.0, Mean1 = 1.0, S = 1.25, 
alpha = 0.05, and N = 12. Zar obtains an approximate power of 0.72. We will validate this 
procedure by running this example. To make certain that the results are very accurate, the number 
of simulations will be set to 10,000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (Simulation) procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Specify using 
Differences (Simulation). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example4 from the Template tab on the procedure 
window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................12 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Mean<>M0 
Simulations..............................................10000 
Distribution|H0 (Null Hypothesis) ............N(M0 S) 
Distribution|H1 (Alt Hypothesis) ..............N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................1 
S ..............................................................1.25 

Reports Tab 
Show Numeric Report .............................Checked 
Show Inc’s & 95% C.I.’s ..........................Checked 
Show Definitions .....................................Checked 
Show Plots ..............................................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: T-Test 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.717 12 0.0 1.0 0.050 0.056 0.283 0.0 1.0 1.3    
(0.009) [0.708 0.726]   (0.004) [0.051 0.060]      

 

This simulation obtained a power of 0.717 which rounds to the 0.72 computed by Zar. Note that 
another repetition of this same analysis will probably be slightly different since a different set of 
random numbers will be used. 
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Example 5 – Validation using Machin 
Machin, et. al. (1997), page 37, present an example in which Mean0 = 0.0, Mean1 = 0.2, S = 1.0, 
alpha = 0.05, and beta = 0.20. They obtain a sample size of 199. Because of the long running 
time, we will set the number of simulations at only 200. Of course, in practice you would usually 
set this to a value greater than 1000.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (Simulation) procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Specify using 
Differences (Simulation). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example5 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Mean<>M0 
Simulations..............................................200 
Distribution|H0 (Null Hypothesis) ............N(M0 S) 
Distribution|H1 (Alt Hypothesis) ..............N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................0.20 
S ..............................................................1 

Reports Tab 
Show Numeric Report .............................Checked 
Show Inc’s & 95% C.I.’s ..........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: T-Test 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.785 211 0.0 0.2 0.050 0.045 0.215 0.0 0.2 1.0    
(0.057) [0.728 0.842]   (0.029) [0.016 0.074]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 200.   Simulation Run Time: 39.83 seconds. 
 

Note that using a simulation size of only 200, the estimated sample size of 211 is still close to the 
exact value of 199. We ran this simulation several times and obtained sample sizes between 187 
and 211. 
You might try resetting the simulation size to 2000 and rerunning the simulation. 

Example 6 – Power of the Wilcoxon Test 
The Wilcoxon nonparametric test was designed for data that do not follow the normal distribution 
but are symmetric. This type of data often occurs when differences between two non-normal 
variables are taken, as in a study that analyzes differences in pre- and post-test scores.  

For this example, suppose the pre-test and the post-test scores are exponentially distributed. Here 
are examples of exponentially-distributed data with means of 4 and 2, respectively. 
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It has been shown that the differences between two identically-distributed variables are 
symmetric. The histogram below on the left shows differences in the null case in which the 
difference is between two exponential variables both with a mean of 4. The histogram below on 
the right shows differences in the alternative case in which the difference is between an 
exponential variable with a mean of 4 and an exponential variable with a mean of 2. Careful 
inspection shows that the second histogram is skewed to the right and the mean difference is 
about 2, not 0. 
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E(4)-E(4) E(4)-E(2)
1500

   
The researchers want to study the power of the two-sided Wilcoxon test when sample sizes of 10, 
20, 30, and 40 are used, and testing is done at the 5% significance level. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (Simulation) procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Specify using 
Differences (Simulation). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example6 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................10 20 30 40 50 
Test Type ................................................Wilcoxon 
Alternative Hypothesis ............................Mean<>M0 
Simulations..............................................5000 
Distribution|H0 (Null Hypothesis) ............E(M0)-E(M0) 
Distribution|H1 (Alt Hypothesis) ..............E(M0)-E(M1) 
M0 (Mean|H0) .........................................4 
M1 (Mean|H1) .........................................2 

Reports Tab 
Show Numeric Report .............................Checked 
Show Inc’s & 95% C.I.’s ..........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Expo(M0)-Expo(M0) 
H1 Distribution: Expo(M0)-Expo(M1) 
Test Statistic: Wilcoxon Signed-Rank Test 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1     
0.204 10 0.0 2.0 0.050 0.038 0.796 4.0 2.0     
(0.011) [0.193 0.216]   (0.005) [0.032 0.043]      
 
0.480 20 0.0 2.0 0.050 0.051 0.520 4.0 2.0     
(0.014) [0.466 0.494]   (0.006) [0.045 0.057]      
 
0.647 30 0.0 2.0 0.050 0.050 0.353 4.0 2.0     
(0.013) [0.634 0.660]   (0.006) [0.044 0.056]      
 
0.789 40 0.0 2.0 0.050 0.047 0.211 4.0 2.0     
(0.011) [0.778 0.800]   (0.006) [0.041 0.053] 
  
0.863 50 0.0 2.0 0.050 0.049 0.137 4.0 2.0     
(0.010) [0.853 0.872]   (0.006) [0.043 0.055]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 5000.   Simulation Run Time: 79.70 seconds. 
 

Reasonable power is achieved for N = 50. 

Example 7 – Likert-Scale Data 
Likert-scale data occurs commonly in survey research. A Likert Scale is discrete, ordinal data. It 
usually occurs when a survey poses a question and the respondent must pick among strongly 
agree, agree, undecided, disagree, or strongly disagree. The responses are usually coded as 1, 2, 3, 
4, and 5.  

Likert data can be analyzed in a number of ways. Perhaps the most common is to use a t-test or a 
Wilcoxon test. (Using the Wilcoxon test is invalid in this case because the data are seldom 
distributed symmetrically.) 

In this example, a questionnaire is planned on which Likert-scale questions will be asked. The 
researchers want to study the power and actual significance levels of various sample sizes. They 
decide to look at what happens as the proportion of strongly agree responses is increased beyond 
a perfectly uniform response pattern. They want to compute the power when the strongly agree 
response is twice as likely, four times as likely, and eight times as likely. The sample size is 20, 
alpha is 0.05, and the test is two-sided. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (Simulation) procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Specify using 
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Differences (Simulation). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example7 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................20 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Mean<>M0 
Simulations..............................................5000 
Distribution|H0 (Null Hypothesis) ............M(M0 1 1 1 1) 
Distribution|H1 (Alt Hypothesis) ..............M(M1 1 1 1 1) 
M0 (Mean|H0) .........................................1 
M1 (Mean|H1) .........................................2 4 8 

Reports Tab 
Show Numeric Report .............................Checked 
Show Inc’s & 95% C.I.’s ..........................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: M(M0 1 1 1 1) 
H1 Distribution: M(M1 1 1 1 1) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1     
0.167 20 3.0 2.7 0.050 0.050 0.833 1.0 2.0     
(0.010) [0.156 0.177]   (0.006) [0.044 0.056]      
 
0.558 20 3.0 2.3 0.050 0.052 0.442 1.0 4.0     
(0.014) [0.544 0.572]   (0.006) [0.046 0.058]      
 
0.910 20 3.0 1.8 0.050 0.055 0.090 1.0 8.0     
(0.008) [0.902 0.918]   (0.006) [0.048 0.061]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 5000.   Simulation Run Time: 12.53 seconds. 
 

Note that M0 and M1 are no longer the H0 and H1 means. Now, they represent the relative 
weighting given to the strongly agree response. Under H0, the mean is 3.0. As M1 is increased, 
the mean under H1 changes from 2.7 to 2.3 to 1.8. We note that the actual significance level, 
alpha, remains close to the target value of 0.05. 
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Example 8 – Computing the Power after Completing an 
Experiment 
A group of researchers has completed an experiment designed to determine if a particular 
hormone increases weight gain in rats. The researchers inject 20 rats of the same age with the 
hormone and measure their weight gain after 1 month.  The investigators uses the two-sided 
bootstrap test with alpha = 0.05 and 100 bootstrap samples to determine if the average weight 
gained by these rats (171 grams) is significantly greater than the known average weight gained by 
rats of the same age over the same period of time (155 grams).  Unfortunately, the results indicate 
that there is no significant difference between the two means.  Therefore, the researchers decide 
to compute the power achieved by this test for alternative means ranging from 160 to 190 grams.  
They decide to use 1000 simulations for the study.  For comparative purposes, they also decide to 
look at the power achieved by the bootstrap test in comparison to various other applicable tests.  
Suppose that they know that the standard deviation for weight gain is 33 grams. 

Note that the researchers compute the power for a range of practically significant alternatives.  
The range chosen should represent likely values based on historical evidence. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Mean (Simulation) procedure 
window by clicking on Means, then One Mean, then Inequality Tests, then Specify using 
Differences (Simulation). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example8 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................20 
Test Type ................................................Bootstrap 
Alternative Hypothesis ............................Mean<>M0 
Simulations..............................................1000 
Distribution|H0 (Null Hypothesis) ............N(M0 S) 
Distribution|H1 (Alt Hypothesis) ..............N(M1 S) 
M0 (Mean|H0) .........................................155 
M1 (Mean|H1) .........................................160 to 190 by 10 
S ..............................................................33 

Reports Tab 
Show Numeric Report .............................Checked 
Show Inc’s & 95% C.I.’s ..........................Checked 
Show Comparative Reports ....................Checked 
Show Plots ..............................................Checked 
Show Comparative Plots.........................Checked 
Include T-Test Results ............................Checked 
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Reports Tab (continued) 
Include Wilcoxon & Sign Test .................Checked 
Include Bootstrap Test Results ...............Checked 

Iterations Tab 
Bootstrap Iterations .................................100 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Power of Bootstrap 
 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: Bootstrap Test (100) 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.108 20 155.0 160.0 0.050 0.045 0.892 155.0 160.0 33.0    
(0.019) [0.089 0.127]   (0.013) [0.032 0.058]      
 
0.453 20 155.0 170.0 0.050 0.044 0.547 155.0 170.0 33.0    
(0.031) [0.422 0.484]   (0.013) [0.031 0.057]      
 
0.872 20 155.0 180.0 0.050 0.044 0.128 155.0 180.0 33.0    
(0.021) [0.851 0.893]   (0.013) [0.031 0.057]      
 
0.994 20 155.0 190.0 0.050 0.042 0.006 155.0 190.0 33.0    
(0.005) [0.989 0.999]   (0.012) [0.030 0.054]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 1000.   Simulation Run Time: 2.99 minutes. 
 
 

Power vs M1 with M0=155.0 S=33.0 Alpha=0.05 N=20
2-Sided Bootstrap Test (100)
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Reasonable power is achieved by this test for alternative means larger than 180.  The accuracy of 
these results, of course, depends on the assumption that the data are normally distributed. 
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Comparative Results for Power of Various Tests 
 

Power Comparison for Testing One Mean = Mean0.   Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap  
N (Mean0) (Mean1) Alpha Power Power Power Power  
20 155.0 160.0 0.050 0.105 0.097 0.078 0.108  
20 155.0 170.0 0.050 0.472 0.439 0.312 0.453  
20 155.0 180.0 0.050 0.903 0.882 0.697 0.872  
20 155.0 190.0 0.050 0.997 0.991 0.935 0.994  
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.99 minutes. 
 
 
Alpha Comparison for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap  
N (Mean0) (Mean1) Alpha Alpha Alpha Alpha Alpha  
20 155.0 160.0 0.050 0.041 0.045 0.038 0.045  
20 155.0 170.0 0.050 0.045 0.049 0.037 0.044  
20 155.0 180.0 0.050 0.045 0.040 0.033 0.044  
20 155.0 190.0 0.050 0.053 0.058 0.037 0.042  
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.99 minutes. 
 
 

Power vs M1 by Test with M0=155.0 S=33.0 Alpha=0.05
N=20 2-Sided Bootstrap Test
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It is apparent from these results that the bootstrap performs as well as (if not better than) the t-test 
and nonparametric tests for this design.   
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Example 9 – Comparison of Tests for Exponential Data 
A researcher is designing an experiment.  She believes that the data will follow an exponential 
distribution.  Consequently, she does not believe that the t-test will be useful for her situation.  
She would like to compare several possible tests to determine which would be best for analyzing 
exponential data.  She is interested in determining the power when the alternative mean is twice 
the null mean, which is 10. She wants to find the power achieved for sample sizes ranging from 
20 to 60 with alpha = 0.05.   

The number of simulations will be set at 1000 to expedite the analysis.  Greater accuracy could be 
achieved by setting this number higher.  This example will still take a few minutes to run because 
the bootstrap is included in the report. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example9 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................20 to 60 by 20 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Mean<>M0 
Simulations..............................................1000 
Distribution|H0 (Null Hypothesis) ............E(M0) 
Distribution|H1 (Alt Hypothesis) ..............E(M1) 
M0 (Mean|H0) .........................................10 
M1 (Mean|H1) .........................................20 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 
Include T-Test Results ............................Checked 
Include Wilcoxon & Sign Test .................Checked 
Include Bootstrap Test Results ...............Checked 
Include Exponential Test Results............Checked 

Iterations Tab 
Bootstrap Iterations .................................100 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Power Comparison for Testing One Mean = Mean0.   Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Expo(M0) 
H1 Distribution: Expo(M1) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap Expo 
N (Mean0) (Mean1) Alpha Power Power Power Power Power 
20 10.0 20.0 0.050 0.626 0.445 0.125 0.427 0.886 
40 10.0 20.0 0.050 0.964 0.790 0.254 0.875 0.989 
60 10.0 20.0 0.050 0.996 0.898 0.271 0.983 0.999 
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.43 minutes. 
 
Alpha Comparison for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Expo(M0) 
H1 Distribution: Expo(M1) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap Expo 
N (Mean0) (Mean1) Alpha Alpha Alpha Alpha Alpha Alpha 
20 10.0 20.0 0.050 0.094 0.130 0.202 0.074 0.048 
40 10.0 20.0 0.050 0.057 0.172 0.342 0.046 0.044 
60 10.0 20.0 0.050 0.060 0.268 0.489 0.049 0.049 
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.43 minutes. 
 
 

Power vs N by Test with M0=10.0 M1=20.0 Alpha=0.05
2-Sided T-Test
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As would be expected for exponential data, the exponential test performs the best.  The bootstrap 
test performs nearly as well for larger sample sizes.  The other tests fail to achieve the target 
alpha level.  Note that these simulation results will vary from run to run because the samples 
generated are random.  The researcher must now decide which test to use based on her level of 
confidence in the data being truly exponentially distributed and the size of a sample she can 
afford to take. 
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Chapter 415 

Non-Inferiority & 
Superiority Tests 
for One Mean 
Introduction 
This module computes power and sample size for non-inferiority and superiority tests in one-
sample designs in which the outcome is distributed as a normal random variable. This includes 
the analysis of the differences between paired values.  

The details of sample size calculation for the one-sample design are presented in the Inequality 
Tests for One Mean (One-Sample or Paired T-Test) chapter and they will not be duplicated here. 
This chapter only discusses those changes necessary for non-inferiority and superiority tests. 
Sample size formulas for non-inferiority and superiority tests of a single mean are presented in 
Chow et al. (2003) page 50.  

The one-sample t-test is used to test whether a population mean is different from a specific value. 
When the data are differences between paired values, this test is known as the paired t-test. This 
module also calculates the power of the nonparametric analog of the t-test, the Wilcoxon test.  

Paired Designs 
Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other variables. 
Hypothesis tests on paired data can be analyzed by considering the difference between the paired 
items as the response. The distribution of differences is usually symmetric. In fact, the distribution 
must be symmetric if the individual distributions of the two items are identical. Hence, the paired t-
test and the Wilcoxon signed-rank test are appropriate for paired data even when the distributions of 
the individual items are not normal.  

In paired designs, the variable of interest is the difference between two individual measurements. 
Although the non-inferiority hypothesis refers to the difference between two individual means, the 
actual values of those means are not needed. All that is needed is their difference. 
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The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size could be calculated using the One-Sample T-Test procedure. However, at 
the urging of our users, we have developed this module which provides the input and output 
options that are convenient for non-inferiority tests. This section will review the specifics of non-
inferiority and superiority testing. 

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0:μX A≤  versus H1:μX A>  

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tail test 
because H0 is rejected in samples in which the sample mean is larger than A. 

Following is an example of a lower-tail test. 

H0:μX A≥  versus H1:μX A<  

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  
 

Parameter PASS Input/Output Interpretation 
μ  Not used Population mean. If the data are paired differences, this 

is the mean of those differences. 
T

μR  Not used Reference value. Usually, this is the mean of a reference 
population. If the data are paired differences, this is the 
hypothesized value of the mean difference. 

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the magnitude of difference that is not of 
practical importance. This may be thought of as the 
largest difference from the reference value that is 
considered to be trivial. The absolute value symbols are 
used to emphasize that this is a magnitude. The sign is 
determined by the specific design. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the mean and the reference value, at 
which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 
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Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the mean is not worse than that of the baseline (reference) 
population by more than a small equivalence margin. The actual direction of the hypothesis 
depends on the whether higher values of the response are good or bad.  

A superiority test tests that the mean is better than that of the baseline (reference) population by 
more than a small equivalence margin. The actual direction of the hypothesis depends on the 
whether higher values of the response are good or bad. 

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean of the treatment group is no less than a small amount below the 
reference value. The value of δ  is often set to zero. Equivalent sets of the null and alternative 
hypotheses are 

H0:μ μ εT R≤ −  versus  H1:μ μ εT R> −  

H0:μ μ εT R− ≤ −   versus  H1:μ μ εT R− > −  

H0:δ ε≤ −   versus  H1:δ ε> −  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean of the treatment group is no more than a small amount above the 
reference value. The value of δ  is often set to zero. Equivalent sets of the null and alternative 
hypotheses are 

H0:μ μ εT R≥ +  versus  H1:μ μ εT R< +  

H0:μ μ εT R− ≥   versus  H1:μ μ εT R− <  

H0:δ ε≥   versus  H1:δ ε<  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean is greater than the reference value by at least the margin of 
equivalence. The value of δ  must be greater than ε . Equivalent sets of the null and alternative 
hypotheses are 

H0:μ μ εT R≤ +  versus  H1:μ μ εT R> +  

H0:μ μ εT R− ≤   versus  H1:μ μ εT R− >  

H0:δ ε≤   versus  H1:δ ε>  
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Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean is less than the reference value by at least the margin of 
equivalence. The value of δ  must be less than− ε . Equivalent sets of the null and alternative 
hypotheses are 

H0:μ μ εT R≥ −  versus  H1:μ μ εT R< −  

H0:μ μ εT R− ≥ −   versus  H1:μ μ εT R− < −  

H0:δ ε≥ −   versus  H1:δ ε< −  

Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that a test is to be conducted to determine if a new cancer treatment adversely 
affects the mean bone density. The adjusted mean bone density (AMBD) in the population of 
interest is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that 
if the treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health 
threat.  

The hypothesis of interest is whether the AMBD in the treated group is greater than 0.002300-
0.000115 = 0.002185. The statistical test will be set up so that if the null hypothesis that the 
AMBD is less than or equal to 0.002185 is rejected, the conclusion will be that the new treatment 
is non-inferior, at least in terms of AMBD. The value 0.000115 gm/cm is called the margin of 
equivalence or the margin of non-inferiority. 

Test Statistics 
This section describes the test statistics that are available in this procedure. 

One-Sample T-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 
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and D0 is the value of the mean hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps. 

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to 
their absolute values. 

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 

( )
nW

n n+
μ =

1
4  and 

( )( )
nW

3n n+ n+
 -  t - t

σ =
∑ ∑1 2 1

24 48  

where t represents the number of times the ith value occurs. 

4. Compute the z value using 
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The significance of the test statistic is determined by computing the p-value using the standard 
normal distribution. If this p-value is less than a specified level (usually 0.05), the null hypothesis 
is rejected in favor of the alternative hypothesis. Otherwise, no conclusion can be reached. 

Computing the Power 
The power is calculated as follows for a directional alternative (one-tailed test) in which D1 > 
D0. D1 is the value of the mean at which the power is computed. 

1. Find tα  such that ( )1 1− −T tn α α= , where ( )T tn−1 α  is the area to the left of x under a 
central-t curve with n – 1 degrees of freedom. 

2. Calculate x = D0+ t
n

.a α
σ

 

3. Calculate the noncentrality parameter λ σ= D1 D0

n

.−
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4. Calculate a
at = x - D1

n

+σ λ . 

5. Calculate the power = ( )1 1− ′−T tn a,λ , where ( )′−T xn 1,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom n – 1 and noncentrality parameter λ . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that will be of interest. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Power and Beta when you want to calculate the power.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  



Non-Inferiority & Superiority Tests for One Mean  415-7 

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. You may enter a list of values using the 
syntax 50 100 150 200 250 or 50 to 250 by 50.  

Effect Size – Mean Difference 

|E| (Equivalence Margin) 
This is the magnitude of the margin of equivalence. It is the smallest difference between the mean 
and the reference value that still results in the conclusion of non-inferiority (or superiority). Note 
that the sign of this value is assigned depending on the selections for Higher Is and Test Type. 

D (True Value) 
This is the difference between the mean and the reference value at which the power is computed. 
For non-inferiority tests, this value is often set to zero, but it can be non-zero as long as the values 
are consistent with the alternative hypothesis, H1. For superiority tests, this value is non-zero. 
Again, it must be consistent with the alternative hypothesis, H1. 

Effect Size – Standard Deviation 

Standard Deviation 
This option specifies one or more values of the standard deviation. This must be a positive value. 
PASS includes a special module for estimating the standard deviation. This module may be 
loaded by pressing the SD button. Refer to the Standard Deviation Estimator chapter for further 
details. 

Test 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
mean is within the margin of equivalence of being no worse than the reference mean. Select 
Superiority when you want to test whether the mean is better than the reference mean by at least 
the margin of equivalence. 

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are usually considered 
bad. However, if the response variable is income, higher values are generally considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Nonparametric Adjustment 
This option makes appropriate sample size adjustments for the Wilcoxon test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Wilcoxon test may be 
made using the standard t test formulations with a simple adjustment to the sample size. The size 
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of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

• Ignore 
Do not make a Wilcoxon adjustment. This indicates that you want to analyze a t test, not the 
Wilcoxon test. 

• Uniform 
Make the Wilcoxon sample size adjustment assuming the uniform distribution. Since the 
factor is one, this option performs the same as Ignore. It is included for completeness. 

• Double Exponential 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the double 
exponential distribution. 

• Logistic 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the logistic 
distribution. 

• Normal 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the normal 
distribution. 

Population Size 
This is the number of subjects in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 

When a finite population size is specified, the standard deviation is reduced according to the 
formula 

σ σ1
2 21= n

N
−⎛

⎝⎜
⎞
⎠⎟

 

where n is the sample size, N is the population size, σ  is the original standard deviation, and σ1  
is the new standard deviation.  

The quantity n/N is often called the sampling fraction. The quantity 1−⎛
⎝⎜

⎞
⎠⎟

n
N

 is called the finite 

population correction factor. 
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Example 1 – Power Analysis 
Suppose that a test is to be conducted to determine if a new cancer treatment adversely affects the 
mean bone density. The adjusted mean bone density (AMBD) in the population of interest is 
0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the 
treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health 
threat. They also want to consider what would happen if the margin of equivalence is set to 2.5% 
(0.0000575 gm/cm).   

Following accepted procedure, the analysis will be a non-inferiority test using the t-test at the 
0.025 significance level. Power is to be calculated assuming that the new treatment has no effect 
on AMBD. Several sample sizes between 20 and 300 will be analyzed. The researchers want to 
achieve a power of at least 90%. All numbers have been multiplied by 10000 to make the reports 
and plots easier to read. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Mean 
[Differences] procedure window by clicking on Means, then One Mean, then Non-Inferiority 
& Superiority Tests using Differences. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.025 
N (Sample Size) ......................................20 40 60 80 100 150 200 300 
|E| (Equivalence Margin).........................0.575 1.15 
D (True Difference) .................................0 
S (Standard Deviation)............................3 
Test Type ................................................Non-Inferiority 
Nonparametric Adjustment ..................... Ignore 
Population Size .......................................Infinite 
Higher is ..................................................Good 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

 
Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.12601 20 -0.575 0.000 0.02500 0.87399 3.000 
0.21844 40 -0.575 0.000 0.02500 0.78156 3.000 
0.30873 60 -0.575 0.000 0.02500 0.69127 3.000 
0.39493 80 -0.575 0.000 0.02500 0.60507 3.000 
0.47532 100 -0.575 0.000 0.02500 0.52468 3.000 
0.64517 150 -0.575 0.000 0.02500 0.35483 3.000 
0.76959 200 -0.575 0.000 0.02500 0.23041 3.000 
0.91262 300 -0.575 0.000 0.02500 0.08738 3.000 
0.36990 20 -1.150 0.000 0.02500 0.63010 3.000 
0.65705 40 -1.150 0.000 0.02500 0.34295 3.000 
0.83164 60 -1.150 0.000 0.02500 0.16836 3.000 
0.92317 80 -1.150 0.000 0.02500 0.07683 3.000 
0.96682 100 -1.150 0.000 0.02500 0.03318 3.000 
0.99658 150 -1.150 0.000 0.02500 0.00342 3.000 
0.99970 200 -1.150 0.000 0.02500 0.00030 3.000 
1.00000 300 -1.150 0.000 0.02500 0.00000 3.000 
 
Report Definitions 
H0 (null hypothesis) is that D <= -|E|, where D = Mean - Reference Value. 
H1 (alternative hypothesis) is that D > -|E|. 
Power is the probability of rejecting H0 when it is false. It should be close to one. 
N is the sample size, the number of subjects in the study. 
Alpha is the probability of rejecting H0 when it is true which is the probability of a false positive. 
Beta is the probability of accepting H0 when it is false which is the probability of a false negative. 
|E| is the magnitude of the margin of equivalence. It is the largest difference that is not of practical significance. 
D is actual difference between the mean and the reference value. 
Reference Value is a standard value to which the mean is to be compared.  
S is the standard deviation of the response. It measures the variability in the population. 
 
Summary Statements 
A sample size of 20 achieves 13% power to detect non-inferiority using a one-sided t-test when 
the margin of equivalence is -0.575 and the true difference between the mean and the reference 
value is 0.000. The data are drawn from a single population with a standard deviation of 3.000. 
The significance level (alpha) of the test is 0.02500. 
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The above report shows that for |E| = 1.15, the sample size necessary to obtain 90% power is just 
under 80. However, if |E| = 0.575, the required sample size is about 300. 
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Example 2 – Finding the Sample Size 
Continuing with Example1, the researchers want to know the exact sample size for each value of 
|E|. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Mean 
[Differences] procedure window by clicking on Means, then One Mean, then Non-Inferiority 
& Superiority Tests using Differences. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.025 
N (Sample Size) ......................................Ignored since this is the Find setting 
|E| (Equivalence Margin).........................0.575 1.15 
D (True Difference) .................................0 
S (Standard Deviation)............................3 
Test Type ................................................Non-Inferiority 
Nonparametric Adjustment ..................... Ignore 
Population Size .......................................Infinite 
Higher is ..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.90051 287 -0.575 0.000 0.02500 0.09949 3.000 
0.90215 74 -1.150 0.000 0.02500 0.09785 3.000 

 
This report shows the exact sample size requirement for each value of |E|. 
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Example 3 – Validation using Chow 
Chow, Shao, Wang (2003) pages 54-55 has an example of a sample size calculation for a non-
inferiority trial. Their example obtains a sample size of 8 when D = 0.5, |E| = 0.5, S = 1, Alpha = 
0.05, and Beta = 0.20.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Mean 
[Differences] procedure window by clicking on Means, then One Mean, then Non-Inferiority 
& Superiority Tests using Differences. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
|E| (Equivalence Margin).........................0.5 
D (True Difference) .................................0.5 
S (Standard Deviation)............................1 
Test Type ................................................Non-Inferiority 
Nonparametric Adjustment......................Ignore 
Population Size .......................................Infinite 
Higher is ..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.81502 8 -0.500 0.500 0.05000 0.18498 1.000 

 
PASS has also obtained a sample size of 8. 
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Example 4 – Validation of a Cross-Over Design given in 
Julious 
Julious (2004) page 1953 gives an example of a sample size calculation for a cross-over design. 
His example obtains a sample size of 87 when D = 0, |E| = 10, S = 28.28427, Alpha = 0.025, and 
Beta = 0.10. When D is changed to 2, the resulting sample size is 61. 

Note that in Julius’s example, the population standard deviation is given as 20. Assuming that the 
correlation between items in a pair is 0, the standard deviation of the difference is calculated to be 

( )( )( )S = + − =20 20 0 20 20 28 2842712 2 . . Actually, the value of S probably should be less 
because the correlation is usually greater than 0 (at least 0.2). 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Mean 
[Differences] procedure window by clicking on Means, then One Mean, then Non-Inferiority 
& Superiority Tests using Differences. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example4 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.025 
N (Sample Size) ......................................Ignored since this is the Find setting 
|E| (Equivalence Margin).........................10 
D (True Difference) .................................0 2 
S (Standard Deviation)............................28.284271 
Test Type ................................................Non-Inferiority 
Nonparametric Adjustment ..................... Ignore 
Population Size .......................................Infinite 
Higher is ..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.90332 87 -10.000 0.000 0.02500 0.09668 28.284 
0.90323 61 -10.000 2.000 0.02500 0.09677 28.284 

 
PASS has also obtained sample sizes of 87 and 61. 
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Example 5 – Validation of a Cross-Over Design given in 
Chow, Shao, and Wang 
Chow, Shao, and Wang (2004) page 67 give an example of a sample size calculation for a cross-
over design. Their example calculates sample sizes of 13 and 14 (13 by formula and 14 from their 
table) in each sequence (26 or 28 total) when D = -0.1, |E| = 0.2, S = 0.2, Alpha = 0.05, and Beta 
= 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example5 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
|E| (Equivalence Margin).........................0.2 
D (True Difference) .................................-.1 
S (Standard Deviation).............................2 
Test Type ................................................Non-Inferiority 
Nonparametric Adjustment......................Ignore 
Population Size .......................................Infinite 
Higher is ..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.81183 27 -0.200 -0.100 0.05000 0.18817 0.200 

 
PASS obtained a sample size of 27 which is between the values of 26 and 28 that were obtained 
by Chow et al. 
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Chapter 420 

Confidence 
Intervals for One 
Mean 
Introduction 
This routine calculates the sample size necessary to achieve a specified distance from the mean to 
the confidence limit(s) at a stated confidence level for a confidence interval about the mean when 
the underlying data distribution is normal.  

Caution: This procedure assumes that the standard deviation of the future sample will be the same 
as the standard deviation that is specified. If the standard deviation to be used in the procedure is 
estimated from a previous sample or represents the population standard deviation, the Confidence 
Intervals for One Mean with Tolerance Probability procedure should be considered. That 
procedure controls the probability that the distance from the mean to the confidence limits will be 
less than or equal to the value specified.  

Technical Details 
For a single mean from a normal distribution with known variance, a two-sided, 100(1 – α)% 
confidence interval is calculated by  

n
zX σα 2/1−±  

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
zX σα−+ 1  

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
zX σα−− 1  
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For a single mean from a normal distribution with unknown variance, a two-sided, 100(1 – α)% 
confidence interval is calculated by  

n
t

X n σα ˆ1,2/1 −−±  

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
t

X n σα ˆ1,1 −−+  

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
t

X n σα ˆ1,1 −−−  

Each confidence interval is calculated using an estimate of the mean plus and/or minus a quantity 
that represents the distance from the mean to the edge of the interval. For two-sided confidence 
intervals, this distance is sometimes called the precision, margin of error, or half-width. We will 
label this distance, D.  

The basic equation for determining sample size when D has been specified is 

D z
n

= −1 2α σ/  

when the standard deviation is known, and 

D
t

n
n= − −1 2 1α σ/ , $

 

when the standard deviation is unknown. These equations can be solved for any of the unknown 
quantities in terms of the others. The value α / 2 is replaced by α when a one-sided interval is used. 

Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), an adjustment must be made. The adjustment reduces the 
standard deviation as follows:  

σ σfinite
n
N

= −⎛
⎝⎜

⎞
⎠⎟

1  

This new standard deviation replaces the regular standard deviation in the above formulas. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean is 1 - α. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Precision 

Distance from Mean to Limit(s) 
This is the distance from the confidence limit(s) to the mean. For two-sided intervals, it is also 
known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  
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Standard Deviation 

S (Standard Deviation) 
Enter a value (or range of values) for the standard deviation. Roughly speaking, this value 
estimates the average absolute difference between each individual and every other individual. 
You can use the results of a pilot study, a previous study, or a ball park estimate based on the 
range (e.g., Range/4) to estimate this parameter. 

Know Standard Deviation 
Check this box when you want to base your results on the normal distribution. When the box is 
not checked, calculations are based on the t-distribution. The difference between the two 
distributions is negligible when the sample sizes are large (>50).  

Population 

Population Size 
This is the number of individuals in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 
This option sets the population size. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the mean such that the width of the interval is no wider than 14 units. The 
confidence level is set at 0.95, but 0.99 is included for comparative purposes. The standard 
deviation estimate, based on the range of data values, is 28. Instead of examining only the interval 
half-width of 7, a series of half-widths from 5 to 9 will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean procedure window by 
clicking on Confidence Intervals, then Means, then One Mean. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 0.99 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Mean to Limit(s) ...............5 to 9 by 1 
S (Standard Deviation)............................28 
Population Size .......................................Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals with Unknown Standard Deviation 
 
  Target Actual  
 Sample Distance Distance Standard 
Confidence Size from Mean from Mean Deviation 
Level (N) to Limits to Limits (S) 
0.95 123 5.000 4.998 28.000 
0.99 212 5.000 4.999 28.000 
0.95 87 6.000 5.968 28.000 
0.99 149 6.000 5.986 28.000 
0.95 64 7.000 6.994 28.000 
0.99 110 7.000 6.999 28.000 
0.95 50 8.000 7.958 28.000 
0.99 86 8.000 7.956 28.000 
0.95 40 9.000 8.955 28.000 
0.99 69 9.000 8.933 28.000 
 
References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
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Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population mean. 
N is the size of the sample drawn from the population. 
Distance from Mean to Limit is the distance from the confidence limit(s) to the mean. For two-sided intervals, 
     it is also know as the precision, half-width, or margin of error. 
Target Distance from Mean to Limit is the value of the distance that is entered into the procedure. 
Actual Distance from Mean to Limit is the value of the distance that is obtained from the procedure. 
The standard deviation of the population measures the variability in the population. 
 
Summary Statements 
A sample size of 123 produces a two-sided 95% confidence interval with a distance from the mean 
to the limits that is equal to 4.998 when the estimated standard deviation is 28.000. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size versus the distance from the mean to the limits (precision) for the 
two confidence levels. 
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Example 2 – Validation using Moore and McCabe 
Moore and McCabe (1999) page 443 give an example of a sample size calculation for a 
confidence interval on the mean when the confidence coefficient is 95%, the standard deviation is 
known to be 3, and the margin of error is 2. The necessary sample size is 9.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean procedure window by 
clicking on Confidence Intervals, then Means, then One Mean. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Mean to Limit(s) ...............2 
S (Standard Deviation)............................3 
Known Standard Deviation .....................Checked 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Target Actual  
 Sample Distance Distance Standard 
Confidence Size from Mean from Mean Deviation 
Level (N) to Limits to Limits (S) 
0.95 9 2.000 1.960 3.000 
 

PASS also calculated the necessary sample size to be 9.  
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Example 3 – Validation using Ostle and Malone 
Ostle and Malone (1988) page 536 give an example of a sample size calculation for a confidence 
interval on the mean when the confidence coefficient is 95%, the standard deviation is known to 
be 7, and the margin of error is 5. The necessary sample size is 8. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean procedure window by 
clicking on Confidence Intervals, then Means, then One Mean. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example3 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Mean to Limit(s) ...............5 
S (Standard Deviation)............................7 
Known Standard Deviation......................Checked 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Target Actual  
 Sample Distance Distance Standard 
Confidence Size from Mean from Mean Deviation 
Level (N) to Limits to Limits (S) 
0.95 8 5.000 4.851 7.000 
 

PASS also calculated the necessary sample size to be 8.  
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Chapter 421 

Confidence 
Intervals for One 
Mean with Tolerance 
Probability 
Introduction 
This procedure calculates the sample size necessary to achieve a specified distance from the mean 
to the confidence limit(s) with a given tolerance probability at a stated confidence level for a 
confidence interval about a single mean when the underlying data distribution is normal.  

Technical Details 
For a single mean from a normal distribution with unknown variance, a two-sided, 100(1 – α)% 
confidence interval is calculated by  

n
t

X n σα ˆ,/ 121 −−±  

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
t

X n σα ˆ, 11 −−+  

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
t

X n σα ˆ, 11 −−−  

Each confidence interval is calculated using an estimate of the mean plus and/or minus a quantity 
that represents the distance from the mean to the edge of the interval. For two-sided confidence 
intervals, this distance is sometimes called the precision, margin of error, or half-width. We will 
label this distance, D.  
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The basic equation for determining sample size when D has been specified is 

D
t

n
n= − −1 2 1α σ/ , $

 

Solving for n, we obtain 
2

121
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −−

D
t

n n σα ˆ,/  

This equation can be solved for any of the unknown quantities in terms of the others. The value α/2 
is replaced by α when a one-sided interval is used. 

There is an additional subtlety that arises when the standard deviation is to be chosen for estimating 
sample size. The sample sizes determined from the formula above produce confidence intervals 
with the specified widths only when the future sample has a sample standard deviation that is no 
greater than the value specified. 

As an example, suppose that 15 individuals are sampled in a pilot study, and a standard deviation 
estimate of 3.5 is obtained from the sample. The purpose of a later study is to estimate the mean 
within 10 units. Suppose further that the sample size needed is calculated to be 57 using the formula 
above with 3.5 as the estimate for the standard deviation. The sample of size 57 is then obtained 
from the population, but the standard deviation of the 57 individuals turns out to be 3.9 rather than 
3.5. The confidence interval is computed and the distance from the mean to the confidence limits is 
greater than 10 units. 

This example illustrates the need for an adjustment to adjust the sample size such that the distance 
from the mean to the confidence limits will be below the specified value with known probability. 

Such an adjustment for situations where a previous sample is used to estimate the standard 
deviation is derived by Harris, Horvitz, and Mood (1948) and discussed in Zar (1984) and Hahn and 
Meeker (1991). The adjustment is 
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where 1 – γ  is the probability that the distance from the mean to the confidence limit(s) will be 
below the specified value, and m is the sample size in the previous sample that was used to estimate 
the standard deviation. 

The corresponding adjustment when no previous sample is available is discussed in Kupper and 
Hafner (1989) and Hahn and Meeker (1991). The adjustment in this case is 
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where, again, 1 – γ  is the probability that the distance from the mean to the confidence limit(s) will 
be below the specified value. 

Each of these adjustments accounts for the variability in a future estimate of the standard deviation. 
In the first adjustment formula (Harris, Horvitz, and Mood, 1948), the distribution of the standard 
deviation is based on the estimate from a previous sample. In the second adjustment formula, the 
distribution of the standard deviation is based on a specified value that is assumed to be the 
population standard deviation.  
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Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), an adjustment must be made. The adjustment reduces the 
standard deviation as follows: 

σ σfinite
n
N

= −⎛
⎝⎜

⎞
⎠⎟

1  

This new standard deviation replaces the regular standard deviation in the above formulas. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean is 1 – α. 

 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence and Tolerance 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Tolerance Probability 
This is the probability that a future interval with sample size N and the specified confidence level 
will have a distance from the mean to the limit(s) that is less than or equal to the distance specified. 

If a tolerance probability is not used, as in the 'Confidence Intervals for One Mean' procedure, the 
sample size is calculated for the expected distance from the mean to the limit(s), which assumes that 
the future standard deviation will also be the one specified. 
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Using a tolerance probability implies that the standard deviation of the future sample will not be 
known in advance, and therefore, an adjustment is made to the sample size formula to account for 
the variability in the standard deviation. Use of a tolerance probability is similar to using an upper 
bound for the standard deviation in the 'Confidence Intervals for One Mean' procedure. 

Values between 0 and 1 can be entered. The choice of the tolerance probability depends upon how 
important it is that the distance from the interval limit(s) to the mean is at most the value specified. 

You can enter a range of values such as 0.70 0.80 0.90 or 0.70 to 0.95 by 0.05. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Precision 

Distance from Mean to Limit(s) 
This is the distance from the confidence limit(s) to the mean. For two-sided intervals, it is also 
known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Standard Deviation 

Standard Deviation Source 
This procedure permits two sources for estimates of the standard deviation: 

• S is a Population Standard Deviation 
This option should be selected if there is no previous sample that can be used to obtain an 
estimate of the standard deviation. In this case, the algorithm assumes that future sample 
obtained will be from a population with standard deviation S. 

• S from a Previous Sample 
This option should be selected if the estimate of the standard deviation is obtained from a 
previous random sample from the same distribution as the one to be sampled. The sample 
size of the previous sample must also be entered under 'Sample Size of Previous Sample'. 
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Standard Deviation – S is a 
Population Standard Deviation 

S (Standard Deviation) 
Enter an estimate of the standard deviation (must be positive). In this case, the algorithm assumes 
that future samples obtained will be from a population with standard deviation S. 

One common method for estimating the standard deviation is the range divided by 4, 5, or 6. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Standard Deviation – S from a 
Previous Sample 

S (SD Estimated from a Previous Sample) 
Enter an estimate of the standard deviation from a previous (or pilot) study. This value must be 
positive. 

A range of values may be entered. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Sample Size of Previous Sample 
Enter the sample size that was used to estimate the standard deviation entered in S (SD Estimated 
from a Previous Sample). 

This value is entered only when 'Standard Deviation Source:' is set to 'S from a Previous Sample'.  

Population 

Population Size 
This is the number of individuals in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 
This option sets the population size. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
A researcher would like to estimate the mean weight of a population with 95% confidence. It is 
very important that the mean weight is estimated within 15 grams.  Data available from a 
previous study are used to provide an estimate of the standard deviation. The estimate of the 
standard deviation is 45.1 grams, from a sample of size 14.  
The goal is to determine the sample size necessary to obtain a two-sided confidence interval such 
that the mean weight is estimated within 15 grams. Tolerance probabilities of 0.70 to 0.95 will be 
examined. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean with Tolerance 
Probability procedure window by clicking on Confidence Intervals, then Means, then One 
Mean with Tolerance Probability. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
Tolerance Probability ..............................0.70 to 0.95 by 0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Mean to Limit(s) ...............15 
Standard Deviation Source .....................S from a Previous Sample 
S ..............................................................45.1 
Sample Size of Previous Sample............14 
Population Size .......................................Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Distance Distance Standard  
Confidence Size from Mean from Mean Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.95 52 15.000 14.937 45.100 0.70 
0.95 56 15.000 14.988 45.100 0.75 
0.95 62 15.000 14.907 45.100 0.80 
0.95 69 15.000 14.924 45.100 0.85 
0.95 79 15.000 14.975 45.100 0.90 
0.95 99 15.000 14.934 45.100 0.95 
 
Sample size for estimate of S from previous sample = 10.  



Confidence Intervals for One Mean with Tolerance Probability  421-7 

 
References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
Zar, J. H. 1984. Biostatistical Analysis. Second Edition. Prentice-Hall. Englewood Cliffs, New Jersey. 
Harris, M., Horvitz, D. J., and Mood, A. M. 1948. 'On the Determination of Sample Sizes in Designing 
     Experiments', Journal of the American Statistical Association, Volume 43, No. 243, pp. 391-402. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population mean. 
N is the size of the sample drawn from the population. 
Distance from Mean to Limit is the distance from the confidence limit(s) to the mean. For two-sided intervals, 
     it is also know as the precision, half-width, or margin of error. 
Target Distance from Mean to Limit is the value of the distance that is entered into the procedure. 
Actual Distance from Mean to Limit is the value of the distance that is obtained from the procedure. 
The standard deviation of the population measures the variability in the population. 
Tolerance Probability is the probability that a future interval with sample size N and corresponding 
     confidence level will have a distance from the mean to the limit(s) that is less than or equal to the 
     specified distance. 
 
Summary Statements 
The probability is 0.70 that a sample size of 52 will produce a two-sided 95% confidence 
interval with a distance from the mean to the limits that is less than or equal to 14.937 if 
the population standard deviation is estimated to be 45.100 by a previous sample of size 10. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size versus the tolerance probability. 
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Example 2 – Validation using Hahn and Meeker 
Hahn and Meeker (1991) page 139 give an example of a sample size calculation for a two-sided 
confidence interval on the mean when the confidence level is 95%, the population standard 
deviation is assumed to be 2500, the distance from the mean to the limit is 1500, and the tolerance 
probability is 0.90. The necessary sample size is 19.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean with Tolerance 
Probability procedure window by clicking on Confidence Intervals, then Means, then One 
Mean with Tolerance Probability. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example2 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
Tolerance Probability ..............................0.90 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Mean to Limit(s) ...............1500 
Standard Deviation Source .....................S is a Population Standard Deviation 
S ..............................................................2500 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Distance Distance Standard  
Confidence Size from Mean from Mean Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.95 19 1500.000 1447.889 2500.000 0.90 
 

PASS also calculated the necessary sample size to be 19.  
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Example 3 – Validation using Zar 
Zar (1984) pages 109-110 give an example of a sample size calculation for a two-sided 
confidence interval on the mean when the confidence level is 95%, the standard deviation is 
estimated to be 4.247211 by a previous sample of size 25, the distance from the mean to the limit 
is 1.5, and the tolerance probability is 0.90. The necessary sample size is 53. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean with Tolerance 
Probability procedure window by clicking on Confidence Intervals, then Means, then One 
Mean with Tolerance Probability. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example3 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
Tolerance Probability ..............................0.90 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Mean to Limit(s) ...............1.5 
Standard Deviation Source .....................S from a Previous Sample 
S ..............................................................4.247211 
Sample Size of Previous Sample............25 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Distance Distance Standard  
Confidence Size from Mean from Mean Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.95 53 1.500 1.489 4.247 0.90 
 

PASS also calculated the necessary sample size to be 53.  
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Example 4 – Validation using Harris, Horvitz, and Mood 
Harris, Horvitz, and Mood (1948) pages 392-393 give an example of a sample size calculation for 
a two-sided confidence interval on the mean when the confidence level is 99%, the standard 
deviation is estimated to be 3 by a previous sample of size 9, the distance from the mean to the 
limit is 2, and the tolerance probability is 0.95. The necessary sample size is 49. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean with Tolerance 
Probability procedure window by clicking on Confidence Intervals, then Means, then One 
Mean with Tolerance Probability. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example4 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.99 
Tolerance Probability ..............................0.90 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Mean to Limit(s) ...............2 
Standard Deviation Source .....................S from a Previous Sample 
S ..............................................................3 
Sample Size of Previous Sample............9 
Population Size .......................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Distance Distance Standard  
Confidence Size from Mean from Mean Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.99 49 2.000 1.999 3.000 0.95 
 

PASS also calculated the necessary sample size to be 49.  
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Chapter 430 

Inequality Tests 
for Two Means 
using Differences 
(Two-Sample  
T-Test) 
Introduction 
A common research task is to compare the means of two populations (groups) by taking 
independent samples from each. This is sometimes referred to as a parallel-groups design. This 
design is used in situations such as the comparison of the income level of two regions, the 
nitrogen content of two lakes, or the effectiveness of two drugs.  

The mean represents the center of the population. If the means are different, then the populations 
are different. Other parameters of the two populations (such as the variance) can also be 
considered, but the mean is usually the starting point. 

If assumptions about the other features of the two populations are met (such as that they are 
normally distributed and their variances are equal), the two-sample t test can be used to compare 
the means of random samples drawn from these two populations. If the normality assumption is 
violated but the distributions are still symmetric, the nonparametric Mann-Whitney U test may be 
used instead.   

Test Procedure 
Let the means of populations one and two be μ1  and μ2

H :
. Let , the null hypothesis, represent 

the hypothesis that the two means are equal. That is, 
H0

20 1 0μ μ− = .  

The formal steps in conducting a two-sample t test and analyzing its power are as follows:  
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1.  Find the critical value. Assume that the true difference between the means (μ μ1 2− ) is 
zero. Choose a value Tα  so that the probability of rejecting H0  when H0  is true is equal 

to a specified value, α . Using the t distribution, select Tα  so that ( ) .  Pr >T T =α α

Again, select elect  so that if the means of the two populations are equal, t statistics 
calculated from two samples drawn from those populations will only exceed T  exactly 

Tα
α

100α%  of the time. 

 
Figure 1 - Find the Critical Value 

 
 

2.  Conduct the experiment. Select two samples of N1  and N2  items from the populations 
and compute the t value. Call this number TS .  

3.  Look for statistical significance. If T TS > α  reject the null hypothesis that μ μ1 2 0− =  
in favor of an alternative hypothesis that μ μ1 2 0− = >d , where μ μ1 2> . 

4.  Compute the power. Now suppose that you want to compute the power of this test. First, 
you must specify an alternative value, d, for the difference between the two means so that 
μ μ1 2= + d . You now consider a new probability distribution centered at d which is 
called the noncentral-t distribution. It appears as a bell-shaped curve as shown below. 

The power is the probability of rejecting  when the true difference is d. Since we 
reject  when our computed  value is greater that , the power is the area under 
the noncentral-t curve to the right of T . The area to the left of T  represents the 
probability of a type-II error, or beta, since when the computed T  value is less than T , 
we do not reject the false . 

H0

H0 TS Tα
α α

S α

H0
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Figure 2 - Computing the Power 

 
Notice that in order to compute the power of the test, we must specify the true values of the 
means. Since we do not know these values, we compute the power at several possible values of d. 
This lets us understand what the power might have been. 

Note that we can set the value of alpha (probability of a type-I error). However, we cannot set the 
value of beta (probability of a type-II error). Beta is computed based on a hypothesized value of 
d. We do not know what the value d really is. So we can compute beta for a variety of d values, 
but unless we know the true values of the population means, we do not know the true value of d, 
and hence, we do not know the true value of beta. This is why so much attention is paid to alpha, 
but so little attention is paid to beta. 

Assumptions 
The following assumptions are made when using the two-sample t test or the Mann-Whitney U 
test. One of the reasons for the popularity of the t test is its robustness in the face of assumption 
violation. However, if an assumption is not met even approximately, the significance levels and 
the power of the t test are unknown. Unfortunately, in practice it often happens that several 
assumptions are not met. This makes matters even worse! Hence, you should take the appropriate 
steps to check the assumptions before you make important decisions based on these tests.  

Two-Sample T Test Assumptions 
The assumptions of the two-sample t test are:  

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. 

3. The variances of the two populations are equal. (If not, the Aspin-Welch Unequal-
Variance test is used.) 

4. The two samples are independent. There is no relationship between the individuals in one 
sample as compared to the other (as there is in the paired t test).  

5. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  
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Mann-Whitney U Test Assumptions 
The assumptions of the Mann-Whitney U test for difference in means are:  

1. The variable of interest is continuous (not discrete). The measurement scale is at least 
ordinal.  

2. The probability distributions of the two populations are identical, except for location. 
That is, the variances are equal.  

3. The two samples are independent. 

4. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can often ignore the 
continuous variable assumption. Perhaps the greatest restriction is that your data come from a 
random sample of the population. If you do not have a random sample, your significance levels 
will probably be incorrect. 

Technical Details 
There are four separate situations each requiring different formulas. Let the means of the two 
populations be represented by μ1  and μ2 . The difference between these means will be 
represented by d. Let the standard deviations of the two populations be represented as σ1  and 
σ2 . 

Case 1 – Standard Deviations Known and Equal 
When σ σ σ1 2= =  and are known, the power of the t test is calculated as follows for a 
directional alternative (one-tailed test) in which d > 0. 

1. Find zα   such that , where ( )1− =Φ zα α ( )Φ x  is the area under the standardized 
normal curve to the left of x. 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

. 

3. Calculate: p
x

x
z = z - dασ

σ
. 

4. Calculate:   Power = . ( )1− Φ zp
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Case 2 – Standard Deviations Known and Unequal 
When σ σ1 ≠ 2 and are known, the power is calculated as follows for a directional alternative 
(one-tailed test) in which d > 0.  

1. Find zα   such that ( )1− =Φ zα α , where ( )Φ x  is the area under the standardized 
normal curve to the left of x. 

2. Calculate: σ
σ σ

x
1
2

1

2
2

2
=

N
+

N
. 

3. Calculate: p
x

x
z =

z -α dσ
σ

. 

4. Calculate:   Power = ( )1− Φ zp . 

Case 3 – Standard Deviations Unknown and Equal 
When σ σ σ1 2= =  and are unknown, the power of the t test is calculated as follows for a 
directional alternative (one-tailed test) in which d > 0.  

1.  Find tα  such that ( )1 , where − =T tdf α α ( )T tdf α  is the area under a central-t curve to 
the left of x and df N N= + −1 2 2 . 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

. 

3. Calculate the noncentrality parameter: λ
σ

=
d

x
. 

4. Calculate: p
x

x
t =

t - d
+ασ

σ
λ . 

5. Calculate: Power = ( )1− ′T tdf p,λ , where ( )′T xdf ,λ  is the area under a noncentral-t curve 

with degrees of freedom df and noncentrality parameter λ  to the left of x. 
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Case 4 – Standard Deviations Unknown and Unequal 
When σ σ1 ≠ 2  and are unknown, the power is calculated as follows for a directional alternative 
(one-tailed test) in which d > 0. Note that in this case, an approximate t test is used.  

1. Calculate: σ σ σ
x

1
2

1

2
2

2
=

N
+

N
. 

2. Calculate: f =

N ( N +1)
+

N ( N +1)

- 2x

1
4

1
2

1

2
4

2
2

2

σ
σ σ

4

. 

which is the adjusted degrees of freedom. Often, this is rounded to the next highest 
integer. 

3.  Find tα  such that ( )1 , where − =T tf α α ( )T tf α  is the area to the left of x under a 
central-t curve with f degrees of freedom. 

4. Calculate: λ
σ

=
d

,
x

1 the noncentrality parameter. 

5. Calculate: p
x

x
t =

t - d
+ασ

σ
λ . 

6. Calculate: Power = , where ( )1− ′T tf p,λ ( )′T xf ,λ  is the area to the left of x under a 

noncentral-t curve with degrees of freedom f and noncentrality parameter λ . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Mean1, Mean2, Sigma1, Sigma2, Alpha, Power and Beta, N1, and N2. In 
most situations, you will select either Power and Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Alpha Approximate Odds of Rejecting a true null hypothesis 
0.01 1 in 100 
0.02 1 in 50 
0.03 1 in 33 
0.04 1 in 25 
0.05 1 in 20 
0.06 1 in 17 
0.07 1 in 14 
0.08 1 in 12 
0.09 1 in 11 
0.10 1 in 10 
0.15 1 in 7 
0.20 1 in 5 
0.25 1 in 4 
0.33 1 in 3 
0.50 1 in 2 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 
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• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Means 

Mean1 (Mean of Group 1) 
This option specifies the mean of the first group. Under the null hypothesis of no difference 
between groups, the means of both groups are assumed to be equal. Hence, under the null 
hypothesis, this is also the mean of the second group.  

Mean2 (Mean of Group 2) 
This option specifies the mean of the second group in the alternative hypothesis. The difference 
between this value and the value of Mean1 represents the amount that is tested by the t test. 

Effect Size – Standard Deviations 

S1 and S2 (Standard Deviations) 
These options specify the values of the standard deviations for each group. When the S2 is set to 
S1, only S1 needs to be specified. The value of S1 will be copied into S2. 

When these values are not known, you must supply estimates of them. Press the SD button to 
display the Standard Deviation Estimator window. This procedure will help you find appropriate 
values for the standard deviation. 

Known Standard Deviation 
This option specifies whether the standard deviations (sigmas) are known or unknown. In almost 
all experimental situations, sigma is not known. However, since great calculation efficiencies are 
obtained if we can assume that sigma is known, and since this option has only a small impact on 
the final result, we usually leave it checked until we are ready for the final results. 

When this box is checked, the program makes its calculations assuming that the standard 
deviations are known. This results in the use of the normal distribution in all probability 
calculations. Calculations using this option will be much faster than for the unknown sigma case. 
The results for either case will be close when the sample size is over 30. 

When this box is not checked, the program assumes that sigma is not known and will be 
estimated from the data. This results in probability calculations using the noncentral-t 
distribution. This distribution requires a lot more calculations than does the normal distribution. 
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The calculation speed comes into play whenever the Find option is set to something besides Beta. 
In these cases, the program uses a special searching algorithm which requires many iterations. 
You will note a real difference in calculation speed depending on whether this option is checked. 

A reasonable strategy would be to leave this option checked while you are experimenting with the 
parameters and then leave it unchecked when you are ready for your final results. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always  Mean1 = Mean2. H0:

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Possible selections are: 

• Ha: Mean1 <> Mean2 
This is the most common selection. It yields the two-tailed t test. Use this option when you 
are testing whether the means are different, but you do not want to specify beforehand which 
mean is larger. 

• Ha: Mean1 < Mean2 
This option yields a one-tailed t test. Use it when you are only interested in the case in which 
Mean2 is greater than Mean1. 

• Ha: Mean1 > Mean2 
This option yields a one-tailed t test. Use it when you are only interested in the case in which 
Mean2 is less than Mean1. 

Nonparametric Adjustment (Mann-Whitney Test) 
This option lets you make sample size adjustments appropriate for when you are using the Mann-
Whitney test rather than the t test. Results by Al-Sunduqchi and Guenther (1990) indicate that 
power calculations for the Mann-Whitney test may be made using the standard t test formulations 
with a simple adjustment to the sample sizes, N1 and N2. The size of the adjustment depends on 
the actual distribution of the data. They give sample size adjustment factors for four distributions. 
These are 1 for uniform, 2/3 for double exponential,  for logistic, and 9 2/ π π / 3  for normal.  

The options are as follows: 

• Ignore 
Do not make a Mann-Whitney adjustment. This indicates that you want to analyze a t test, not 
the Mann-Whitney test. 

• Uniform 
Make the Mann-Whitney sample size adjustment assuming the uniform distribution. Since 
the factor is one, this option performs the same as Ignore. It is included for completeness. 
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• Double Exponential 
Make the Mann-Whitney sample size adjustment assuming the double exponential 
distribution. 

• Logistic 
Make the Mann-Whitney sample size adjustment assuming the logistic distribution. 

• Normal 
Make the Mann-Whitney sample size adjustment assuming the normal distribution.  

Example 1 – Power after a Study 
This example will cover the situation in which you are calculating the power of a t test after the 
data have been collected.   

A clinical trial was run to compare the effectiveness of two drugs. The ten responses in each 
group are shown below. 
 

Drug A Drug B 
21 15 
20 17 
25 17 
20 19 
23 22 
20 12 
13 16 
18 21 
25 20 
24 19 

 

These data were run through the NCSS statistical program with the following results. 
 
 Descriptive Statistics Section 
    Standard Standard 95% LCL 95% UCL 
 Variable Count Mean Deviation Error of Mean of Mean 
 Drug A 10 20.9 3.665151 1.159023 18.27811 23.52189 
 Drug B 10 17.8 3.011091 0.9521905 15.646 19.954 
 
 Alternative  Prob Decision  
 Hypothesis T Value Level (5%)  
 (Drug A)-(Drug B)<>0 2.0667 0.053460 Accept Ho  
 

Notice that the probability level of 0.05346 is not significant. When a test is not significant, its 
power should be evaluated. The researchers decide to calculate the power using the sample values 
as estimates for the population values for various sample sizes and for alphas of 0.01 and 0.05. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Two-Sample T-Test) 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Inequality Tests, then Specify using Differences (Two-Sample T-Test). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.01  0.05  
N1 (Sample Size Group 1) ......................5 10 15 20 25 30 50 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Mean1 (Mean of Group 1).......................20.9 
Mean2 (Mean of Group 2).......................17.8 
S1 (Standard Deviation Group 1)............3.67 
S2 (Standard Deviation Group 2)............3.01 
Known Standard Deviation .....................Not checked 
Alternative Hypothesis ............................Ha: Mean1 <> Mean2 
Nonparametric Adjustment ..................... Ignore 

Axes/Legend/Grid Tab 
Vertical Range.........................................Min=0, Max=Data 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.08825 5 5 1.00 0.01000 0.91175 20.900 17.800 3.670 3.010 
0.24642 10 10 1.00 0.01000 0.75358 20.900 17.800 3.670 3.010 
0.42417 15 15 1.00 0.01000 0.57583 20.900 17.800 3.670 3.010 
0.58661 20 20 1.00 0.01000 0.41339 20.900 17.800 3.670 3.010 
0.71790 25 25 1.00 0.01000 0.28210 20.900 17.800 3.670 3.010 
0.81541 30 30 1.00 0.01000 0.18459 20.900 17.800 3.670 3.010 
0.97513 50 50 1.00 0.01000 0.02487 20.900 17.800 3.670 3.010 
0.26033 5 5 1.00 0.05000 0.73967 20.900 17.800 3.670 3.010 
0.50069 10 10 1.00 0.05000 0.49931 20.900 17.800 3.670 3.010 
0.68601 15 15 1.00 0.05000 0.31399 20.900 17.800 3.670 3.010 
0.81252 20 20 1.00 0.05000 0.18748 20.900 17.800 3.670 3.010 
0.89246 25 25 1.00 0.05000 0.10754 20.900 17.800 3.670 3.010 
0.94028 30 30 1.00 0.05000 0.05972 20.900 17.800 3.670 3.010 
0.99550 50 50 1.00 0.05000 0.00450 20.900 17.800 3.670 3.010 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from each population. To conserve resources, they should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Mean1 is the mean of populations 1 and 2 under the null hypothesis of equality. 
Mean2 is the mean of population 2 under the alternative hypothesis. The mean of population 1 is unchanged. 
S1 and S2 are the population standard deviations. They represent the variability in the populations. 
 
Summary Statements 
Group sample sizes of 5 and 5 achieve 16% power to detect a difference of -1.0 between the null 
hypothesis that both group means are 0.0 and the alternative hypothesis that the mean of group 
2 is 1.0 with known group standard deviations of 1.0 and 1.0 and with a significance level 
(alpha) of 0.01000 using a two-sided two-sample t-test. 
 

This report shows the values of each of the parameters, one scenario per row. At alpha = 0.05 and 
N1 = 10, the power was only 0.50. The researchers only had a 50-50 chance of rejecting the null 
hypothesis in this case.  

Plots Section 
 

 

Power vs N1 by Alpha with M1=20.900 M2=17.800
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This plot shows the relationship between alpha and power in this example. Notice that the range 
of power values over the range of alpha values. Clearly, the sample size should have been 
doubled to twenty per group in order to achieve a power greater than 0.80. 
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Example 2 – Finding the Sample Size Necessary to 
Reject 
Continuing with the last example, determine the sample size that the researchers would have 
needed for the null hypothesis to be rejected at the alpha = 0.01 and 0.05 levels, all other 
parameters remaining unchanged. They decided to use a beta error level of 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Two-Sample T-Test) 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Inequality Tests, then Specify using Differences (Two-Sample T-Test). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.01  0.05  
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Mean1 (Mean of Group 1).......................20.9 
Mean2 (Mean of Group 2).......................17.8 
S1 (Standard Deviation Group 1)............3.67 
S2 (Standard Deviation Group 2)............3.01 
Known Standard Deviation .....................Not checked 
Alternative Hypothesis ............................Ha: Mean1 <> Mean2 
Nonparametric Adjustment ..................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.81541 30 30 1.00 0.01000 0.18459 20.900 17.800 3.670 3.010 
0.81252 20 20 1.00 0.05000 0.18748 20.900 17.800 3.670 3.010 

 

We note that the required sample size is 20 when alpha is 0.05 and 30 when alpha is 0.01. Note 
that although the power was set at 0.80, the actual power achieved was 0.81. This is due to the 
fact that sample sizes must be integers, so specified power levels are not met exactly. 
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Example 3 – Minimum Detectable Difference 
The minimum detectable difference is the difference between the two means that would be 
significant if all other parameters are kept at their experimental values. The minimum detectable 
difference is found by setting Mean1 to zero and solving for Mean2.  

Continuing with the previous example, what is the minimum detectable difference when N1 = N2 
= 10, alpha = 0.05, beta = 0.20, S1 = 3.67, and S2 = 3.01. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Two-Sample T-Test) 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Inequality Tests, then Specify using Differences (Two-Sample T-Test). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Mean2 (Search>Mean1) 
Power ......................................................0.80 
Alpha .......................................................0.05  
N1 (Sample Size Group 1) ......................10 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................Ignored since this is the Find setting 
S1 (Standard Deviation Group 1)............3.67 
S2 (Standard Deviation Group 2)............3.01 
Known Standard Deviation......................Not checked 
Alternative Hypothesis ............................Ha: Mean1 <> Mean2 
Nonparametric Adjustment......................Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.80000 10 10 1.00 0.05000 0.20000 0.000 4.431 3.670 3.010 
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The minimum detectable difference for this experiment is 4.431 minutes. If the true population 
means were this far apart, at a significance level of 0.05 and the power would be 0.80. Hence, the 
researchers should not have proceeded with the experiment if they thought the true difference was 
less than 4.431. 

Example 4 – Finding the Sample Size 
This example will show how the sample size for a new study is determined. A researcher decides 
to use a parallel-group design to study the impact of a new exercise program on body weight. 
Participants will be divided into two groups: those using and those not using the exercise 
program. Each participant’s weight loss (or gain) will be measured after three months. How many 
participants are needed to achieve 90% power at significance levels of 0.01 and 0.05? 

Past experiments of this type have had standard deviations in the range of 10 to 15 pounds. The 
researcher wants to detect a difference of 15 pounds or more.  

Although a drop in the mean is hypothesized, two-sided testing will be used because this is the 
standard method used and the researcher plans on publishing the results. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Two-Sample T-Test) 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Inequality Tests, then Specify using Differences (Two-Sample T-Test). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.01  0.05  
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................15 
S1 (Standard Deviation Group 1)............10 12.5 15 
S2 (Standard Deviation Group 2)............S1 
Known Standard Deviation .....................Not checked 
Alternative Hypothesis ............................Ha: Mean1 <> Mean2 
Nonparametric Adjustment ..................... Ignore 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.90052 15 15 1.00 0.01000 0.09948 0.000 15.000 10.000 10.000 
0.91690 11 11 1.00 0.05000 0.08310 0.000 15.000 10.000 10.000 
0.90961 23 23 1.00 0.01000 0.09039 0.000 15.000 12.500 12.500 
0.90719 16 16 1.00 0.05000 0.09281 0.000 15.000 12.500 12.500 
0.90596 32 32 1.00 0.01000 0.09404 0.000 15.000 15.000 15.000 
0.91250 23 23 1.00 0.05000 0.08750 0.000 15.000 15.000 15.000 
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After looking at these reports, the researcher decides to enroll 20 subjects per group and test the 
hypothesis at the 0.05 significance level. He chooses 20 because it is a little larger than the 16 that 
are required when the standard deviation is 12.5. 

Example 5 – Mann-Whitney Test 
The Mann-Whitney test is a popular nonparametric analog of the two-sample t test. It is 
recommended when the distribution of the data is not normal. A study by Al-Sunduqchi (1990) 
showed that sample size and power calculations for the Mann-Whitney test can be made using the 
standard t test results with an adjustment to the sample size.  

Suppose that the researcher in Example 4 wants to compare sample size requirements of the t test 
with those of the Mann-Whitney test. To do this, he would use the same values, only this time the 
Nonparametric Adjustment would be set to a specific distribution. In this example, the double 
exponential is selected since it requires the largest adjustment of the distributions listed and the 
actual distribution is not known.   
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Two-Sample T-Test) 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Inequality Tests, then Specify using Differences (Two-Sample T-Test). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.01  0.05  
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................15 
S1 (Standard Deviation Group 1)............10 12.5 15 
S2 (Standard Deviation Group 2)............S1 
Known Standard Deviation .....................Not checked 
Alternative Hypothesis ............................Ha: Mean1 <> Mean2 
Nonparametric Adjustment .....................Double Exponential 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Mann-Whitney Test (Double Exponention Distribution) 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and equal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.90052 10 10 1.00 0.01000 0.09948 0.000 15.000 10.000 10.000 
0.91690 7 7 1.00 0.05000 0.08310 0.000 15.000 10.000 10.000 
0.90961 15 15 1.00 0.01000 0.09039 0.000 15.000 12.500 12.500 
0.90719 10 10 1.00 0.05000 0.09281 0.000 15.000 12.500 12.500 
0.90596 21 21 1.00 0.01000 0.09404 0.000 15.000 15.000 15.000 
0.91250 15 15 1.00 0.05000 0.08750 0.000 15.000 15.000 15.000 

 

Comparing the sample sizes found here with those of the corresponding t test found in the last 
example at the 0.05 significance level, note that there is a reduction in the maximum sample size 
from 23 to 15. That is, if the Mann-Whitney test is used instead of the t test when the actual 
distribution follows the double exponential distribution, the sample size necessary to achieve 90% 
power at the 0.05 significance level is reduced from 23 to 15 per group. 
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Example 6 – Validation of Sample Size using Machin et 
al. 
Machin et al. (1997) page 35 present an example in which the mean difference is 5, the common 
standard deviation is 10, the power is 90%, and the significance level is 0.05. They calculate the 
per group sample size as 86.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Two-Sample T-Test) 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Inequality Tests, then Specify using Differences (Two-Sample T-Test). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05  
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................5 
S1 (Standard Deviation Group 1)............10 
S2 (Standard Deviation Group 2)............S1 
Known Standard Deviation......................Not checked 
Alternative Hypothesis ............................Ha: Mean1 <> Mean2 
Nonparametric Adjustment......................Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.90323 86 86 1.00 0.05000 0.09677 0.000 5.000 10.000 10.000 

 

Note that the sample size of 86 per group matches Machin’s result exactly. 
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Example 7 – Validation using Zar 
Zar (1984) page 136 give an example in which the mean difference is 1, the common standard 
deviation is 0.7206, the sample sizes are 15 in each group, and the significance level is 0.05. They 
calculate the power as 0.96. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Two-Sample T-Test) 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Inequality Tests, then Specify using Differences (Two-Sample T-Test). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example7 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05  
N1 (Sample Size Group 1) ......................15 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................1 
S1 (Standard Deviation Group 1)............0.7206 
S2 (Standard Deviation Group 2)............S1 
Known Standard Deviation .....................Not checked 
Alternative Hypothesis ............................Ha: Mean1 <> Mean2 
Nonparametric Adjustment ..................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.95611 15 15 1.00 0.05000 0.04389 0.000 1.000 0.721 0.721 

 

Note that the power of 0.95611 matches Zar’s result of 0.96 to the two decimal places given. 
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Chapter 431 

Inequality Tests 
for Two Means in a 
Repeated 
Measures Design 
Introduction 
This module calculates the power for testing the time-averaged difference (TAD) between two 
means in a repeated measures design. A repeated measures design is one in which subjects are 
observed repeatedly over time. Measurements may be taken at pre-determined intervals (e.g. 
weekly or at specified time points following the administration of a particular treatment), or at 
random times so there are variable intervals between repeated measurements.   

Time-averaged difference analysis is often used when the outcome to be measured varies with 
time. For example, suppose that you want to compare two treatment groups based on the means 
of a certain outcome such as blood pressure. It is known that a person's blood pressure depends 
on several instantaneous factors such as amount of sleep, excitement level, mood, exercise, etc. If 
only a single measurement is taken from each patient then the comparison of mean values from 
the two groups may be invalid because of the large degree of variation in blood pressure levels 
among patients. The precision of the experiment is increased by taking multiple measurements 
from each individual and comparing the time-averaged difference between the two groups. Care 
must be taken in the analysis because of the correlation that is introduced when several 
measurements are taken from the same individual. The covariance structure may take on several 
forms depending on the nature of the experiment and the subjects involved. This procedure 
allows you to calculate sample sizes using four different covariance patterns: Compound 
Symmetry, AR(1), Banded(1), and Simple.   

This procedure can be used to calculate sample size and power for tests of pairwise contrasts in a 
mixed models analysis of repeated measures data. Mixed models analysis of repeated measures 
data is also employed to provide more flexibility in covariance specification and a greater degree 
of robustness in the presence of missing data, provided that the data can be assumed to be missing 
at random. 
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Technical Details 

Theory and Notation 
For a study with n1 subjects in group 1 and n2 subjects in group 2 (for a total of N subjects), each 
measured m times, the time-averaged difference (d) of a continuous response between two groups 
can be estimated using the following model: 

mjNixy ijiij ,,1 ;,,1,10 LL ==++= εββ , 

where 

ijy  is the jth response from subject i, 

0β  is the model intercept, 

1β  is the treatment effect or the time-averaged difference between groups 1 and 2 (i.e. 
d=1β ), 

ix  is a binary group assignment variable, which is equal to 1 if the ith subject is in group 1 
and equal to 0 if the ith subject is in group 2, and 

ijε  is the normal, random error associated with the observation . ijy

Accounting for the relationship between repeated measurements, the model presented above can 
be written in matrix form as 

iii εβXy += ' , 

where 

( '21 imiii yyy L=y ) 1×m is an  vector of responses from subject i, 
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β  is the vector of model parameters, and 
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ii N R0ε σ  is the vector of correlated random errors for the observations from subject i,  
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where  
2)var( σ=ijy  is the residual variance for a single observation, and Ri is the m × m 

common correlation matrix for all subjects. The contents of Ri depend on the assumed 
within-subject correlation structure. 

We can stack the data in a single vector and matrix form as follows: 
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and the model for the N equations can be compressed into one as 

εβXy += ' , 
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as the covariance (or variance - covariance) matrix.  

Covariance Pattern 
In a repeated measures design with N subjects, each measured m times, observations from a 
single subject may be correlated, and a pattern for their covariance must be specified. In this case, 
V will have a block-diagonal form: 
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where Vi are  covariance matrices corresponding to the ith subject. The 0's represent 
matrices of zeros giving zero covariances for observations on different subjects. This 

routine allows the specification of four different covariance matrix types: Compound Symmetry, 
AR(1), Banded(1), and Simple. 

mm×
mm×
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Compound Symmetry 
A compound symmetry covariance model assumes that all covariances are equal, and all 
variances on the diagonal are equal. That is 
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where  is the residual variance and 2σ ρ  is the correlation between observations on the same 
subject.  

AR(1) 
An AR(1) (autoregressive order 1) covariance model assumes that all variances on the diagonal 
are equal and that covariances t time periods apart are equal to . That is tρσ 2
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where  is the residual variance and 2σ ρ  is the correlation between observations on the same 
subject.  

Banded(1) 
A Banded(1) (banded order 1) covariance model assumes that all variances on the diagonal are 
equal, covariances for observations one time period apart are equal to , and covariances for 
measurements greater than one time period apart are equal to zero. That is 
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where  is the residual variance and 2σ ρ  is the correlation between observations on the same 
subject.  
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Simple 
A simple covariance model assumes that all variances on the diagonal are equal and that all 
covariances are equal to zero. That is 
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where  is the residual variance. 2σ

Model Estimation 
With , then estimates of the regression coefficients from the above regression model are 
given as 
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which is estimated by substituting  for V. V̂

Hypothesis Test 
A two-sided test that the time-averaged difference between the two groups is equal to zero is 
equivalent to the test of 0: 10 =βH  vs. 0: 11 ≠βH . Similarly, the upper and lower one-sided 
tests are 0: 10 ≤βH  vs. 0: 11 >βH  and 0: 10 ≥βH  vs. 0: 11 <βH , respectively. The test can be 
carried out using the test statistic 

)1,0(
)ˆvar(

ˆ

1

1 Nz →=
β

β . 

If the standard deviation is unknown and estimated, a t test should be used. In practice, this test is 
often carried out by calculating the average response for each individual and then using a two-
sample t test. If the data are balanced, the test can also be carried out in NCSS using Repeated 
Measures GLM and specifying a comparison such as "Each with First". In the case where the data  
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are not balanced, the test could be carried out using SAS® PROC MIXED or SAS® PROC GLM. 
In both cases a REPEATED statement should be used, along with a statement such as 

ESTIMATE 'A-B' treat 1 -1;  or  LSMEANS treat/ PDIFF; 

Power Calculations 
Sample sizes for repeated measures studies are often calculated as if a simple trial with no 
repeated measures was planned, which results in a higher calculated sample size than would be 
found if the correlation between repeated measures were taken into consideration. With an idea of 
the correct covariance structure, and an estimate of the within-patient correlation, you can get a 
better estimate of the power and sample size necessary to achieve your objectives. If you have no 
indication of the correct covariance structure for the experiment, then the compound symmetry 
(program default) is likely to be adequate. If you have no previous estimate of the within-patient 
correlation, then Brown and Prescott (2006) suggest using a conservative prediction of the 
correlation, i.e. a higher correlation than anticipated. 

For a two-sided test where it is assumed that d > 0 (without loss of generality), 
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where Φ() is the standard normal density function, and α and β are the probabilities of type I and 
type II error, respectively. For a one-sided test, α is used in place of α/2. 

Since a t test is usually used to test for a group difference in a case such as this, we should note 
here that the power calculation using the standard normal distribution represents an 
approximation to the actual power achieved by the t test. We feel that it might be more 
appropriate to use the non-central t distribution; however, since the calculation is based on 
numerous assumptions about the covariance structure that influence the results, it seems 
unnecessary to worry about the small gain in precision that may occur by using the non-central t 
distribution. For this reason, along with the fact that this is the published method, we have elected 
to follow the methods of Brown and Prescott (2006), Liu and Wu (2005), Diggle et al. (1994) and 
use the standard normal distribution in power and sample size calculations. 
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Calculating Power for Testing Pairwise Contrasts of Fixed 
Effects in Mixed Models 

Mixed Model Theory and Notation 
A linear mixed model incorporates both fixed and random effects. Fixed effects are those effects 
in the model whose values are assumed constant, or unchanging. Random effects are those effects 
in the model that are assumed to have arisen from a distribution, resulting in another source of 
random variation other than residual variation. Brown and Prescott (2006) demonstrates how this 
methodology may be used to calculate the sample size and power for testing pairwise contrasts of 
fixed effects in a mixed models analysis of repeated measures data. For an experiment with N 
subjects, p fixed effect parameters, and q random effect parameters, the general mixed model can 
be expressed using matrix notation as 

Niiiiii ,,1, L=++= εuZβXy  

where 

iy  is an  vector of responses for subject i, 1×in

iX  is an , full-rank design matrix of fixed effects for subject i, pni ×

β  is an  vector of fixed effects parameters, 1×p

iZ  is an  design matrix of the random effects for subject i, qni ×

iu  is a  vector of random effects for subject i which has means of zero and scaled 
covariance matrix G, 

1×q

iε  is an  vector of errors for subject i with zero mean and scaled covariance . 1×in iΣ

The covariance of , , can be written as iy ii Vy =)var(
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We can stack the data in a single vector and matrix form as follows: 
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and the mixed model for the N equations can be compressed into one as 

εZuXβy ++= , 
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with 
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is the covariance (or variance-covariance) matrix.  

Mixed Model Estimation 
Estimates of the variance components G and  are found using maximum likelihood (ML) or 
restricted/residual maximum likelihood (REML) methods. From these estimates, G  and , an 
estimate of V is obtained as . The fixed effects are then estimated as 

Σ
ˆ Σ̂

ΣZGZV ˆ'ˆˆ +=

yVXXVXβ 111 ˆ')ˆ'(ˆ −−−=  

with the variance of β  estimated as ˆ

11 )ˆ'()ˆvar( −−= XVXβ . 

If  and , then these estimation equations are identical to the TAD estimation 
equations presented earlier, except for the fact that β  may contain more than two parameters, i.e. 
a parameter for each fixed effect being modeled. In the TAD model presented above, 

0ZGZ =' RΣ 2σ=

1β  
represents the difference between two treatment means, d. In the mixed model formulation 
presented here, 1β , 2β , etc. represent individual treatment effects.  If there are no random effects, 
then we can use this routine for TAD to calculate the approximate power for testing pairwise 
contrasts of fixed effects in mixed models designs.  

Brown and Prescott (2006) presents an example on page 228 of an experiment for which the 
power for testing pairwise contrasts can be calculated using this procedure. To determine the 
relative efficacy of three treatments in controlling hypertension, patients are assigned to one of 
the three treatments and blood pressure is measured at four follow-up visits. The study aims to 
determine the differences in average blood pressure among the three treatments. 

Testing Fixed Effects 
Significance tests for fixed effects can be done using tests based on the t distribution. We can 
define tests of fixed and random effects as contrasts  

0βLC == ˆ' , 

respectively. For example, in a trial containing three treatments A, B, and C, a pairwise 
comparison of treatments A and C is given by the contrast 

CAAC ββ ˆˆˆ)1010(ˆ' −=−== ββLC , 
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where the first term in β is the intercept term, and the other three terms are the treatment effects.  

For a single comparison, the test statistic is given by  
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where df is the degrees of freedom, usually determined using the Satterthwaite approximation, 
and  and  ( ) are estimated treatment effects.   jβ̂ hβ̂ hj ≠

Contrasts such as this can be tested in SAS® using the ESTIMATE statement or by including the 
PDIFF option in an LSMEANS statement. For example, if the variable designating three 
treatments, A, B, and C, were called "treat", then I could use the following statements in PROC 
MIXED to test for a difference between A and C 

ESTIMATE 'A-C' treat 1 0 -1; 

or 
LSMEANS treat/ PDIFF; 

The latter statement would produce tests of all pairwise comparisons of the levels of the treatment 
variable. The former would only test the difference between groups A and C. Of course, these 
comparison statements must be used in conjunction with appropriate model and class statements 
(see pages 233-237 of Brown and Prescott (2006) for an example analyzed using SAS® PROC 
MIXED). 

Estimates of the correlation ( ρ ) and the standard deviation (σ ) for use in power calculations can 
be found using SAS® PROC MIXED. For a model fit using compound symmetry, and 2σ ρ  can 
be estimated as the sum of the variance parameters, and the compound symmetry variance 
parameter divided by the sum of the variance parameters, respectively. For AR(1), Banded(1), 
and Simple covariance models, and 2σ ρ  can be estimated as the residual variance, and the 
correlation between adjacent measurements, respectively. Alternatively, the R and RCORR 
options may be used within the REPEATED statement to display the covariance and correlation 
matrices, from which the parameter estimates can be determined. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for. When you choose to solve for n, the program 
searches for the lowest sample size that meets the alpha and beta criterion you have specified for 
each of the terms. The "solve for" parameter is displayed on the vertical axis of the plot. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 
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N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Difference to Detect 

D1 (Difference|H1) 
Enter a value for the treatment difference to be detected. This difference represents a contrast of 
interest between two treatments in the study. You may enter a single value or a range of values 
such as 5 10 20 or 5 to 25 by 5. The items in the list may be separated with commas or blanks. 

Effect Size – Repeated Measurements 

M (Number of Time Points) 
Enter a value for the number of time points (repeated measurements) at which each subject will 
be observed. You may enter a single value or a range of values such as 3 5 7 or 2 to 8 by 1. The 
items in the list may be separated with commas or blanks. 

Effect Size – Covariance Structure 

Covariance Type 
Select the within-subject covariance structure that will be used in the mixed models analysis. The 
options are: 

• Compound Symmetry 
All variances on the diagonal of the within-subject variance-covariance matrix are equal to 

, and all covariances are equal to . 2σ 2ρσ

• AR(1) 
All variances on the diagonal of the within-subject variance-covariance matrix are equal to 

, and the covariance between observations t time periods apart is . 2σ 2σρ t
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• Banded(1) 
All variances on the diagonal of the within-subject variance-covariance matrix are equal 
to , and the covariance between observations one time period apart is . Covariances 
between observations more than one time period apart are equal to zero. 

2σ 2ρσ

• Simple 

All variances are equal to , and all covariances are equal to zero. 2σ

Sigma (Std Dev of a Single Observation) 
Enter a value for the standard deviation (the square root of the residual variance). This standard 
deviation is assumed to be equal for the two groups. This parameter is equal to the square root of 
the sum of the variance parameters when compound symmetry is fit in a mixed models analysis 
of repeated measures data. This is equal to the square root of the residual variance parameter 
when an AR(1), Banded(1), or Simple model is fit in a mixed models analysis. You may enter a 
single value or a range of values such as 5 10 20 or 5 to 25 by 5. The items in the list may be 
separated with commas or blanks. 

Rho (Autocorrelation) 
Enter a value for the correlation between observations on the same subject. When no previous 
estimate of the within-patient correlation is available, you should use a conservative prediction of 
the correlation, i.e. a correlation that is higher than anticipated. You may enter a single value or a 
range of values such as 0.5 0.6 0.7 or 0.4 to 0.9 by 0.1. The items in the list may be separated with 
commas or blanks. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always 0:0 =dH . 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Possible selections are: 

• One-Sided 
This option yields a one-tailed test. Use it for testing the alternative hypotheses  or 

. 
0:1 >dH

0:1 <dH

• Two-Sided 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether the means are different, but you do not want to specify beforehand which 
mean is larger. 
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Example 1 – Determining Power 
Researchers are planning a study of the impact of a new drug on heart rate. They want to evaluate 
the time-averaged difference in heart rate between subjects who take the new drug, and subjects 
who take the standard drug. Their experimental protocol calls for a baseline heart rate 
measurement, followed by administration of a certain level of the drug, followed by three 
additional measurements 30 minutes apart. They want to be able to detect a 10% difference in 
heart rate between the two treatments.   

Similar studies have found an average heart rate of 93 for individuals taking the standard drug, a 
standard deviation of 9, and an autocorrelation between adjacent measurements on the same 
individual of 0.7. The researchers assume that first-order autocorrelation adequately represents 
the autocorrelation pattern.  From a heart rate of 93, a 10% reduction gives 83.7, for a difference 
of 9.3. The test will be conducted at the 0.05 significance level. 

What power does the study achieve over a range of possible sample sizes? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a Repeated Measures 
Design procedure window by clicking on Means, then Repeated Measures, then Inequality 
Tests for Two Means in a Repeated Measures Design. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................Power and Beta  
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 ...........................................................4 to 20 by 2 
N2 ...........................................................Use R 
R .............................................................1.0 
D1............................................................9.3 
M .............................................................4 
Covariance Type .....................................AR(1) 
Sigma ......................................................9 
Rho..........................................................0.7 
Alternative Hypothesis ............................Two-Sided 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Numeric Results 
 Two-Sided Test. Null Hypothesis: D = 0. Alternative Hypothesis: D <> 0. 
 Covariance Type = AR(1) 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.42660 4 4 1.000 4 9.300 9.000 0.700 0.050 0.57340 
 0.58468 6 6 1.000 4 9.300 9.000 0.700 0.050 0.41532 
 0.70890 8 8 1.000 4 9.300 9.000 0.700 0.050 0.29110 
 0.80135 10 10 1.000 4 9.300 9.000 0.700 0.050 0.19865 
 0.86742 12 12 1.000 4 9.300 9.000 0.700 0.050 0.13258 
 0.91318 14 14 1.000 4 9.300 9.000 0.700 0.050 0.08682 
 0.94407 16 16 1.000 4 9.300 9.000 0.700 0.050 0.05593 
 0.96448 18 18 1.000 4 9.300 9.000 0.700 0.050 0.03552 
 0.97773 20 20 1.000 4 9.300 9.000 0.700 0.050 0.02227 
 
 References 
 Brown, H. and Prescott, R., 2006. Applied Mixed Models in Medicine. 2nd ed. John Wiley & Sons Ltd. Chichester, 
 West Sussex, England. Chapter 6. 
 Liu, H. and Wu, T., 2005. 'Sample Size Calculation and Power Analysis of Time-Averaged Difference.' Journal of 
 Modern Applied Statistical Methods, Vol. 4, No. 2, pages 434-445. 
 Diggle, P.J., Liang, K.Y., and Zeger, S.L., 1994. Analysis of Longitudinal Data. Oxford University Press. New 
 York, New York. Chapter 2. 
 
 Report Definitions 
 Power is the probability of rejecting a false null hypothesis. It should be close to one. 
 N1 & N2 are the number of subjects in groups 1 and 2, respectively. 
 R is the ratio of the number of subjects in group 2 to the number in group 1 (R = N2/N1). 
 M is the number of time points (repeated measurements) at which each subject is observed. 
 D1 is the difference between the means of groups 1 and 2 under the alternative hypothesis. 
 Sigma is the standard deviation of a single observation. It is the same for both groups. 
 Rho is the correlation between observations on the same subject. 
 Alpha is the probability of rejecting a true null hypothesis. It should be small. 
 Beta is the probability of accepting a false null hypothesis. It should be small. 
 
 Summary Statements 
 Group sample sizes of 4 and 4 achieve 43% power to detect a difference of 9.300 in a design 
 with 4 repeated measurements having a AR(1) covariance structure when the standard deviation is 
 9.000, the correlation between observations on the same subject is 0.700, and the alpha level 
 is 0.050. 
 

This report gives the power for each value of the other parameters. 

Power 
This is the computed power for detecting the time-averaged difference between the two group 
means. 

Group 1 Sample Size (N1) 
The value of N1 is the number of subjects in group 1. 

Group 2 Sample Size (N2) 
The value of N2 is the number of subjects in group 2. 
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Sample Allocation Ratio (R) 
This is the ratio of the number of subjects in group 2 to the number in group 1 (R = N2/N1). 

Time Points (M) 
This is the number of repeated measurements taken. 

Difference to be Detected (D1) 
This is the treatment difference that is to be detected. 

Standard Deviation (Sigma) 
This is the value of σ , the standard deviation or the square root of the residual variance.  

Autocorr. (Rho) 
This is the correlation between observations from the same subject. 

Alpha 
Alpha is the significance level of the test. 

Beta 
Beta is the probability of failing to reject the null hypothesis when the alternative hypothesis is 
true. 

Plots Section 
 

Power vs N1 with N2=N1 M=4 D1=9.30 Sigma=9.00
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The chart shows the relationship between power and N1 when the other parameters in the design 
are held constant.  
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Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to determine the exact sample size necessary to 
achieve at least 80% power.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a Repeated Measures 
Design procedure window by clicking on Means, then Repeated Measures, then Inequality 
Tests for Two Means in a Repeated Measures Design. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................N1 (Group 1 Sample Size)  
Power ......................................................0.8 
Alpha .......................................................0.05 
N1 ...........................................................Ignored since this is the Find setting 
N2 ...........................................................Use R 
R .............................................................1.0 
D1............................................................9.3 
M .............................................................4 
Covariance Type .....................................AR(1) 
Sigma ......................................................9 
Rho..........................................................0.7 
Alternative Hypothesis ............................Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80135 10 10 1.000 4 9.300 9.000 0.700 0.050 0.19865 
 

A group sample size of 10 is required to achieve at least 80% power. 
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Example 3 – Varying the Difference between the Means 
Continuing with Examples 1 and 2, the researchers want to evaluate the impact on power of 
varying the size of the difference between the means for a range of sample sizes from 2 to 8 per 
group. In the output to follow, we only display the plots. You may want to display the numeric 
reports as well, but we do not here in order to save space.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a Repeated Measures 
Design procedure window by clicking on Means, then Repeated Measures, then Inequality 
Tests for Two Means in a Repeated Measures Design. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example3 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................Power and Beta  
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 ...........................................................4 to 8 by 1 
N2 ...........................................................Use R 
R .............................................................1.0 
D1............................................................4 to 11 by 1 
M .............................................................4 
Covariance Type .....................................AR(1) 
Sigma ......................................................9 
Rho..........................................................0.7 
Alternative Hypothesis ............................Two-Sided 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Plots Section 
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This chart shows how the power depends on the difference to be detected, d, as well as the group 
sample size, n1. 

Example 4 – Impact of the Number of Repeated 
Measurements 
Continuing with Examples 1 - 3, the researchers want to study the impact on the sample size if 
they changing the number of measurements made on each individual. Their experimental protocol 
calls for four measurements that are 30 minutes apart. They want to see the impact of taking twice 
that many measurements. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a Repeated Measures 
Design procedure window by clicking on Means, then Repeated Measures, then Inequality 
Tests for Two Means in a Repeated Measures Design. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example4 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................N1 (Group 1 Sample Size)  
Power ......................................................0.8 
Alpha .......................................................0.05 
N1 ...........................................................Ignored since this is the Find setting 
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Data Tab (continued) 
N2 ...........................................................Use R 
R .............................................................1.0 
D1............................................................9.3 
M .............................................................4 8 
Covariance Type .....................................AR(1) 
Sigma ......................................................9 
Rho..........................................................0.7 
Alternative Hypothesis ............................Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80135 10 10 1.000 4 9.300 9.000 0.700 0.050 0.19865 
 0.84737 8 8 1.000 8 9.300 9.000 0.700 0.050 0.15263 
 

Doubling the number of repeated measurements per individual decreases the group sample size 
by 2. This reduction in sample size may not justify the additional four measurements on each 
subject. 

Example 5 – Validation using Diggle et al. 
Diggle et al. (1994) page 31 presents an example of calculating the sample size for a TAD study. 
They calculate the group sample sizes for the cases where d/σ ranges from 0.2 to 0.5, ρ ranges 
from 0.2 to 0.8, alpha = 0.05, M = 3, and power = 0.8. Note that Diggle et al. (1994) uses a one-
sided test.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a Repeated Measures 
Design procedure window by clicking on Means, then Repeated Measures, then Inequality 
Tests for Two Means in a Repeated Measures Design. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example5 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................N1 (Group 1 Sample Size)  
Power ......................................................0.8 
Alpha .......................................................0.05 
N1 ........................................................... Ignored since this is the Find setting 
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Data Tab (continued) 
N2 ...........................................................Use R 
R .............................................................1.0 
D1............................................................0.2 to 0.5 by 0.1 
M .............................................................3 
Covariance Type .....................................Compound Symmetry 
Sigma ......................................................1 
Rho..........................................................0.2 0.5 0.8 
Alternative Hypothesis ............................One-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80178 145 145 1.000 3 0.200 1.000 0.200 0.050 0.19822 
 0.80154 207 207 1.000 3 0.200 1.000 0.500 0.050 0.19846 
 0.80012 268 268 1.000 3 0.200 1.000 0.800 0.050 0.19988 
 0.80475 65 65 1.000 3 0.300 1.000 0.200 0.050 0.19525 
 0.80154 92 92 1.000 3 0.300 1.000 0.500 0.050 0.19846 
 0.80270 120 120 1.000 3 0.300 1.000 0.800 0.050 0.19730 
 0.80885 37 37 1.000 3 0.400 1.000 0.200 0.050 0.19115 
 0.80321 52 52 1.000 3 0.400 1.000 0.500 0.050 0.19679 
 0.80012 67 67 1.000 3 0.400 1.000 0.800 0.050 0.19988 
 0.81343 24 24 1.000 3 0.500 1.000 0.200 0.050 0.18657 
 0.80028 33 33 1.000 3 0.500 1.000 0.500 0.050 0.19972 
 0.80109 43 43 1.000 3 0.500 1.000 0.800 0.050 0.19891 
 

The sample sizes calculated by PASS match the results of Diggle et al. (1994) very closely, with 
slight differences due to rounding. If you calculate the sample sizes by hand, using the formula 
given in Diggle et al. (1994), page 31, your answers will match those of PASS. 

Example 6 – Validation of Sample Size Calculation for 
Mixed Models Analysis using Brown and Prescott (2006) 
Brown and Prescott (2006) pages 268 and 269 presents an example of calculating the sample size 
for pairwise contrasts in a hypertension trial to by analyzed using mixed models. The analysis of 
repeated DBP measurements from four post-treatment visits using a compound symmetry 
covariance pattern resulted in the following covariance matrix for each subject: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

153.053.053.0
53.0153.053.0
53.053.0153.0
53.053.053.01

76iV  

From this matrix they determine that 53.0=ρ and . )718.8(  762 == σσ
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The trial followed several hundred patients given one of three treatments. Brown and Prescott 
calculate the group sample size to be 31 for a future study involving four post-treatment visits to 
detect a difference in DBP of 5 mmHg at the 5% significance level with 80% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a Repeated Measures 
Design procedure window by clicking on Means, then Repeated Measures, then Inequality 
Tests for Two Means in a Repeated Measures Design. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example6a from 
the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................N1 (Group 1 Sample Size)  
Power ......................................................0.8 
Alpha .......................................................0.05 
N1 ........................................................... Ignored since this is the Find setting 
N2 ...........................................................Use R 
R .............................................................1.0 
D1............................................................5 
M .............................................................4 
Covariance Type .....................................Compound Symmetry 
Sigma ......................................................8.718 
Rho..........................................................0.53 
Alternative Hypothesis ............................Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for M = 4 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80125 31 31 1.000 4 5.000 8.718 0.530 0.050 0.19875 
 

The sample size of 31 calculated by PASS matches the results of Brown and Prescott (2006) 
exactly. 

Brown and Prescott further calculate the sample size for the case where no account is taken of 
repeated measurements and the case of 10 repeated measurements. If we change the number of 
repeated measurements to 1 and 10, we get the following output (Example6b template): 
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Numeric Results for M = 1, 10 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80226 48 48 1.000 1 5.000 8.718 0.530 0.050 0.19774 
 0.80651 28 28 1.000 10 5.000 8.718 0.530 0.050 0.19349 
 

In both cases, the results of PASS match those of Brown and Prescott (2006) exactly. 
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Chapter 435 

Inequality Tests 
for Two 
Exponential 
Means 
Introduction 
This program module designs studies for testing hypotheses about the means of two exponential 
distributions. Such a test is used when you want to make a comparison between two groups that 
both follow the exponential distribution. The responses from the samples are assumed to be 
continuous, positive numbers such as lifetime.  

We adopt the basic methodology outlined in the books by Bain and Engelhardt (1991) and Desu 
and Raghavarao (1990). 

Technical Details 
The test procedure described here makes the assumption that lifetimes in each group follow an 
exponential distribution. The densities of the two exponential distributions are written as  

f t t ii
i i

( ) exp , ,= −
⎛
⎝
⎜

⎞
⎠
⎟ =

1 1 2
θ θ

 

The parameters θi  are interpreted as the average failure times, the mean time to failure (MTTF), 
or the mean time between failures (MTBF) of the two groups. The reliability, or the probability 
that a unit continues running beyond time t, is 

R t ei

t

i( ) =
−
θ  
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Hypothesis Test 
The relevant statistical hypothesis is H0 1 2 1: /θ θ =  versus one of the following alternatives: 
H A: /θ θ ρ1 2 1= > , H A: /θ θ ρ1 2 = 1< H A: /, or θ θ ρ1 2 1= ≠ . The test procedure is to reject the 
null hypothesis if the ratio of the observed mean lifetimes   is too large or too small. 
The samples of size  are assumed to be drawn without replacement. The experiment is run until 
all items fail. 

H0 $ $ / $ρ θ θ= 1 2

2

ni

If the experiment is curtailed before all n n1 +  items fail, the sample size results are based on the 
number of failures r , not the total number of samples n nr1 2+ 1 2+ . 

The mean lifetimes are estimated as follows 

$ , ,θi

ij
j

i

t

r
i= =

∑
over 1 2  

where  is the time that the jth item in the ith group is tested, whether measured until failure or 
until the study is completed. 

tij

Power and sample size calculations are based on the fact that the estimated lifetime ratio is 
proportional to the F distribution. That is, 
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which, under the null hypothesis of equality, becomes 
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Note that only the actual numbers of failures are used in these distributions. Hence, we assume that 
the experiment is run until all items fail so that r ni i=  . That is, the sample sizes are the number of 
failures, not the number of items. Enough units must be sampled to ensure that the stated number of 
failures occur. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta (Beta is Consumer’s Risk) 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
(consumer’s risk) is the probability of a type-II error, which occurs when a false null hypothesis 
is not rejected. In this procedure, a type-II error occurs when you fail to reject the null hypothesis 
of equal thetas when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal thetas when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size 

Theta1 (Group 1 Mean Life) 
Enter one or more values for the mean life of group 1 under the alternative hypothesis. This value 
is usually scaled in terms of elapsed time such as hours, days, or years. Of course, all time values 
must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure e time= − −1 /θ  

so that 

( )( )θ =
−

−
time

P Failureln 1
 

Any positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 1000 
by 100.’ 

Note that only the ratio of theta1 and theta2 is used in the calculations. 
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Theta2 (Group 2 Mean Life) 
Enter one or more values for the mean life of group 2 under the alternative hypothesis. This value 
is usually scaled in terms of elapsed time such as hours, days, or years. Of course, all time values 
must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure e time= − −1 /θ  

so that 

( )( )θ =
−

−
time

P Failureln 1
 

Any positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 1000 
by 100.’ 

Note that only the ratio of theta1 and theta2 is used in the calculations. 

Test 

Alternative Hypothesis 
Specify the alternative hypothesis of the test. Since the null hypothesis is equality (a difference 
between theta1 and theta2 of zero), the alternative is all that needs to be specified.  

Note that the alternative hypothesis should match the values of Theta1 and Theta2. That is, if you 
select Ha: Theta1 > Theta, then the value of Theta1 should be greater than the value of Theta2. 

Example 1 – Power for Several Sample Sizes 
This example will calculate power for several sample sizes of a study designed to compare the 
average failure time of (supposedly) identical components manufactured by two companies. 
Management wants the study to be large enough to detect a ratio of mean lifetimes of 1.3 at the 
0.05 significance level. The analysts decide to look at sample sizes between 5 and 500.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Exponential Means procedure 
window by clicking on Means, then Two Means, then Independent, then Inequality Tests, then 
Exponential Data. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................5 20 50 100 200 300 400 500 
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Data Tab (continued) 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Theta1 (Group 1 Mean Life)....................1.3 
Theta2 (Group 2 Mean Life)....................1.0 
Alternative Hypothesis ............................Ha: Theta1 <> Theta2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results 
H0: Theta1 = Theta2. Ha: Theta1 <> Theta2.  
   Allocation     Theta1/ 
Power N1 N2 Ratio Alpha Beta Theta1 Theta2 Theta2 
0.06652 5 5 1.00000 0.05000 0.93348 1.3 1.0 1.30000 
0.12839 20 20 1.00000 0.05000 0.87161 1.3 1.0 1.30000 
0.25602 50 50 1.00000 0.05000 0.74398 1.3 1.0 1.30000 
0.45619 100 100 1.00000 0.05000 0.54381 1.3 1.0 1.30000 
0.74551 200 200 1.00000 0.05000 0.25449 1.3 1.0 1.30000 
0.89447 300 300 1.00000 0.05000 0.10553 1.3 1.0 1.30000 
0.95976 400 400 1.00000 0.05000 0.04024 1.3 1.0 1.30000 
0.98559 500 500 1.00000 0.05000 0.01441 1.3 1.0 1.30000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N1 is the number of failures needed in Group 1. 
N2 is the number of failures needed in Group 2. 
Alpha is the probability of rejecting a true null hypothesis.  
Beta is the probability of accepting a false null hypothesis.  
Theta1 is the Mean Life in Group 1 
Theta2 is the Mean Life in Group 2. 
 
Summary Statements 
Samples of size 5 and 5 achieve 7% power to detect a difference between the mean lifetime in 
group 1 of 1.3 and the mean lifetime in group 2 of 1.0 at a 0.05000 significance level (alpha) 
using a two-sided hypothesis based on the F distribution. 
 

This report shows the power for each of the scenarios.  

Plots Section 
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Example 2 – Validation using Manual Calculations 
We could not find published results that could be used to validate this procedure. Instead, we will 
compare the results to those computed using our probability distribution calculator.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Exponential Means procedure 
window by clicking on Means, then Two Means, then Independent, then Inequality Tests, then 
Exponential Data. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................20 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Theta1 (Group 1 Mean Life)....................1.3 
Theta2 (Group 2 Mean Life)....................1.0 
Alternative Hypothesis ............................Ha: Theta1 > Theta2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results 
H0: Theta1 = Theta2. Ha: Theta1 > Theta2.  
   Allocation     Theta1/ 
Power N1 N2 Ratio Alpha Beta Theta1 Theta2 Theta2 
0.20369 20 20 1.00000 0.05000 0.79631 1.3 1.0 1.30000 
 

We will now check these results using manual calculations. First, we find critical value 

F0.95,40 40, = 1.6927972097  

using the probability calculator. Now, to calculate the power, we find the inverse F of 
1.6927972097/1.3 = 1.302152 to be 0.79631, which matches the reported value of Beta.  
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Chapter 440 

Inequality Tests 
for Two Means 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of several statistical tests of the null 
hypothesis that the difference between two means is equal to a specific value versus the alternative 
hypothesis that it is greater than, less than, or not-equal to that value. Because the mean represents 
the center of the population, if the means are different, the populations are different. Other 
attributes of the two populations (such as the shape and spread) might also be compared, but this 
module focuses on comparisons of the means only.  

Measurements are made on individuals that have been randomly assigned to, or randomly chosen 
from, one of two groups. This is sometimes referred to as a parallel-groups design. This design is 
used in situations such as the comparison of the income level of two regions, the nitrogen content 
of two lakes, or the effectiveness of two drugs.  

The two-sample t-test is commonly used in this situation. When the variances of the two groups are 
unequal, Welch’s t-test is often used. When the data are not normally distributed, the Mann-
Whitney (Wilcoxon signed-ranks) U test may be used. 

The details of the power analysis of the two-sample t-test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 

Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify how the test is carried out. This includes indicating how the test statistic is 
calculated and how the significance level is specified. 
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2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s 
power.  

3. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. Tabulate the number of rejections and use this to calculate the test’s significance 
level.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draw the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
The two-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t statistic is 
as follows 

( ) ( )
t

X X
df =

− − −1 2 1 2μ μ
sX X−1 2
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The significance of the test statistic is determined by computing the p-value based on the t 
distribution with degrees of freedom df. If this p-value is less than a specified level (often 0.05), 
the null hypothesis is rejected. Otherwise, no conclusion can be reached. 

Welch’s T-Test 
Welch (1938) proposed the following test for use when the two variances cannot be assumed 
equal.  
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Trimmed T-Test assuming Equal Variances 
The notion of trimming off a small proportion of possibly outlying observations and using the 
remaining data to form a t-test was first proposed for one sample by Tukey and McLaughlin 
(1963). Dixon and Tukey (1968) consider a slight modification of this one sample test, called 
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Winsorization, which replaces the trimmed data with the nearest remaining value. The two-
sample trimmed t-test was proposed by Yuen and Dixon (1973).  

Assume that the data values have been sorted from lowest to highest. The trimmed mean is 
defined as 

X
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where h = N – 2g and g = [N(G/100)]. Here we use [Z] to mean the largest integer smaller than Z 
with the modification that if G is non-zero, the value of  [N(G/100)] is at least one. G is the 
percent trimming and should usually be less than 25%, often between 5% and 10%. Thus, the g 
smallest and g largest observation are omitted in the calculation. 

To calculate the modified t-test, calculate the Winsorized mean and the Winsorized sum of 
squared deviations as follows. 
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Using the above definitions, the two-sample trimmed t-test is given by 
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The distribution of this t statistic is approximately that of a t distribution with degrees of freedom 
equal to . This approximation is often reasonably accurate if both sample sizes are 
greater than 6. 

h h1 2 2+ −

Trimmed T-Test assuming Unequal Variances 
Yuen (1974) combines trimming (see above) with Welch’s (1938) test. The resulting trimmed 
Welch test is resistant to outliers and seems to alleviate some of the problems that occur because 
of skewness in the underlying distributions. Extending the results from above, the trimmed 
version of Welch’s t-test is given by 
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with degrees of freedom f given by 
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Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions for 
this test are that the distributions are at least ordinal and that they are identical under H0. This 
implies that ties (repeated values) are not acceptable. When ties are present, the approximation 
provided can be used, but know that the theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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The ranks are determined after combining the two samples. The standard deviation is calculated 
as 
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator of z is negative or -0.5 otherwise. The 
value of z is then compared to the standard normal distribution. 

Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, although the shape parameters are constant, the 
standard deviations, which are based on both the shape parameter and the mean, are not. Thus the 
distributions not only have different means, but different standard deviations! 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data and Options tabs. To find out more about using the other tabs such as Axes/Legend/Grid, 
Plot Text, or Template, go to the chapter entitled Procedure Window. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies whether you want to find Power or N1 from the simulation. Select Power 
when you want to estimate the power of a certain scenario. Select N1 when you want to determine 
the sample size needed to achieve a given power and alpha error level. Finding N1 is very 
computationally intensive, and so it may take a long time to complete. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  
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N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Test 

Test Type 
Specify which test statistic is to be used in the simulation. Although the t-test is the most 
commonly used test statistic, it is based on assumptions that may not be viable in many situations. 
For your data, you may find that one of the other tests is more accurate (actual alpha = target 
alpha) and more precise (better power). 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0: Diff = Diff0. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Difference <> Diff0 
This is the most common selection. It yields a two-tailed test. Use this option when you are 
testing whether the mean is different from a specified value Diff0, but you do not want to 
specify beforehand whether it is smaller or larger. Most scientific journals require two-tailed 
tests. 

• Difference < Diff0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is less 
than Diff0. 

• Difference > Diff0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is 
greater than Diff0. Note that this option could be used for a non-inferiority test. 
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Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Effect Size 

Group 1 (and 2) Distribution|H0 
These options specify the distributions of the two groups under the null hypothesis, H0. The 
difference between the means of these two distributions is the difference that is tested, Diff0.  

Usually, these two distributions will be identical and Diff0 = 0. However, if you are planning a 
non-inferiority test, the means will be different. 

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to specify that the mean of a normally-distributed variable is to be five, you could enter 
N(5, S) or N(M0, S) here and M0 = 5 later. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 

Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
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Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Group 1 (and 2) Distribution|H1 
These options specify the distributions of the two groups under the alternative hypothesis, H1. 
The difference between the means of these two distributions is the difference that is assumed to 
be the true value of the difference. That is, this is the difference at which the power is computed. 

Usually, the mean difference is specified by entering M0 for the mean parameter in the 
distribution expression for group 1 and M1 for the mean parameter in the distribution expression 
for group 2. The mean difference under H1 then becomes the value of M0– M1.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean of 
group 2 under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
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Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values for each letter using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Reports Tab 
The Reports tab contains settings about the format of the output. 

Select Output – Numeric Reports 

Show Numeric Reports & Plots 
These options let you specify whether you want to generate the standard reports and plots. 

Show Inc’s & 95% C.I. 
Checking this option causes an additional line to be printed showing a 95% confidence interval 
for both the power and actual alpha and half the width of the confidence interval (the increment). 

Select Output – Plots 

Show Comparative Reports & Plots 
These options let you specify whether you want to generate reports and plots that compare the test 
statistics that are available. 
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Comparative Report/Plot Options 

Include T-Test Results – Include Mann-Whitney-Test Results 
These options let you specify whether to include each test statistic in the comparative reports. 
These options are only used if comparative reports and/or plots are generated. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N1, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Pools should be at least the maximum of 10,000 and twice the number of simulations. You can 
enter Automatic and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 

Trimmed T-Test 

Percent Trimmed at Each End 
Specify the percent of each end of the sorted data that is to be trimmed (constant G above) when 
using the trimmed means procedures. This percentage is applied to the sample size to determine 
how many of the lowest and highest data values are to be trimmed by the procedure. For example, 
if the sample size (N1) is 27 and you specify 10 here, then [27*10/100] = 2 observations will be 
trimmed at the bottom and the top. For any percentage, at least one observation is trimmed from 
each end of the sorted dataset. 

The range of possible values is 0 to 25.  
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Example 1 – Power at Various Sample Sizes 
Researchers are planning a parallel-group experiment to test whether the difference in response to 
a certain drug is zero. The researchers will use a two-sided t-test with an alpha level of 0.05. They 
want to compare the power at sample sizes of 50, 100, and 200 when the shift in the means is 0.6 
from drug 1 to drug 2. They assume that the data are normally distributed with a standard 
deviation of 2. Since this is an exploratory analysis, they set the number of simulation iterations 
to 2000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Inequality Tests, then 
Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................50 100 200 
N2 (Sample Size Group 2) ......................Use R 
R (Allocation Ratio) .................................1.0 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................2000 
Group 1 Dist’n | H0..................................N(M0 S) 
Group 2 Dist’n | H0..................................N(M0 S) 
Group 1 Dist’n | H1..................................N(M0 S) 
Group 2 Dist’n | H1..................................N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................0.6 
S ..............................................................2 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.324 50/50 0.0 -0.6 0.050 0.056 0.676 0.0 0.6 2.0    
(0.021) [0.303 0.345]   (0.010) [0.045 0.066]  
 
0.563 100/100 0.0 -0.6 0.050 0.047 0.437 0.0 0.6 2.0    
(0.022) [0.541 0.585]   (0.009) [0.038 0.056]  
 
0.855 200/200 0.0 -0.6 0.050 0.045 0.145 0.0 0.6 2.0    
(0.015) [0.840 0.870]   (0.009) [0.035 0.054]      

 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 34.78 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N1 is the size of the sample drawn from population 1. 
N2 is the size of the sample drawn from population 2. 
Diff0 is the mean difference between (Grp1 - Grp2) assuming the null hypothesis, H0.  
Diff1 is the mean difference between (Grp1 - Grp2) assuming the alternative hypothesis, H1.  
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  
Second Row: (Power Prec.) [95% LCL and UCL Power]    (Alpha Prec.) [95% LCL and UCL Alpha] 
 
Summary Statements 
Group sample sizes of 50 and 50 achieve 32% power to detect a difference of -0.6 between the 
null hypothesis mean difference of 0.0 and the actual mean difference of -0.6 at the 0.050 
significance level (alpha) using a two-sided T-Test. These results are based on 2000 Monte 
Carlo samples from the null distributions: Normal(M0 S) and Normal(M0 S), and the alternative 
distributions: Normal(M0 S) and Normal(M1 S). 
 
Chart Section 
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  
The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 

Example 2 – Finding the Sample Size 
Continuing with Example1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Inequality Tests, then 
Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting  
N2 (Sample Size Group 2) ......................Use R 
R (Allocation Ratio) .................................1.0 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................2000 
Group 1 Dist’n | H0..................................N(M0 S) 
Group 2 Dist’n | H0..................................N(M0 S) 
Group 1 Dist’n | H1..................................N(M0 S) 
Group 2 Dist’n | H1..................................N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................0.6 
S ..............................................................2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results of Search for N 
 

  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.904 231/231 0.0 -0.6 0.050 0.053 0.097 0.0 0.6 2.0    
(0.013) [0.891 0.916]   (0.010) [0.043 0.063] 
     
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 3.00 minutes. 
   

The required sample size was 231 which achieved a power of 0.904. To check the accuracy of 
this simulation, we ran this scenario through the analytic procedure in PASS which gave the 
sample size as 234 per group. The simulation answer of 231 was reasonably close. 

Example 3 – Comparative Results  
Continuing with Example 2, the researchers want to study the characteristics of alternative test 
statistics. They want to compare the results of all test statistics for N1 = 50, 100, and 200. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Inequality Tests, then 
Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example3 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................50 100 200 
N2 (Sample Size Group 2) ......................Use R 
R (Allocation Ratio) .................................1.0 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................2000 
Group 1 Dist’n | H0..................................N(M0 S) 
Group 2 Dist’n | H0..................................N(M0 S) 
Group 1 Dist’n | H1..................................N(M0 S) 
Group 2 Dist’n | H1..................................N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................0.6 
S ..............................................................2 
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Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Power Power Power Power Power M0 M1 S  
50/50 0.0 -0.6 0.050 0.304 0.303 0.283 0.283 0.288 0.0 0.6 2.0  
100/100 0.0 -0.6 0.050 0.577 0.577 0.538 0.538 0.544 0.0 0.6 2.0  
200/200 0.0 -0.6 0.050 0.859 0.859 0.848 0.848 0.850 0.0 0.6 2.0  
Pool Size: 10000. Simulations: 2000. Run Time: 3.66 minutes. Percent Trimmed at each end: 10. 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S  
50/50 0.0 -0.6 0.050 0.048 0.047 0.048 0.048 0.045 0.0 0.6 2.0  
100/100 0.0 -0.6 0.050 0.048 0.048 0.049 0.049 0.048 0.0 0.6 2.0  
200/200 0.0 -0.6 0.050 0.054 0.054 0.054 0.054 0.053 0.0 0.6 2.0  
Pool Size: 10000. Simulations: 2000. Run Time: 3.66 minutes. Percent Trimmed at each end: 10. 

   
These results show that for data that fit the assumptions of the t-test, all five test statistics have 
accurate alpha values and reasonably close power values. It is interesting to note that the powers 
of the trimmed procedures, when N1 = 50, are only 7% less than that of the t-test, even though 
about 20% of the data were trimmed. 

Example 4 – Validation using Zar 
Zar (1984) page 136 give an example in which the mean difference is 1, the common standard 
deviation is 0.7206, the sample sizes are 15 in each group, and the significance level is 0.05. They 
calculate the power to be 0.96.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Inequality Tests, then 
Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example4 from the Template 
tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................15 
N2 (Sample Size Group 2) ......................Use R 
R (Allocation Ratio) .................................1.0 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................10000 
Group 1 Dist’n | H0..................................N(M0 S) 
Group 2 Dist’n | H0..................................N(M0 S) 
Group 1 Dist’n | H1..................................N(M0 S) 
Group 2 Dist’n | H1..................................N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................1 
S ..............................................................0.7206 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.956 15/15 0.0 -1.0 0.050 0.045 0.044 0.0 1.0 0.7    
(0.004) [0.952 0.960]   (0.004) [0.041 0.049]   
 
Notes: 
Pool Size: 20000. Simulations: 10000. Run Time: 10.14 seconds. 

 

The power matches the exact value of 0.96. 

Example 5 – Non-Inferiority Test 
A non-inferiority test is used to show that a new treatment is not significantly worse than the 
standard (or reference) treatment. The maximum deviation that is ‘not significantly worse’ is 
called the margin of equivalence.  

Suppose that the mean diastolic BP of subjects on a certain drug is 96mmHg. If the mean 
diastolic BP of a new drug is not more than 100mmHg, the drug will be considered non-inferior 
to the standard drug. The standard deviation among these subjects is 6 mmHg. 

The developers of this new drug must design an experiment to test the hypothesis that the mean 
difference between the two mean BP’s is less than 4. The statistical hypothesis to be tested is 
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H N S0 4:μ μ− ≥  versus H N S1 4:μ μ− <  

Notice that when the null hypothesis is rejected, the conclusion is that the average difference is 
less than 4. Following proper procedure, they use a significance level of 0.025 for this one-sided 
test to keep it comparable to the usual value of 0.05 for a two-sided test. They decide to find the 
sample size at which the power is 0.90 when the two means are actually equal. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Inequality Tests, then 
Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example5 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Allocation Ratio) .................................1.0 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<Diff0 
Simulations..............................................2000 
Group 1 Dist’n | H0..................................N(M1 S) 
Group 2 Dist’n | H0..................................N(M0 S) 
Group 1 Dist’n | H1..................................N(M0 S) 
Group 2 Dist’n | H1..................................N(M0 S) 
M0 (Mean|H0) .........................................96 
M1 (Mean|H1) .........................................100 
S ..............................................................6 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S 
0.918 49/49 4.0 0.0 0.025 0.024 0.083 96.0 100.0 6.0 
    

We see that 49 subjects are required to achieve the desired experimental design. 
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Example 6 – Selecting a Test Statistic when the Data 
Contain Outliers  
The two-sample t-test is known to be robust to the violation of some assumptions, but it is 
susceptible to inaccuracy because the data contain outliers. This example will investigate the 
impact of outliers on the power and precision of the five test statistics available in PASS. 

A mixture of two normal distributions will be used to randomly generate outliers. The mixture 
will draw 95% of the data from a normal distribution with a mean of 0 and a standard deviation of 
1. The other 5% of the data will come from a normal distribution with a mean of 0 and a standard 
deviation that ranges from 1 to 10.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Inequality Tests, then 
Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example6 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................20 
N2 (Sample Size Group 2) ......................Use R 
R (Allocation Ratio) .................................1.0 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................2000 
Group 1 Dist’n | H0..................................N(M0 S)[95];N(M0 A)[5]  
Group 2 Dist’n | H0..................................N(M0 S)[95];N(M0 A)[5] 
Group 1 Dist’n | H1..................................N(M0 S)[95];N(M0 A)[5] 
Group 2 Dist’n | H1..................................N(M1 S)[95];N(M1 A)[5] 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................1 
S ..............................................................1 
A ..............................................................1 5 10 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 
Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M0 S)[95];Normal(M0 A)[5] 
H1 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M1 S)[95];Normal(M1 A)[5] 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Power Power Power Power Power M0 M1 S A 
20/20 0.0 -1.0 0.050 0.865 0.864 0.835 0.835 0.841 0.0 1.0 1.0 1.0 
20/20 0.0 -1.0 0.050 0.638 0.637 0.789 0.787 0.781 0.0 1.0 1.0 5.0 
20/20 0.0 -1.0 0.050 0.469 0.463 0.778 0.775 0.776 0.0 1.0 1.0 10.0 
Pool Size: 10000. Simulations: 2000. Run Time: 1.77 minutes. Percent Trimmed: 10. 
 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S A 
20/20 0.0 -1.0 0.050 0.046 0.046 0.045 0.044 0.047 0.0 1.0 1.0 1.0 
20/20 0.0 -1.0 0.050 0.040 0.039 0.045 0.044 0.048 0.0 1.0 1.0 5.0 
20/20 0.0 -1.0 0.050 0.037 0.034 0.054 0.052 0.061 0.0 1.0 1.0 10.0 
Pool Size: 10000. Simulations: 2000. Run Time: 1.77 minutes. Percent Trimmed: 10. 

  
The first line gives the results for the standard case in which the two standard deviations (S and 
A) are equal. Note that in this case, the power of the t-test is a little higher than for the other tests. 
As the amount of contamination is increased (A equal 5 and then 10), the power of the trimmed 
tests and the Mann Whitney test remain high, but the power of the t-test falls from 86% to 47%. 
Also, the value of alpha remains constant for the trimmed and nonparametric tests, but the alpha 
of the t-test becomes very conservative. 

The conclusion this simulation is that if there is a possibility of outliers, you should use either the 
nonparametric test or the trimmed test. 

Example 7 – Selecting a Test Statistic when the Data are 
Skewed  
The two-sample t-test is known to be robust to the violation of some assumptions, but it is 
susceptible to inaccuracy when the underlying distributions are skewed. This example will 
investigate the impact of skewness on the power and precision of the five test statistics available 
in PASS.  

Tukey’s lambda distribution will be used because it allows the amount of skewness to be 
gradually increased.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Inequality Tests, then 
Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example7 from the Template 
tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................20 
N2 (Sample Size Group 2) ......................Use R 
R (Allocation Ratio) .................................1.0 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................2000 
Group 1 Dist’n | H0..................................L(M0 S G 0) 
Group 2 Dist’n | H0..................................L(M0 S G 0) 
Group 1 Dist’n | H1..................................L(M0 S G 0) 
Group 2 Dist’n | H1..................................L(M1 S G 0) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................1 
S ..............................................................1 
G..............................................................0 0.5 0.9 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Tukey(M0 S G 0) & Tukey(M0 S G 0) 
H1 Dist's: Tukey(M0 S G 0) & Tukey(M1 S G 0) 

 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Power Power Power Power Power M0 M1 S G 
20/20 0.0 -1.0 0.050 0.869 0.867 0.833 0.833 0.838 0.0 1.0 1.0 0.0 
20/20 0.0 -1.0 0.050 0.880 0.879 0.923 0.922 0.948 0.0 1.0 1.0 0.5 
20/20 0.0 -1.0 0.050 0.867 0.866 0.963 0.960 0.993 0.0 1.0 1.0 0.9 
Pool Size: 10000. Simulations: 2000. Run Time: 1.85 minutes. Percent Trimmed: 10. 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S G 
20/20 0.0 -1.0 0.050 0.051 0.051 0.043 0.043 0.045 0.0 1.0 1.0 0.0 
20/20 0.0 -1.0 0.050 0.039 0.038 0.043 0.041 0.044 0.0 1.0 1.0 0.5 
20/20 0.0 -1.0 0.050 0.050 0.049 0.051 0.047 0.054 0.0 1.0 1.0 0.9 
Pool Size: 10000. Simulations: 2000. Run Time: 1.85 minutes. Percent Trimmed: 10. 

  
The first line gives the results for the standard case in which there is no skewness (G = 0). Note 
that in this case, the power of the t-test is a little higher than that of the other tests. As the amount 
of skewness is increased (G equal 0.5 and then 0.9), the power of the trimmed tests and the Mann 



440-22  Inequality Tests for Two Means (Simulation) 

Whitney test increases, but the power of the t-test remains about the same. Also, the value of 
alpha remains constant for all tests. 

The conclusion of this simulation is that if there is skewness, you will gain power by using the 
nonparametric or trimmed test. 
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Chapter 445 

Inequality Tests 
for Two Means 
using Ratios (Two-
Sample T-Test) 
Introduction 
This procedure calculates power and sample size for t-tests from a parallel-groups design in which 
the logarithm of the outcome is a continuous normal random variable. This routine deals with the 
case in which the statistical hypotheses are expressed in terms of mean ratios instead of mean 
differences.  

The details of testing two treatments using data from a two-group design are given in another 
chapter, and they will not be repeated here. If the logarithms of the responses can be assumed to 
follow a normal distribution, hypotheses stated in terms of the ratio can be transformed into 
hypotheses about the difference. The details of this analysis are given in Julious (2004). They will 
only be summarized here. 

Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 
 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment (group 2) mean. T

μR  Not used Reference mean. This is the reference (group 1) mean.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

 

Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 
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In the two-sided case, the null hypothesis is 

H0 0:φ φ=  

and the alternative hypothesis is  

H1 0:φ φ≠  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as percentages, but differences must 
be interpreted as actual amounts in their original scale. Hence, it has become a common practice 
to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of the ratio of the means. 

2. Transform this into hypotheses about a difference by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 are as follows for the null hypothesis. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be found to be  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σd

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Power and Beta for a power analysis or N1 for sample size determination. 
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size) 
Enter a value (or range of values) for the sample size of group 1 (the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 10 
to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Effect Size – Ratios 

R0 (Ratio Under H0) 
This is the value of the ratio of the two means assumed by the null hypothesis, H0. Usually, R0 = 
1.0 which implies that the two means are equal. However, you may test other values of R0 as 
well. Strictly speaking, any positive number is valid, but values near to, or equal to, 1.0 are 
usually used. 

Warning: you cannot use the same value for both R0 and R1. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Often, a 
range of values will be tried. For example, you might try the four values: 

1.05 1.10 1.15 1.20 

Strictly speaking, any positive number is valid. However, numbers between 0.50 and 2.00 are 
usually used. 

Warning: you cannot use the same value for both R0 and R1. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not log) scale. This value must be 
determined from past experience or from a pilot study. See the discussion above for more details 
on the definition of the coefficient of variation.  

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. Possible selections are: 

• H1: R1 <> R0 
This is the most common selection. It yields the two-tailed t-test. Use this option when you 
are testing whether the means are different, but you do not want to specify beforehand which 
mean is larger. 

• H1: R1 < R0 
This option yields a one-tailed t-test. Use it when you are only interested in the case in which 
Mean1 is greater than Mean2. 

• H1: R1 > R0 
This option yields a one-tailed t-test. Use it when you are only interested in the case in which 
Mean1 is less than Mean2. 
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Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
better than the standard drug. From previous studies, responses for either treatment are known to 
follow a lognormal distribution. A parallel-group design will be used and the logged data will be 
analyzed with a one-sided, two-sample t-test.   

Past experience leads the researchers to set the COV to 1.20. The significance level is 0.025. The 
power will be computed for R1 equal 1.10 and 1.20. Sample sizes between 100 and 900 will be 
examined in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Two-Sample T-Test) 
[Ratios] procedure window by clicking on Means, then Two Means, then Independent, then 
Inequality Tests, then Specify using Ratios (Two-Sample T-Test). You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................100 to 900 by 200 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
R0 (Ratio under H0) ................................1.0 
R1 (True Ratio) .......................................1.1 1.2 
COV (Coefficient of Variation).................1.2 
Alternative Hypothesis ............................R1>R0 (One-Sided) 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test Using Ratios 
H0: R1=R0.  H1: R1>R0. 
 
 Group Mean Mean  Coefficient   
 Sample Ratio Ratio Effect of Significance  
 Sizes Under H0 Under H1 Size Variation Level  
Power (N1/N2) (R0) (R1) (ES) (COV) (Alpha) Beta 
0.1057 100/100 1.000 1.100 0.1009 1.200 0.0250 0.8943 
0.2351 300/300 1.000 1.100 0.1009 1.200 0.0250 0.7649 
0.3581 500/500 1.000 1.100 0.1009 1.200 0.0250 0.6419 
0.4715 700/700 1.000 1.100 0.1009 1.200 0.0250 0.5285 
0.5718 900/900 1.000 1.100 0.1009 1.200 0.0250 0.4282 
0.2737 100/100 1.000 1.200 0.1930 1.200 0.0250 0.7263 
0.6571 300/300 1.000 1.200 0.1930 1.200 0.0250 0.3429 
0.8625 500/500 1.000 1.200 0.1930 1.200 0.0250 0.1375 
0.9506 700/700 1.000 1.200 0.1930 1.200 0.0250 0.0494 
0.9836 900/900 1.000 1.200 0.1930 1.200 0.0250 0.0164 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from each population.  
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
R0 is the ratio of the means (Mean2/Mean1) under the null hypothesis, H0. 
R1 is the ratio of the means (Mean2/Mean1) at which the power is calculated. 
COV is the coefficient of variation on the original scale. The value of sigma is calculated from this. 
ES is the effect size which is |Ln(R0)-Ln(R1)| / (sigma). 
 
Summary Statements 
A one-sided, two-sample t-test with group sample sizes of 100 and 100 achieves 11% power to 
detect a ratio of 1.100 when the ratio under the null hypothesis is 1.000. The coefficent of 
variation on the original scale is 1.200. The significance level (alpha) is 0.0250. 

 

This report shows the power for the indicated scenarios.  

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Validation 
We will validate this procedure by showing that it gives the identical results to the regular test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example 1. Since the output for this example is shown above, only the output from the procedure 
that uses differences is shown below.   

To run the power analysis of a t-test on differences, we need the values of Mean2 (which 
correspond to R1) and S1. The value of Mean1 will be zero. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means (Two-Sample T-Test) 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Inequality Tests, then Specify using Differences (Two-Sample T-Test). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1a from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................100 to 900 by 200 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................0.095310 0.182322 
S1 (Standard Deviation Group 1)............0.944456 
S1 (Standard Deviation Group 2)............S1 
Alternative Hypothesis ............................Ha: Mean1<Mean2 
Nonparametric Adjustment......................Ignore 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<Mean2 
The standard deviations were assumed to be unknown and equal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.1057 100 100 1.000 0.0250 0.8943 0.0000 0.0953 0.9445 0.9445 
0.2339 300 300 1.000 0.0250 0.7649 0.0000 0.0953 0.9445 0.9445 
0.3581 500 500 1.000 0.0250 0.6419 0.0000 0.0953 0.9445 0.9445 
0.4715 700 700 1.000 0.0250 0.5285 0.0000 0.0953 0.9445 0.9445 
0.5718 900 900 1.000 0.0250 0.4282 0.0000 0.0953 0.9445 0.9445 
0.2737 100 100 1.000 0.0250 0.7263 0.0000 0.1823 0.9445 0.9445 
0.6556 300 300 1.000 0.0250 0.3429 0.0000 0.1823 0.9445 0.9445 
0.8625 500 500 1.000 0.0250 0.1375 0.0000 0.1823 0.9445 0.9445 
0.9506 700 700 1.000 0.0250 0.0494 0.0000 0.1823 0.9445 0.9445 
0.9836 900 900 1.000 0.0250 0.0164 0.0000 0.1823 0.9445 0.9445 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 450 

Non-Inferiority & 
Superiority Tests 
for Two Means 
using Differences 
Introduction 
This procedure computes power and sample size for non-inferiority and superiority tests in two-
sample designs in which the outcome is a continuous normal random variable. Measurements are 
made on individuals that have been randomly assigned to one of two groups. This is sometimes 
referred to as a parallel-groups design. This design is used in situations such as the comparison of 
the income level of two regions, the nitrogen content of two lakes, or the effectiveness of two 
drugs.   

The two-sample t-test is commonly used with this situation. When the variances of the two groups 
are unequal, Welch’s t-test may be used. When the data are not normally distributed, the Mann-
Whitney (Wilcoxon signed-ranks) U test may be used. 

The details of sample size calculation for the two-sample design are presented in the Two-Sample 
T-Test chapter and they will not be duplicated here. This chapter only discusses those changes 
necessary for non-inferiority and superiority tests. Sample size formulas for non-inferiority and 
superiority tests of two means are presented in Chow et al. (2003) pages 57-59.  

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size could be calculated using the Two-Sample T-Test procedure. However, at 
the urging of our users, we have developed this module, which provides the input and output in 
formats that are convenient for these types of tests. This section will review the specifics of non-
inferiority and superiority testing. 
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Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0 1 2:μ μ− ≤ D  versus H1 1 2:μ μ− > D  

Rejecting this test implies that the mean difference is larger than the value D. This test is called 
an upper-tailed test because it is rejected in samples in which the difference between the sample 
means is larger than D. 

Following is an example of a lower-tailed test. 

H0 1 2:μ μ− ≥ D  versus H1 1 2:μ μ− < D  

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialized notation for the discussion of these tests.  
 

Parameter PASS Input/Output Interpretation 
μ  Not used Mean of population 1. Population 1 is assumed to consist 

of those who have received the new treatment. 
1

μ2  Not used Mean of population 2. Population 2 is assumed to consist 
of those who have received the reference treatment. 

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the magnitude of the amount that is not of 
practical importance. This may be thought of as the 
largest change from the baseline that is considered to be 
trivial. The absolute value is shown to emphasize that 
this is a magnitude. The sign of the value will be 
determined by the specific design that is being used. 

δ  D True difference. This is the value of μ μ1 2− , the 
difference between the means. This is the value at which 
the power is calculated. 

 

Note that the actual values of μ1  and μ2  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than the equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

A superiority test tests that the treatment mean is better than the reference mean by more than the 
equivalence margin. The actual direction of the hypothesis depends on the response variable 
being studied.  
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Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

H0 1 2:μ μ ε≤ −  versus  H1 1 2:μ μ ε> −  

H0 1 2:μ μ ε− ≤ −   versus  H1 1 2:μ μ ε− > −  

H0:δ ε≤ −   versus  H1:δ ε> −  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

H0 1 2:μ μ ε≥ +  versus  H1 1 2:μ μ ε< +  

H0 1 2:μ μ ε− ≥   versus  H1 1 2:μ μ ε− <  

H0:δ ε≥   versus  H1:δ ε<  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of equivalence. The value of δ  must be greater than ε . The following are equivalent 
sets of hypotheses. 

H0 1 2:μ μ ε≤ +  versus  H1 1 2:μ μ ε> +  

H0 1 2:μ μ ε− ≤   versus  H1 1 2:μ μ ε− >  

H0:δ ε≤   versus  H1:δ ε>  

Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of equivalence. The value of δ  must be less than − ε . The following are equivalent sets of 
hypotheses. 

H0 1 2:μ μ ε≥ −  versus  H1 1 2:μ μ ε< −  

H0 1 2:μ μ ε− ≥ −   versus  H1 1 2:μ μ ε− < −  

H0:δ ε≥ −   versus  H1:δ ε< −  
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Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that a test is to be conducted to determine if a new cancer treatment adversely 
affects mean bone density. The adjusted mean bone density (AMBD) in the population of interest 
is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the 
treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health 
threat.  

The hypothesis of interest is whether the mean AMBD in the treated group is more than 0.000115 
below that of the reference group. The statistical test will be set up so that if the null hypothesis is 
rejected, the conclusion will be that the new treatment is non-inferior. The value 0.000115 gm/cm 
is called the margin of equivalence or the margin of non-inferiority. 

Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
Under the null hypothesis, this test assumes that the two groups of data are simple random 
samples from a single population of normally-distributed values that all have the same mean and 
variance. This assumption implies that the data are continuous and their distribution is symmetric. 
The calculation of the test statistic for the case when higher response values are good is as 
follows. 
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The null hypothesis is rejected if the computed p-value is less than a specified level (usually 
0.05). Otherwise, no conclusion can be reached. 
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Welch’s T-Test 
Welch (1938) proposed the following test when the two variances are not assumed to be equal.  
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Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions are 
that the distributions are at least ordinal and that they are identical under H0. This means that ties 
(repeated values) are not acceptable. When ties are present, you can use approximations, but the 
theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator is negative or -0.5 otherwise. The 
value of z is then compared to the normal distribution. 

Computing the Power 

Standard Deviations Equal 
When σ σ σ1 2= = , the power of the t test is calculated as follows.  

1.  Find tα  such that ( )1 , where − =T tdf α α ( )T tdf α  is the area under a central-t curve to 

the left of x and df N N= + −1 2 2 . 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

 

3. Calculate the noncentrality parameter: λ
ε δ
σ
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4. Calculate: Power = , where ( )1− ′T tdf ,λ α ( )′T xdf ,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom df and noncentrality parameter λ . 

Standard Deviations Unequal 
This case often recommends Welch’s test. When σ σ1 2≠ , the power is calculated as follows.  

1. Calculate: σ σ σ
x

1
2

1

2
2

2
=

N
+

N
. 

2. Calculate: f =

N ( N +1)
+

N ( N +1)

- 2x

1
4

1
2

1

2
4

2
2

2

σ
σ σ

4

 

which is the adjusted degrees of freedom. Often, this is rounded to the next highest 
integer. Note that this is not the value of f used in the computation of the actual test. 
Instead, this is the expected value of f. 

3.  Find tα  such that ( )1 , where − =T tf α α ( )T tf α  is the area to the left of x under a 
central-t curve with f degrees of freedom. 

4. Calculate: λ
ε
σ

=
x

,  the noncentrality parameter. 

5. Calculate: Power = , where ( )1− ′T tf ,λ α
( )′T xf ,λ  is the area to the left of x under a 

noncentral-t curve with degrees of freedom f and noncentrality parameter λ . 
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Nonparametric Adjustment 
When using the Mann-Whitney test rather than the t test, results by Al-Sunduqchi and Guenther 
(1990) indicate that power calculations for the Mann-Whitney test may be made using the 
standard t test formulations with a simple adjustment to the sample sizes. The size of the 
adjustment depends on the actual distribution of the data. They give sample size adjustment 
factors for four distributions. These are 1 for uniform, 2/3 for double exponential,  for 
logistic, and 

9 2/ π
π / 3  for normal distributions.  

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N1. 

Select N1 when you want to determine the sample size needed to achieve a given power and 
alpha.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of inferiority 
when the null hypothesis should be rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of inferiority when in fact the mean is not non-inferior.  
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Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Mean Difference 

|E| (Equivalence Margin) 
This is the magnitude of the margin of equivalence. It is the smallest difference between the mean 
and the reference mean that still results in the conclusion of non-inferiority (or superiority). Note 
that the sign of this value is assigned depending on the selections for Higher Is and Test Type.  

D (True Difference) 
This is the difference between the mean and the reference value at which the power is computed. 
For non-inferiority tests, this value is often set to zero, but it can be non-zero as long as the values 
are consistent with the alternative hypothesis, H1. For superiority tests, this value is non-zero. 
Again, it must be consistent with the alternative hypothesis, H1. 

Effect Size – Standard Deviations 

S1 and S2 (Standard Deviations) 
These options specify the values of the standard deviations for each group. When the S2 is set to 
S1, only S1 needs to be specified. The value of S1 will be copied into S2. 
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When these values are not known, you must supply estimates of them. Press the SD button to 
display the Standard Deviation Estimator window. This procedure will help you find appropriate 
values for the standard deviation. 

Test 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
mean is within the margin of equivalence of being no worse than the reference mean. Select 
Superiority when you want to test whether the mean is better than the reference mean by at least 
the margin of equivalence. 

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are usually considered 
bad. However, if the response variable is income, higher values are generally considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Nonparametric Adjustment (Mann-Whitney Test) 
This option makes appropriate sample size adjustments for the Mann-Whitney test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Mann-Whitney test may 
be made using the standard t test formulations with a simple adjustment to the sample size. The 
size of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

• Ignore 
Do not make a Mann-Whitney adjustment. This indicates that you want to analyze a t test, not 
the Wilcoxon test. 

• Uniform 
Make the Mann-Whitney sample size adjustment assuming the uniform distribution. Since 
the factor is one, this option performs the same function as Ignore. It is included for 
completeness. 

• Double Exponential 
Make the Mann-Whitney sample size adjustment assuming that the data actually follow the 
double exponential distribution. 

• Logistic 
Make the Mann-Whitney sample size adjustment assuming that the data actually follow the 
logistic distribution. 

• Normal 
Make the Mann-Whitney sample size adjustment assuming that the data actually follow the 
normal distribution. 
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Example 1 – Power Analysis 
Suppose that a test is to be conducted to determine if a new cancer treatment adversely affects 
bone density. The adjusted mean bone density (AMBD) in the population of interest is 0.002300 
gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the treatment 
reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health threat. They 
also want to consider what would happen if the margin of equivalence is set to 2.5% (0.0000575 
gm/cm).  

Following accepted procedure, the analysis will be a non-inferiority test using the t-test at the 
0.025 significance level. Power to be calculated assuming that the new treatment has no effect on 
AMBD. Several sample sizes between 10 and 800 will be analyzed. The researchers want to 
achieve a power of at least 90%. All numbers have been multiplied by 10000 to make the reports 
and plots easier to read. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Non-Inferiority & Superiority Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................10 50 100 200 300 500 600 800 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
|E| (Equivalence Margin).........................0.575 1.15 
D (True Difference) .................................0 
S1 (Standard Deviation Group 1)............3 
S2 (Standard Deviation Group 2)............S1 
Test Type ................................................Non-Inferiority 
Higher is ..................................................Good 
Nonparametric Adjustment......................Ignore 

Reports Tab 
Mean Decimals .......................................3 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.06013 10/10 -0.575 0.000 0.02500 0.93987 3.000 3.000 
0.15601 50/50 -0.575 0.000 0.02500 0.84399 3.000 3.000 
0.27052 100/100 -0.575 0.000 0.02500 0.72948 3.000 3.000 
0.48326 200/200 -0.575 0.000 0.02500 0.51674 3.000 3.000 
0.65087 300/300 -0.575 0.000 0.02500 0.34913 3.000 3.000 
0.85769 500/500 -0.575 0.000 0.02500 0.14231 3.000 3.000 
0.91295 600/600 -0.575 0.000 0.02500 0.08705 3.000 3.000 
0.96943 800/800 -0.575 0.000 0.02500 0.03057 3.000 3.000 
0.12553 10/10 -1.150 0.000 0.02500 0.87447 3.000 3.000 
0.47524 50/50 -1.150 0.000 0.02500 0.52476 3.000 3.000 
0.76957 100/100 -1.150 0.000 0.02500 0.23043 3.000 3.000 
0.96926 200/200 -1.150 0.000 0.02500 0.03074 3.000 3.000 
0.99685 300/300 -1.150 0.000 0.02500 0.00315 3.000 3.000 
0.99998 500/500 -1.150 0.000 0.02500 0.00002 3.000 3.000 
1.00000 600/600 -1.150 0.000 0.02500 0.00000 3.000 3.000 
1.00000 800/800 -1.150 0.000 0.02500 0.00000 3.000 3.000 
 
Report Definitions 
Group 1 is the treatment group. Group 2 is the reference or standard group. 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the sample sizes of group 1 and 2, respectively. 
|E| is the magnitude of the margin of equivalence. It is the largest difference that is not of practical significance. 
D is actual difference between the means. D = Mean1 - Mean2. 
Alpha is the probability of a false-positive result. 
Beta is the probability of a false-negative result. 
SD1 and SD2 are the standard deviations of groups 1 and 2, respectively. 
 
Summary Statements 
Group sample sizes of 10 and 10 achieve 6% power to detect non-inferiority using a one-sided, 
two-sample t-test. The margin of equivalence is 0.575. The true difference between the means is 
assumed to be 0.000. The significance level (alpha) of the test is 0.02500. The data are drawn 
from populations with standard deviations of 3.000 and 3.000. 
 
Chart Section 

Power vs N1 by E with D=0.000 S1=3.000 S2=3.000
Alpha=0.025 N2=N1 1-Sided T-Test
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The above report shows that for |E| = 1.15, the sample size necessary to obtain 90% power is 
about 150 per group. However, if |E| = 0.575, the required sample size is about 600 per group. 
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Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to know the exact sample size for each value of 
|E| to achieve 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Non-Inferiority & Superiority Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
|E| (Equivalence Margin).........................0.575 1.15 
D (True Difference) .................................0 
S1 (Standard Deviation Group 1)............3 
S2 (Standard Deviation Group 2)............S1 
Test Type ................................................Non-Inferiority 
Higher is ..................................................Good 
Nonparametric Adjustment......................Ignore 

Reports Tab 
Mean Decimals .......................................3 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.90036 573/573 -0.575 0.000 0.02500 0.09964 3.000 3.000 
0.90149 144/144 -1.150 0.000 0.02500 0.09851 3.000 3.000 

 
This report shows the exact sample size requirement for each value of |E|. 
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Example 3 – Validation using Chow 
Chow, Shao, Wang (2003) page 62 has an example of a sample size calculation for a non-
inferiority trial. Their example obtains a sample size of 51 in each group when D = 0, |E| = 0.05, 
S = 0.1, Alpha = 0.05, and Beta = 0.20.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Non-Inferiority & Superiority Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
|E| (Equivalence Margin).........................0.05 
D (True Difference) .................................0 
S1 (Standard Deviation Group 1)............0.1 
S2 (Standard Deviation Group 2)............S1 
Test Type ................................................Non-Inferiority 
Higher is ..................................................Good 
Nonparametric Adjustment ..................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.80590 51/51 -0.050 0.000 0.05000 0.19410 0.100 0.100 

 
PASS has also obtained a sample size of 51 per group. 
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Example 4 – Validation using Julious 
Julious (2004) page 1950 gives an example of a sample size calculation for a parallel, non-
inferiority design. His example obtains a sample size of 336 when D = 0, |E| = 10, S = 40, Alpha 
= 0.025, and Beta = 0.10. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
then Non-Inferiority & Superiority Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
|E| (Equivalence Margin).........................10 
D (True Difference) .................................0 
S1 (Standard Deviation Group 1)............40 
S2 (Standard Deviation Group 2)............S1 
Test Type ................................................Non-Inferiority 
Higher is ..................................................Good 
Nonparametric Adjustment......................Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.90045 337/337 -10.000 0.000 0.02500 0.09955 40.000 40.000 

 
PASS obtained sample sizes of 337 in each group. The difference between 336 that Julious 
received and 337 that PASS calculated is likely caused by rounding. 
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Chapter 455 

Non-Inferiority & 
Superiority Tests 
for Two Means 
using Ratios 
Introduction 
This procedure calculates power and sample size for non-inferiority and superiority t-tests from a 
parallel-groups design in which the logarithm of the outcome is a continuous normal random 
variable. This routine deals with the case in which the statistical hypotheses are expressed in terms 
of mean ratios instead of mean differences.  

The details of testing the non-inferiority of two treatments using data from a two-group design are 
given in another chapter and they will not be repeated here. If the logarithm of the response can be 
assumed to follow a normal distribution, hypotheses about non-inferiority stated in terms of the 
ratio can be transformed into hypotheses about the difference. The details of this analysis are given 
in Julious (2004). They will only be summarized here.   

Non-Inferiority Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  E Margin of equivalence. This is a tolerance value that 
defines the maximum amount that is not of practical 
importance. This is the largest change in the mean ratio 
from the baseline value (usually one) that is still 
considered to be trivial.  
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Parameter PASS Input/Output Interpretation 
φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 

power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 

The null hypothesis of inferiority is 

H where0 1: .φ φ φ≤ <L L  

and the alternative hypothesis of non-inferiority is  

H1: φ φ> L  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 

( ) ( ) ( ){ }

φ φ
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φ μ μ
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⇒ ≤ −ln ln ln R

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

σY
2
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From this relationship, the coefficient of variation of Y can be found to be  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σd

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 
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Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Power and Beta for a power analysis or N1 for sample size determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of inferiority 
when in fact the treatment mean is non-inferior. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when rejecting the 
null hypothesis of inferiority when in fact the treatment group is not inferior to the reference 
group.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 1 (the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 10 
to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 
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R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Ratios 

E (Equivalence Margin) 
This is the magnitude of the relative margin of equivalence. It is the smallest change in the ratio 
of the two means that still results in the conclusion of non-inferiority (or superiority).  

For example, suppose the non-inferiority boundary for the mean ratio is to be 0.80. This value is 
interpreted as follows: if the mean ratio (Treatment Mean / Reference Mean) is greater than 0.80, 
the treatment group is non-inferior to the reference group. In this example, the margin of 
equivalence would be 1.00 - 0.80 = 0.20. 

This example assumes that higher values are better. If higher values are worse, an equivalence 
margin of 0.20 would be translated into a non-inferiority bound of 1.20. In this case, if the mean 
ratio is less than 1.20, the treatment group is non-inferior to the reference group. 

Note that the sign of this value is ignored. Only the magnitude is used. 

Recommended values:  

0.20 is a common value for this parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, to be conservative, some authors recommend 
calculating the power using a ratio of 0.95 since this will require a larger sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. See the discussion above for more details 
on the definition of the coefficient of variation.  

Test 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
treatment mean is within the margin of equivalence of being no worse than the reference mean. 
Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 
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Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are usually considered 
bad. However, if the response variable is income, higher values are probably considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is not 
inferior to the standard drug. Responses following either treatment are known to follow a log 
normal distribution. A parallel-group design will be used and the logged data will be analyzed 
with a two-sample t-test.  

Researchers have decided to set the margin of equivalence at 0.20. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.025. The power will be computed 
assuming that the true ratio is either 0.95 or 1.00. Sample sizes between 100 and 1000 will be 
included in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means 
[Ratios] procedure window by clicking on Means, then Two Means, then Independent, then 
Non-Inferiority & Superiority Tests, then Specify using Ratios. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................100 to 1000 by 100 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
E (Equivalence Margin)...........................0.20 
R1 (True Ratio) .......................................0.95 1.0 
COV (Coefficient of Variation).................1.50 
Test Type ................................................Non-Inferiority 
Higher Is ..................................................Good 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Ratio Test (H0: R <= 1-E; H1: R > 1-E) 
 
  Equivalence Equivalence True Significance Coefficient  
  Margin Bound Ratio Level of Variation  
Power N1/N2 (E) (RB) (R1) (Alpha) (COV) Beta 
0.1987 100/100 0.20 0.80 0.95 0.0250 1.50 0.8013 
0.3539 200/200 0.20 0.80 0.95 0.0250 1.50 0.6461 
0.4918 300/300 0.20 0.80 0.95 0.0250 1.50 0.5082 
0.6098 400/400 0.20 0.80 0.95 0.0250 1.50 0.3902 
0.7064 500/500 0.20 0.80 0.95 0.0250 1.50 0.2936 
0.7827 600/600 0.20 0.80 0.95 0.0250 1.50 0.2173 
0.8416 700/700 0.20 0.80 0.95 0.0250 1.50 0.1584 
0.8860 800/800 0.20 0.80 0.95 0.0250 1.50 0.1140 
0.9189 900/900 0.20 0.80 0.95 0.0250 1.50 0.0811 
0.9428 1000/1000 0.20 0.80 0.95 0.0250 1.50 0.0572 
0.3038 100/100 0.20 0.80 1.00 0.0250 1.50 0.6962 
0.5384 200/200 0.20 0.80 1.00 0.0250 1.50 0.4616 
0.7113 300/300 0.20 0.80 1.00 0.0250 1.50 0.2887 
0.8280 400/400 0.20 0.80 1.00 0.0250 1.50 0.1720 
0.9013 500/500 0.20 0.80 1.00 0.0250 1.50 0.0987 
0.9451 600/600 0.20 0.80 1.00 0.0250 1.50 0.0549 
0.9702 700/700 0.20 0.80 1.00 0.0250 1.50 0.0298 
0.9842 800/800 0.20 0.80 1.00 0.0250 1.50 0.0158 
0.9918 900/900 0.20 0.80 1.00 0.0250 1.50 0.0082 
0.9958 1000/1000 0.20 0.80 1.00 0.0250 1.50 0.0042 
 
Report Definitions 
H0 (null hypothesis) is that R <= 1-E, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is that R > 1-E. 
E is the magnitude of the relative margin of equivalence. 
RB is equivalence bound for the ratio. 
R1 is actual ratio between the treatment and reference means. 
COV is the coefficient of variation on the original scale.  
Power is the probability of rejecting H0 when it is false. 
N1 is the number of subjects in the first (reference) group. 
N2 is the number of subjects in the second (treatment) group. 
Alpha is the probability of falsely rejecting H0. 
Beta is the probability of not rejecting H0 when it is false. 
 
Summary Statements 
Group sample sizes of 100 in the first group and 100 in the second group achieve 20% power to 
detect non-inferiority using a one-sided, two-sample t-test. The margin of equivalence is 0.20. 
The true ratio of the means at which the power is evaluated is 0.95. The significance level 
(alpha) of the test is 0.0250. The coefficients of variation of both groups are assumed to be 

 

This report shows the power for the indicated scenarios.  
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Plots Section 
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This plot shows the power versus the sample size. 

Example 2 – Validation 
We could not find a validation example for this procedure in the statistical literature. Therefore, 
we will show that this procedure gives the same results as the non-inferiority test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example1. Since the output for this example is shown above, all that we need is the output from 
the procedure that uses differences.  

To run the inferiority test on differences, we need the values of |E| and S1. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means 
[Differences] procedure window by clicking on Means, then Two Means, then Independent, 
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then Non-Inferiority & Superiority Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1b from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................100 to 1000 by 100 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
|E| (Equivalence Margin).........................0.223144 
D (True Difference) .................................-0.051293  0.0 
S1 (Standard Deviation Group 1)............1.085659 
S2 (Standard Deviation Group 2)............S1 
Test Type ................................................Non-Inferiority 
Higher Is..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.1987 100/100 -0.223 -0.051 0.0250 0.8013 1.086 1.086 
0.3539 200/200 -0.223 -0.051 0.0250 0.6461 1.086 1.086 
0.4918 300/300 -0.223 -0.051 0.0250 0.5082 1.086 1.086 
0.6098 400/400 -0.223 -0.051 0.0250 0.3902 1.086 1.086 
0.7064 500/500 -0.223 -0.051 0.0250 0.2936 1.086 1.086 
0.7828 600/600 -0.223 -0.051 0.0250 0.2172 1.086 1.086 
0.8416 700/700 -0.223 -0.051 0.0250 0.1584 1.086 1.086 
0.8860 800/800 -0.223 -0.051 0.0250 0.1140 1.086 1.086 
0.9189 900/900 -0.223 -0.051 0.0250 0.0811 1.086 1.086 
0.9428 1000/1000 -0.223 -0.051 0.0250 0.0572 1.086 1.086 
0.3038 100/100 -0.223 0.000 0.0250 0.6962 1.086 1.086 
0.5384 200/200 -0.223 0.000 0.0250 0.4616 1.086 1.086 
0.7113 300/300 -0.223 0.000 0.0250 0.2887 1.086 1.086 
0.8280 400/400 -0.223 0.000 0.0250 0.1720 1.086 1.086 
0.9013 500/500 -0.223 0.000 0.0250 0.0987 1.086 1.086 
0.9451 600/600 -0.223 0.000 0.0250 0.0549 1.086 1.086 
0.9702 700/700 -0.223 0.000 0.0250 0.0298 1.086 1.086 
0.9842 800/800 -0.223 0.000 0.0250 0.0158 1.086 1.086 
0.9918 900/900 -0.223 0.000 0.0250 0.0082 1.086 1.086 
0.9958 1000/1000 -0.223 0.000 0.0250 0.0042 1.086 1.086 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 460 

Equivalence Tests 
for Two Means 
using Differences 
Introduction 
This procedure allows you to study the power and sample size of equivalence tests of the means of 
two independent groups using the two-sample t-test. Schuirmann’s (1987) two one-sided tests 
(TOST) approach is used to test equivalence. Only a brief introduction to the subject will be 
given here. For a comprehensive discussion, refer to Chow and Liu (1999).  

Measurements are made on individuals that have been randomly assigned to one of two groups. 
This parallel-groups design may be analyzed by a TOST equivalence test to show that the means 
of the two groups do not differ by more than a small amount, called the margin of equivalence. 

The definition of equivalence has been refined in recent years using the concepts of 
prescribability and switchability. Prescribability refers to ability of a physician to prescribe either 
of two drugs at the beginning of the treatment. However, once prescribed, no other drug can be 
substituted for it. Switchability refers to the ability of a patient to switch from one drug to another 
during treatment without adverse effects. Prescribability is associated with equivalence of 
location and variability. Switchability is associated with the concept of individual equivalence. 
This procedure analyzes average equivalence. Thus, it partially analyzes prescribability. It does 
not address equivalence of variability or switchability. 

Parallel-Group Design 
In a parallel-group design, subjects are assigned at random to either of two groups. Group 1 is the 
treatment group and group 2 is the reference group.  

Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). Let μ μ2 = T  be the test group mean, μ μ1 = R  the reference group mean, and εL  and εU  
the lower and upper bounds on D T R= − = −μ μ μ μ2 1 that define the region of equivalence. The 
null hypothesis of non-equivalence is 
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H D or H DL U0 0: :≤ ≥ε ε  

and the alternative hypothesis of equivalence is  

H DL U1: ε ε< < . 

Two-Sample T-Test 
This test assumes that the two groups of normally-distributed values have the same variance. The 
calculation of the two one-sided test statistics uses the following equations. 
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The power of this test is given by 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N1 for sample size 
determination. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of nonequivalent 
means when in fact the means are equivalent. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of non-equivalent means when in fact the means are nonequivalent.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N1 (Sample Size Reference Group) 
Specify the number of subjects in the reference group. The total number of subjects in the 
experiment is equal to N1 + N2. 

You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Treatment Group) 
Specify one or more values for the number of subjects in the treatment group. Alternatively, enter 
Use R to base N2 on the value of N1. You may also enter a range of values such as 10 to 100 by 
10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and [Y] means take the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2= [R(N1)] where [Y] means take the 
next integer greater than or equal to Y. Note that setting R = 1.0 forces N1 = N2. 

Effect Size – Equivalence Limits 

|EU| Upper Equivalence Limit 
This value gives upper limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are considered equivalent. 

Note that EL<0 and EU>0. Also, you must have EL<D<EU. 

-|EL| Lower Equivalence Limit 
This value gives lower limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are. 

If you want symmetric limits, enter -UPPER LIMIT for EL to force EL = -|EU|.  

Note that EL<0 and EU>0. Also, you must have EL<D<EU. Finally, the scale of these numbers 
must match the scale of S. 

Effect Size – True Mean Difference 

D (True Difference) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between the equivalence limits EL 
and EU. 
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Effect Size – Standard Deviation 

S (Standard Deviation) 
Specify the within-group standard deviation, σ . The standard deviation is assumed to be the 
same for both groups. 

Example 1 – Parallel-Group Design 
A parallel-group is to be used to compare influence of two drugs on diastolic blood pressure. The 
diastolic blood pressure is known to be close to 96 mmHg with the reference drug and is thought 
to be 92 mmHg with the experimental drug. Based on similar studies, the within-group standard 
deviation is set to 18mmHg. Following FDA guidelines, the researchers want to show that the 
diastolic blood pressure with the experimental drug is within 20% of the diastolic blood pressure 
with the reference drug. Note that 20% of 96 is 19.2. They decide to calculate the power for a 
range of sample sizes between 3 and 60. The significance level is 0.05.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means [Differences] procedure 
window by clicking on Means, then Two Means, then Independent, then Equivalence Tests, 
then Specify using Differences. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................3 5 8 10 15 20 30 40 50 60 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
|EU| Upper Equivalence Limit .................19.2 
-|EL| Lower Equivalence Limit.................-Upper Limit 
D (True Difference) .................................-4 
S (Standard Deviation)............................18 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Parallel-Group Design 
 
 Reference Treatment      
 Group Group      
 Sample Sample Lower Upper    
 Size Size Equiv. Equiv. True Standard   
Power (N1) (N2) Limit Limit Difference Deviation Alpha Beta 
0.0386 3 3 -19.20 19.20 -4.00 18.00 0.0500 0.9614 
0.0928 5 5 -19.20 19.20 -4.00 18.00 0.0500 0.9072 
0.2887 8 8 -19.20 19.20 -4.00 18.00 0.0500 0.7113 
0.4391 10 10 -19.20 19.20 -4.00 18.00 0.0500 0.5609 
0.6934 15 15 -19.20 19.20 -4.00 18.00 0.0500 0.3066 
0.8266 20 20 -19.20 19.20 -4.00 18.00 0.0500 0.1734 
0.9433 30 30 -19.20 19.20 -4.00 18.00 0.0500 0.0567 
0.9820 40 40 -19.20 19.20 -4.00 18.00 0.0500 0.0180 
0.9946 50 50 -19.20 19.20 -4.00 18.00 0.0500 0.0054 
0.9984 60 60 -19.20 19.20 -4.00 18.00 0.0500 0.0016 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when they are equivalent. 
N1 is the number of subjects in the reference group. 
N2 is the number of subjects in the treatment group. 
The Upper & Lower Limits are the maximum allowable differences that result in equivalence. 
True Difference is the anticipated actual difference between the means. 
The Standard Deviation is the average S.D. within the two groups. 
Alpha is the probability of rejecting non-equivalence when they are non-equivalent. 
Beta is the probability of accepting non-equivalence when they are equivalent. 
 
Summary Statements 
An equivalence test of means using two one-sided tests on data from a parallel-group design 
with sample sizes of 3 in the reference group and 3 in the treatment group achieves 4% power at 
a 5% significance level when the true difference between the means is -4.00, the standard 
deviation is 18.00, and the equivalence limits are -19.20 and 19.20. 
 

This report shows the power for the indicated parameter configurations. Note that when the 
parameters are specified as percentages, they are displayed in the output with percent signs. Note 
that the desired 80% power occurs for a per group sample size between 15 and 20. 

Plot Section 
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This plot shows the power versus the sample size. 
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Example 2 – Parallel-Group Validation using Machin 
Machin et al. (1997) page 107 present an example of determining the sample size for a parallel-
group design in which the reference mean is 96, the treatment mean is 94, the standard deviation 
is 8, the limits are plus or minus 5, the power is 80%, and the significance level is 0.05. They 
calculate the sample size to be 88. It is important to note that Machin et al. use an approximation, 
so their results should not be expected to exactly match the results obtained using PASS. 

We will now set up this example in PASS.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means [Differences] procedure 
window by clicking on Means, then Two Means, then Independent, then Equivalence Tests, 
then Specify using Differences. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example2 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
|EU| Upper Equivalence Limit .................5 
-|EL| Lower Equivalence Limit.................-Upper Limit 
D (True Difference) .................................-2 
S (Standard Deviation)............................8 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Reference Treatment      
 Group Group      
 Sample Sample Lower Upper    
 Size Size Equiv. Equiv. True Standard   
Power (N1) (N2) Limit Limit Difference Deviation Alpha Beta 
0.8015 89 89 -5.00 5.00 -2.00 8.00 0.0500 0.1985 

 

Note that PASS has obtained a sample size of 89 which is very close to the approximate value of 
88 that Machin calculated. 



460-8  Equivalence Tests for Two Means using Differences 

 



  465-1 

Chapter 465 

Equivalence Tests 
for Two Means 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of an equivalence test comparing two 
means from independent groups. Schuirmann’s (1987) two one-sided tests (TOST) approach is 
used to test equivalence. The t-test is commonly used in this situation, but other tests have been 
developed for use when the t-test assumptions are not met. These additional tests include the Mann-
Whitney U test, Welch’s unequal variance test, and trimmed versions of the t-test and the Welch 
test.  

Measurements are made on individuals that have been randomly assigned to, or randomly chosen 
from, one of two groups. This parallel-groups design may be analyzed by a TOST equivalence 
test to show that the means of the two groups do not differ by more than a small amount, called 
the margin of equivalence. 

The two-sample t-test is commonly used in this situation. When the variances of the two groups are 
unequal, Welch’s t-test is often used. When the data are not normally distributed, the Mann-
Whitney (Wilcoxon signed-ranks) U test and, less frequently, the trimmed t-test may be used. 

The details of the power analysis of equivalence test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 

Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are as follows. 

1. Specify how the test is carried out. This includes indicating how the test statistic is 
calculated and how the significance level is specified. 
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2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s 
power.  

3. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. Tabulate the number of rejections and use this to calculate the test’s significance 
level.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draw the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Simulating Data for an Equivalence Test 
Simulating equivalence data is more complex than simulating data for a regular two-sided test. An 
equivalence test essentially reverses the roles of the null and alternative hypothesis. The null 
hypothesis becomes 

( ) ( )H D or D0 1 2 1 2: μ − μ ≤ − μ − μ ≥  

where D is the margin of equivalence. Thus the null hypothesis is made up of two simple 
hypotheses:  

( )H D01 1 2: μ μ− ≤ −  

( )H D02 1 2: μ μ− ≥  

The additional complexity comes in deciding which of the two null hypotheses are used to 
simulate data for the null hypothesis situation. The choice becomes more problematic when 
asymmetric equivalence limits are chosen. In this case, you may want to try simulating using each 
simple null hypothesis in turn. 
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To generate data for the null hypotheses, generate data for each group. The difference in the 
means of these two groups will become one of the equivalence limits. The other equivalence limit 
will be determined by symmetry and will always have a sign that is the opposite of the first 
equivalence limit.  

Test Statistics 
This section describes the test statistics that are available in this procedure. Note that these test 
statistics are computed on the differences. Thus, when the equation refers to an X value, this X 
value is assumed to be a difference between two individual variates. 

Two-Sample T-Test 
The t-test assumes that the data are simple random samples from populations of normally-
distributed values that have the same mean and variance. This assumption implies that the data 
are continuous and their distribution is symmetric. The calculation of the t statistic is as follows.  
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The significance of the test statistic is determined by computing a p-value which is based on the t 
distribution with appropriate degrees of freedom. If this p-value is less than a specified level 
(often 0.05), the null hypothesis is rejected. Otherwise, no conclusion can be reached. 

Welch’s T-Test 
Welch (1938) proposed the following test for use when the two variances are not assumed to be 
equal. 
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Trimmed T-Test assuming Equal Variances 
The notion of trimming off a small proportion of possibly outlying observations and using the 
remaining data to form a t-test was first proposed for one sample by Tukey and McLaughlin 
(1963). Tukey and Dixon (1968) consider a slight modification of this test, called Winsorization, 
which replaces the trimmed data with the nearest remaining value. The two-sample trimmed t-test 
was proposed by Yuen and Dixon (1973).  

Assume that the data values have been sorted from lowest to highest. The trimmed mean is 
defined as 

X
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where h = N – 2g and g = [N(G/100)]. Here we use [Z] to mean the largest integer smaller than Z 
with the modification that if G is non-zero, the value of  [N(G/100)] is at least one. G is the 
percent trimming and should usually be less than 25%, often between 5% and 10%. Thus, the g 
smallest and g largest observation are omitted in the calculation.  

To calculate the modified t-test, calculate the Winsorized mean and the Winsorized sum of 
squared deviations as follows. 
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Using the above definitions, the two-sample trimmed t-test is given by 
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The distribution of this t statistic is approximately that of a t distribution with degrees of freedom 
equal to . This approximation is often reasonably accurate if both sample sizes are 
greater than 6. 

h h1 2 2+ −

Trimmed T-Test assuming Unequal Variances 
Yuen (1974) combines trimming (see above) with Welch’s (1938) test. The resulting trimmed 
Welch test is resistant to outliers and seems to alleviate some of the problems that occur because 
of skewness in the underlying distributions. Extending the results from above, the trimmed 
version of Welch’s t-test is given by 

( ) ( )

( ) ( )

T
X X

SSD
h h

SSD
h h

tg
tg tg

wg wg

* =
− − −

−
+

−

1 2 1

1

1 1

2

2 21 1

μ μ2  

with degrees of freedom f given by 

1
1

1
1

2

1

2

2f
c

h
c

h
=

−
+

−
−

 

where 

( )

( ) ( )

c

SSD
h h

SSD
h h

SSD
h h

wg

wg wg
=

−

−
+

−

1

1 1

1

1 1

2

2 2

1

1 1

 

Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions for 
this test are that the distributions are at least ordinal and that they are identical under H0. This 
means that ties (repeated values) are not acceptable. When ties are present, an approximation can 
be used, but the theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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where 
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The ranks are determined after combining the two samples. The standard deviation is calculated 
as 
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator of z is negative or -0.5 otherwise. The 
value of z is then compared to the standard normal distribution. 

Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, although the shape parameters are constant, the 
standard deviations, which are based on both the shape parameter and the mean, are not. Thus the 
distributions not only have different means, but different standard deviations! 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data and Options tabs. To find out more about using the other tabs such as Axes/Legend/Grid, 
Plot Text, or Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated using the values of the other parameters. 
Under most conditions, you would select either Power or N1. 

Select Power when you want to estimate the power for a specific scenario.  

Select N1 when you want to determine the sample size needed to achieve a given power and 
alpha level. This option is computationally intensive and may take a long time to complete. 
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of nonequivalent 
means when in fact the means are equivalent. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of non-equivalent means when in fact the means are nonequivalent.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Test 

Test Type 
Specify which test statistic is to be used in the simulation. Although the t-test is the most 
commonly used test statistic, it is based on assumptions that may not be viable in many situations. 
For your data, you may find that one of the other tests are more accurate (actual alpha = target 
alpha) and more precise (better power). 

Equivalence Limit 
Equivalence limits are defined as the positive and negative limits around zero that define a zone 
of equivalence. This zone of equivalence is a set of difference values that define a region in which 
the two means are ‘close enough’ so that they are considered to be the same for practical 
purposes. 

Rather than define these limits explicitly, they are set implicitly. This is done as follows. One 
limit is found by subtracting the Group 2 Dist’n|H0 mean from the Group 1 Dist’n|H0 mean. If 
the limits are symmetric, the other limit is this difference times -1. To obtain symmetric limits, 
enter ‘Symmetric’ here. 

If asymmetric limits are desired, a numerical value is specified here. It is given the sign (+ or -) 
that is opposite the difference of the means discussed above. 

For example, if the mean of group 1 under H0 is 5, the mean of group 2 under H0 is 4, and 
Symmetric is entered here, the equivalence limits will be 5 - 4 = 1 and -1. However, if the value 
1.25 is entered here, the equivalence limits are 1 and -1.25. 

If you do not have a specific value in mind for the equivalence limit, a common value for an 
equivalence limit is 20% or 25% of the group 1 (reference) mean. 

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. The larger the number 
of iterations, the longer the running time, and, the more accurate the results. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
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Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Effect Size 

Group 1 (and 2) Distribution | H0 
These options specify the distributions of the two groups under the null hypothesis, H0. The 
difference between the means of these two distributions is the value of one of the equivalence 
limits.  

Group 1 is often called the reference (or standard) distribution. Group 2 is often called the 
treatment distribution. These options specify these two distributions under the null hypothesis, 
H0. The difference between the means of these two distributions is, by definition, one of the 
equivalence limits. Thus, you set the equivalence limit by specifying the two means. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The characters M0 and M1 are to be used for the means 
of the distributions of groups 1 and 2 under H0, respectively. An equivalence limit is then M0 - 
M1, which must be non-zero.  

For example, suppose you entered N(M0 S) for group 1 and N(M1 S) for group 2. Also, you set 
M0 equal to 5 and M1 equal to 4. The upper (positive) equivalence limit would be 5 – 4 = 1.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 

Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean of a Specified Distribution 
The distributions have been parameterized in terms of their means, since this is the parameter 
being tested. The mean of a distribution created as a linear combination of other distributions is 
found by applying the linear combination to the individual means. However, the mean of a 
distribution created by multiplying or dividing other distributions is not necessarily equal to 
applying the same function to the individual means. For example, the mean of 4N(4, 5) + 2N(5, 
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6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 4*4*2*5 = 160 (although 
it is close). 

Group 1 (and 2) Distribution|H1 
These options specify the distributions of the two groups under the alternative hypothesis, H1. 
The difference between the means of these two distributions is the difference that is assumed to 
be the true value of the difference.  

Usually, the mean difference is specified by entering M0 for the mean parameter in the 
distribution expression for group 1 and M1 for the mean parameter in the distribution expression 
for group 2. The mean difference under H1 then becomes the value of M0– M0 = 0. If you want a 
non-zero value, you specify it by specifying unequal values for the two distribution means. For 
example, you could enter A for the mean of group 2. The mean difference will then be M0 – A.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean of 
group 2 under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 
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You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of parameter listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values using the syntax ‘0 2 3’ or ‘0 to 3 by 1.’ 

You can also change the letter than is used as the name of this parameter. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N1, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of values from which the random samples will be drawn. Pools should 
be at least the maximum of 10,000 and twice the number of simulations. You can enter Automatic 
and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 

Trimmed T-Test 

Percent Trimmed at Each End 
Specify the percent of each end of the sorted data that is to be trimmed (constant G above) when 
using the trimmed means procedures. This percentage is applied to the sample size to determine 
how many of the lowest and highest data values are to be trimmed by the procedure. For example, 
if the sample size (N1) is 27 and you specify 10 here, then [27*10/100] = 2 observations will be 
trimmed at the bottom and the top. For any percentage, at least one observation is trimmed from 
each end of the sorted dataset. 

The range of possible values is 0 to 25.  
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Example 1 – Power at Various Sample Sizes 
Researchers are planning an experiment to determine if the response to a new drug is equivalent 
to the response to the standard drug. The average response level to the standard drug is known to 
be 63 with a standard deviation of 5.  The researchers decide that if the average response level to 
the new drug is between 60 and 66, they will consider it to be equivalent to the standard drug.  

The researchers decide to use a parallel-group design. The response level for the standard drug 
will be measured for each subject. They will analyze the data using an equivalence test based on 
the t-test with an alpha level of 0.05. They want to compare the power at sample sizes of 10, 30, 
50, and 70. They assume that the data are normally distributed and that the true difference 
between the mean response of the two drugs is zero. Since this is an exploratory analysis, the 
number of simulation iterations is set to 2000. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Equivalence Tests, 
then Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................10 30 50 70 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Test Type ................................................T-Test 
Equivalence Limit ....................................Symmetric 
Simulations..............................................2000 
Group 1 Distribution | H0.........................N(M0 S) 
Group 2 Distribution | H0.........................N(M1 S) 
Group 1 Distribution | H1.........................N(M0 S) 
Group 2 Distribution | H1.........................N(M0 S) 
M0 (Mean|H0) .........................................63 
M1 (Mean|H1) .........................................66 
S ..............................................................5 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S) & Normal(M1 S) 
H1 Dist's: Normal(M0 S) & Normal(M0 S) 
Test Statistic: T-Test 
   Lower Upper 
  H1 Equiv. Equiv. Target Actual   
Power N1/N2 Diff1 Limit Limit Alpha Alpha Beta M0 M1 S 
0.009 10/10 0.0 -3.0 3.0 0.050 0.005 0.991 63.0 66.0 5.0 
(0.004) [0.005 0.013]    (0.003) [0.002 0.008]   
 
0.477 30/30 0.0 -3.0 3.0 0.050 0.053 0.524 63.0 66.0 5.0 
(0.022) [0.455 0.498]    (0.010) [0.043 0.062]   
 
0.816 50/50 0.0 -3.0 3.0 0.050 0.061 0.184 63.0 66.0 5.0 
(0.017) [0.799 0.833]    (0.010) [0.050 0.071]   
 
0.944 70/70 0.0 -3.0 3.0 0.050 0.050 0.056 63.0 66.0 5.0 
(0.010) [0.934 0.954]    (0.010) [0.040 0.060]   
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 21.61 seconds. 
 
 
Summary Statements 
Group sample sizes of 10 and 10 achieve 1% power to detect equivalence when the margin of 
equivalence is from -3.0 to 3.0 and the actual mean difference is 0.0. The significance level 
(alpha) is 0.050 using two one-sided T-Tests. These results are based on 2000 Monte Carlo 
samples from the null distributions: Normal(M0 S) and Normal(M1 S), and the alternative 
distributions: Normal(M0 S) and Normal(M0 S). 
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha). The second row shows 
two 95% confidence intervals in brackets: the first for the power and the second for the 
significance level. Half the width of each confidence interval is given in parentheses as a 
fundamental measure of the accuracy of the simulation. As the number of simulations is 
increased, the width of the confidence intervals will decrease. 
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Example 2 – Finding the Sample Size 
Continuing with Example1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Equivalence Tests, 
then Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Test Type ................................................T-Test 
Equivalence Limit ....................................Symmetric 
Simulations..............................................2000 
Group 1 Distribution | H0.........................N(M0 S) 
Group 2 Distribution | H0.........................N(M1 S) 
Group 1 Distribution | H1.........................N(M0 S) 
Group 2 Distribution | H1.........................N(M0 S) 
M0 (Mean|H0) .........................................63 
M1 (Mean|H1) .........................................66 
S ..............................................................5 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S) & Normal(M1 S) 
H1 Dist's: Normal(M0 S) & Normal(M0 S) 
Test Statistic: T-Test 
   Lower Upper 
  H1 Equiv. Equiv. Target Actual   
Power N1/N2 Diff1 Limit Limit Alpha Alpha Beta M0 M1 S 
0.911 61/61 0.0 -3.0 3.0 0.050 0.044 0.089 63.0 66.0 5.0 
(0.012) [0.899 0.923]    (0.009) [0.035 0.053]   
   

The required sample size is 61 per group. 
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Example 3 – Comparative Results when the Data 
Contain Outliers  
Continuing Example1, this example will investigate the impact of outliers on the characteristics 
of the various test statistics. The two-sample t-test is known to be robust to the violation of some 
assumptions, but it is susceptible to inaccuracy when the data contains outliers. This example will 
investigate the impact of outliers on the power and precision of the five test statistics available in 
PASS. 

A mixture of two normal distributions will be used to randomly generate outliers. The mixture 
will draw 95% of the data from a standard distribution. The other 5% of the data will come from a 
normal distribution with the same mean but with a standard deviation that is one, five, and ten 
times larger than that of the standard. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Equivalence Tests, 
then Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example3 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................40 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Test Type ................................................T-Test 
Equivalence Limit ....................................Symmetric 
Simulations..............................................2000 
Group 1 Distribution | H0.........................N(M0 S)[95];N(M0 A)[5] 
Group 2 Distribution | H0.........................N(M1 S)[95];N(M1 A)[5] 
Group 1 Distribution | H1.........................N(M0 S)[95];N(M0 A)[5] 
Group 2 Distribution | H1.........................N(M0 S)[95];N(M0 A)[5] 
M0 (Mean|H0) .........................................63 
M1 (Mean|H1) .........................................66 
S ..............................................................5 
A ..............................................................5 25 50 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

 
Power Comparison for Testing Equivalence.   Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M1 S)[95];Normal(M1 A)[5] 
H1 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M0 S)[95];Normal(M0 A)[5] 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Power Power Power Power Power M0 M1 S A 
40/40 0.0 -3.0 3.0 0.050 0.708 0.708 0.657 0.656 0.672 63.0 66.0 5.0 5.0 
40/40 0.0 -3.0 3.0 0.050 0.247 0.247 0.543 0.543 0.539 63.0 66.0 5.0 25.0 
40/40 0.0 -3.0 3.0 0.050 0.073 0.072 0.509 0.508 0.510 63.0 66.0 5.0 50.0 
 
Alpha Comparison for Testing Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S A 
40/40 0.0 -3.0 3.0 0.050 0.050 0.050 0.058 0.058 0.056 63.0 66.0 5.0 5.0 
40/40 0.0 -3.0 3.0 0.050 0.030 0.030 0.041 0.041 0.044 63.0 66.0 5.0 25.0 
40/40 0.0 -3.0 3.0 0.050 0.008 0.008 0.042 0.042 0.044 63.0 66.0 5.0 50.0 
Pool Size: 10000. Simulations: 2000. Run Time: 2.90 minutes. Percent Trimmed: 10. 
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When A = 5, there are no outliers and the power of the nonparametric test and the trimmed tests 
are a little less than that of the t-test. When A = 25, the distortion of the t-test caused by the 
outliers becomes apparent. In this case, the powers of the standard t-test and Welch’s t-test are 
0.247, but the powers of the nonparametric Mann-Whitney test and the trimmed tests are about 
0.54. When A = 50, the standard t-test only achieves a power of 0.073, but the trimmed and 
nonparametric tests achieve powers of about 0.51!  

Looking at the second table, we see that the true significance level of the t-test is distorted by the 
outliers, while the significance levels of the other tests remain close to the target value. 
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Example 4 – Selecting a Test Statistic when the Data Are 
Skewed  
Continuing Example3, this example will investigate the impact of skewness in the underlying 
distribution on the characteristics of the various test statistics.  

Tukey’s lambda distribution will be used because it allows the amount of skewness to be 
gradually increased. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Equivalence Tests, 
then Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example4 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................40 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Test Type ................................................T-Test 
Equivalence Limit ....................................Symmetric 
Simulations..............................................2000 
Group 1 Distribution | H0.........................L(M0 S G 0) 
Group 2 Distribution | H0.........................L(M1 S G 0) 
Group 1 Distribution | H1.........................L(M0 S G 0) 
Group 2 Distribution | H1.........................L(M0 S G 0) 
M0 (Mean|H0) .........................................63 
M1 (Mean|H1) .........................................66 
S ..............................................................5 
G..............................................................0 0.5 0.9 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

 
Power Comparison for Testing Equivalence.   Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M1 S)[95];Normal(M1 A)[5] 
H1 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M0 S)[95];Normal(M0 A)[5] 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Power Power Power Power Power M0 M1 S G 
40/40 0.0 -3.0 3.0 0.050 0.685 0.685 0.626 0.625 0.635 63.0 66.0 5.0 0.0 
40/40 0.0 -3.0 3.0 0.050 0.708 0.708 0.773 0.772 0.893 63.0 66.0 5.0 0.5 
40/40 0.0 -3.0 3.0 0.050 0.747 0.746 0.940 0.939 0.996 63.0 66.0 5.0 0.9 

 
Alpha Comparison for Testing Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S G 
40/40 0.0 -3.0 3.0 0.050 0.048 0.048 0.049 0.049 0.051 63.0 66.0 5.0 0.0 
40/40 0.0 -3.0 3.0 0.050 0.043 0.043 0.043 0.042 0.047 63.0 66.0 5.0 0.5 
40/40 0.0 -3.0 3.0 0.050 0.055 0.055 0.058 0.057 0.056 63.0 66.0 5.0 0.9 
 
Pool Size: 10000. Simulations: 2000. Run Time: 3.01 minutes. Percent Trimmed: 10. 
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We see that as the degree of skewness is increased, the power of the t-test increases slightly, but 
the powers of the trimmed and nonparametric tests improve dramatically. The significance levels 
do not appear to be adversely impacted. 
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Example 5 – Validation using Machin 
Machin et al. (1997) page 107 present an example of determining the sample size for a parallel-
group design in which the reference mean is 96, the treatment mean is 94, the standard deviation 
is 8, the limits are plus or minus 5, the power is 80%, and the significance level is 0.05. They 
calculate the sample size to be 88. It is important to note that Machin et al. use an approximation, 
so their results cannot be expected to exactly match those of PASS.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Independent, then Equivalence Tests, 
then Specify using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example5 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Test Type ................................................T-Test 
Equivalence Limit ....................................Symmetric 
Simulations..............................................2000 
Group 1 Distribution | H0.........................N(M0 S) 
Group 2 Distribution | H0.........................N(91 S) 
Group 1 Distribution | H1.........................N(M0 S) 
Group 2 Distribution | H1.........................N(94 S) 
M0 (Mean|H0) .........................................96 
M1 (Mean|H1) .........................................1 
S ..............................................................8 
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Output 
Click the Run button to perform the calculations and generate the following output. 

 
H0 Dist's: Normal(M0 S) & Normal(91 S) 
H1 Dist's: Normal(M0 S) & Normal(94 S) 
Test Statistic: T-Test 
 
   Lower Upper 
  H1 Equiv. Equiv. Target Actual   
Power N1/N2 Diff1 Limit Limit Alpha Alpha Beta M0 S   
0.807 87/87 2.0 -5.0 5.0 0.050 0.049 0.193 96.0 8.0  
(0.017) [0.790 0.824]    (0.009) [0.039 0.058]    

 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 60.05 seconds. 

 

The sample size of 87 per group is reasonably close to the analytic answer of 88. 
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Chapter 470 

Equivalence Tests 
for Two Means 
using Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests for equivalence tests from 
parallel-group design with two groups. This routine deals with the case in which the statistical 
hypotheses are expressed in terms of mean ratios rather than mean differences.  

The details of testing the equivalence of two treatments using a parallel-group design are given in 
the chapter entitled “Equivalence Tests for Two Means using Differences” and will not be repeated 
here. If the logarithms of the responses can be assumed to follow a normal distribution, hypotheses 
about equivalence in terms of the ratio can be transformed into hypotheses about the difference. The 
details of this analysis are given in Julious (2004).  

Equivalence Testing Using Ratios 
It will be convenient to adopt the following specialize notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

φ φL U,  RL, RU Margin of equivalence. These limits define an interval of 
the ratio of the means in which their difference is so 
small that it may be ignored.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 
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The null hypothesis of non-equivalence is 

H or0 1 1: , .φ φ φ φ φ φ≤ ≥ < >L U L Uwhere  

and the alternative hypothesis of equivalence is  

H1:φ φ φL U< <  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

When performing an equivalence test on the difference between means, the usual procedure is to 
set the equivalence limits symmetrically above and below zero. Thus the equivalence limits will 
be plus or minus an appropriate amount. The common practice is to do the same when the data 
are being analyzed on the log scale. However, when symmetric limits are set on the log scale, 
they do not translate to symmetric limits on the original scale. Instead, they translate to limits that 
are the inverses of each other. 

Perhaps these concepts can best be understood by considering an example. Suppose the 
researchers have determined that the lower equivalence limit should be 80% on the original scale. 
Since they are planning to use a log scale for their analysis, they transform this limit to the log 
scale by taking the logarithm of 0.80. The result is -0.223144. Wanting symmetric limits, they set 
the upper equivalence limit to 0.223144. Exponentiating this value, they find that exp(0.223144) 
= 1.25. Note that 1/(0.80) = 1.25. Thus, the limits on the original scale are 80% and 125%, not 
80% and 120%.  

Using this procedure, appropriate equivalence limits for the ratio of two means can be easily 
determined. Here are a few sets of equivalence limits. 
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 Lower Upper Lower Upper 
Specified Limit Limit  Limit Limit 
Percent Original Original  Log Log 
Change Scale Scale Scale Scale 
-25% 75.0% 133.3% -0.287682 0.287682 
+25% 80.0% 125.0% -0.223144 0.223144 
-20% 80.0% 125.0% -0.223144 0.223144 
+20% 83.3% 120.0% -0.182322 0.182322 
-10% 90.0% 111.1% -0.105361 0.105361 
+10% 90.9% 110.0% -0.095310 0.095310 
 

Note that negative percent-change values specify the lower limit first, while positive percent-
change values specify the upper limit first. After the first limit is found, the other limit is 
calculated as its inverse. 

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be expressed as  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
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One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σd

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N1 for sample size determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of nonequivalent 
means when in fact the means are equivalent. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of non-equivalent means when in fact the means are nonequivalent.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

You can enter a range of values such as 0.05, 0.10, 0.15 or 0.05 to 0.15 by 0.01.  

Sample Size 

N1 (Sample Size Reference Group) 
Enter a value (or range of values) for the sample size of group 1(the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 10 
to 100 by 10. 

N2 (Sample Size Treatment Group) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and [Y] means take the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Equivalence Limits 

RU (Upper Equivalence Limit) 
Enter the upper equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RL, the two means are said to be equivalent. The value must be greater 
than one. A popular choice is 1.25. Note that this value is not a percentage. 

If you enter 1/RL, then 1/RL will be calculated and used here. This choice is commonly used 
because RL and 1/RL give limits that are of equal magnitude on the log scale. 
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RL (Lower Equivalence Limit) 
Enter the lower equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RU, the two means are said to be equivalent. The value must be less than 
one. A popular choice is 0.80. Note that this value is not a percentage. 

If you enter 1/RU, then 1/RU will be calculated and used here. This choice is commonly used 
because RU and 1/RU give limits that are of equal magnitude on the log scale. 

Effect Size – True Ratio 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related. The relationship between these 
quantities is . 

$σw
2

σd
2 σw

2

σ σd w
2 22=
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Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
equivalent to the standard drug. A parallel-group design will be used to test the equivalence of the 
two drugs.   

Researchers have decided to set the lower limit of equivalence at 0.80. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.05. The power will be computed 
assuming that the true ratio is either 1.00 or 1.05. Sample sizes between 50 and 550 will be 
included in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means [Ratios] procedure 
window by clicking on Means, then Two Means, then Independent, then Equivalence Tests, 
then Specify using Ratios. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................50 to 550 by 100 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1 
RU (Upper Equivalence Limit) ................1/RL 
RL (Lower Equivalence Limit) .................0.80 
R1 (True Ratio) .......................................1.0 1.05 
COV (Coefficient of Variation).................1.50 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

 
Numeric Results for Testing Equivalence Using a Parallel-Group Design 
 
 Reference Treatment      
 Group Group Lower Upper  Coefficient  
 Sample Sample Equiv. Equiv. True of  
 Size Size Limit Limit Ratio Variation   
Power (N1) (N2) (RL) (RU) (R1) (COV) Alpha Beta 
0.0000 50 50 0.80 1.25 1.00 1.50 0.0500 1.0000 
0.1049 150 150 0.80 1.25 1.00 1.50 0.0500 0.8951 
0.4843 250 250 0.80 1.25 1.00 1.50 0.0500 0.5157 
0.7170 350 350 0.80 1.25 1.00 1.50 0.0500 0.2830 
0.8494 450 450 0.80 1.25 1.00 1.50 0.0500 0.1506 
0.9221 550 550 0.80 1.25 1.00 1.50 0.0500 0.0779 
0.0000 50 50 0.80 1.25 1.05 1.50 0.0500 1.0000 
0.1010 150 150 0.80 1.25 1.05 1.50 0.0500 0.8990 
0.4360 250 250 0.80 1.25 1.05 1.50 0.0500 0.5640 
0.6366 350 350 0.80 1.25 1.05 1.50 0.0500 0.3634 
0.7602 450 450 0.80 1.25 1.05 1.50 0.0500 0.2398 
0.8396 550 550 0.80 1.25 1.05 1.50 0.0500 0.1604 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when they are equivalent. 
N1 is the number of subjects in the first group. 
N2 is the number of subjects in the second group. 
RU & RL are the maximum allowable ratios that result in equivalence. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale.  
Alpha is the probability of rejecting non-equivalence when the means are non-equivalent. 
Beta is the probability of accepting non-equivalence when the means are equivalent. 
 
Summary Statements 
An equivalence test of means using two one-sided tests on data from a parallel-group design 
with sample sizes of 50 in the reference group and 50 in the treatment group achieves 0% power 
at a 5% significance level when the true ratio of the means is 1.00, the coefficient of 
variation on the original, unlogged scale is 1.50, and the equivalence limits of the mean ratio 
are 0.80 and 1.25. 

 

This report shows the power for the indicated scenarios.  

Plot Section 
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This plot shows the power versus the sample size. 
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Example 2 – Validation using Julious 
Julious (2004) page 1971 presents an example of determining the sample size for a parallel-group 
design in which the actual ratio is 1.0, the coefficient of variation is 0.80, the equivalence limits 
are 0.80 and 1.25, the power is 90%, and the significance level is 0.05. He calculates the per 
group sample size to be 216.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means [Ratios] procedure 
window by clicking on Means, then Two Means, then Independent, then Equivalence Tests, 
then Specify using Ratios. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1 
RU (Upper Equivalence Limit) ................1/RL 
RL (Lower Equivalence Limit) .................0.80 
R1 (True Ratio) .......................................1.0  
COV (Coefficient of Variation).................0.80 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Parallel-Group Design 
 
 Reference Treatment      
 Group Group Lower Upper  Coefficient  
 Sample Sample Equiv. Equiv. True of  
 Size Size Limit Limit Ratio Variation   
Power (N1) (N2) (RL) (RU) (R1) (COV) Alpha Beta 
0.9004 216 216 0.80 1.25 1.00 0.80 0.0500 0.0996 

 

PASS has also calculated the per group sample size to be 216, which matches Julious’s result.  



470-10  Equivalence Tests for Two Means using Ratios 

 

 



  471-1 

Chapter 471 

Confidence 
Intervals for the 
Difference Between 
Two Means 
Introduction 
This procedure calculates the sample size necessary to achieve a specified distance from the 
difference in sample means to the confidence limit(s) at a stated confidence level for a confidence 
interval about the difference in means when the underlying data distribution is normal.  

Caution: This procedure assumes that the standard deviations of the future samples will be the 
same as the standard deviations that are specified. If the standard deviation to be used in the 
procedure is estimated from a previous sample or represents the population standard deviation, 
the Confidence Intervals for the Difference between Two Means with Tolerance Probability 
procedure should be considered. That procedure controls the probability that the distance from the 
difference in means to the confidence limits will be less than or equal to the value specified.  

Technical Details 
There are two formulas for calculating a confidence interval for the difference between two 
population means. The different formulas are based on whether the standard deviations are 
assumed to be equal or unequal. 

For each of the cases below, let the means of the two populations be represented by μ1  and μ2 , 
and let the standard deviations of the two populations be represented as σ1  and σ2 . 

Case 1 – Standard Deviations Assumed Equal 
When σ σ σ1 2= =  are unknown, the appropriate two-sided confidence interval for μ1  - μ2 is 

21
22121

11
21 nn

stXX pnn +±− −+− ,/α  



471-2  Confidence Intervals for the Difference Between Two Means 

where 

2
11

21

2
22

2
11

−+
−+−

=
nn

snsnsp
)()(

 

Upper and lower one-sided confidence intervals can be obtained by replacing α/2 with α. 

The required sample size for a given precision, D, can be found by solving the following equation 
iteratively 
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This equation can be used to solve for D or n1 or n2 based on the values of the remaining 
parameters. 

 

Case 2 – Standard Deviations Assumed Unequal 
When σ σ1 ≠ 2  are unknown, the appropriate two-sided confidence interval for μ1  – μ2 is 
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In this case t is an approximate t and the method is known as the Welch-Satterthwaite method. 
Upper and lower one-sided confidence intervals can be obtained by replacing α/2 with α. 

The required sample size for a given precision, D, can be found by solving the following equation 
iteratively 
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This equation can be used to solve for D or n1 or n2 based on the values of the remaining 
parameters. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n1 and n2 
items are drawn from populations using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α. 

Notice that is a long term statement about many, many samples.  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n1 and n2 
items are drawn from populations using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Precision 

Distance from Mean Difference to Limit(s) 
This is the distance from the confidence limit(s) to the difference in means. For two-sided 
intervals, it is also known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Standard Deviations 

S1 and S2 (Standard Deviations) 
Enter an estimate of the standard deviation of group 1 or 2. The standard deviation must be a 
positive number.  

Caution: The sample size estimates for this procedure assume that the standard deviation that is 
achieved when the confidence interval is produced is the same as the standard deviation entered 
here. 

Press the 'Standard Deviation Estimator' button to obtain help on estimating the standard 
deviation. 

You can enter a range of values such as 1, 2, 3 or 1 to 10 by 1.  

Standard Deviation Equality Assumption 
Specify whether the standard deviations are assumed to be the same or different. The choice will 
determine which of the two common confidence interval formulas for estimating the difference in 
population means will be used.  

• Assume S1 and S2 are Unequal 
When the standard deviations are assumed to be unequal, the variances are not pooled and an 
approximate method is used for the confidence interval formula. This approximate method is 
sometimes called the Welch-Satterthwaite method. 

• Assume S1 and S2 are Equal 
When the standard deviations are assumed to be equal, the pooled variance formula is used in 
the calculation of the confidence interval. The degrees of freedom are N1 + N2 – 2. 

Recommendation: Because the standard deviations of two populations are rarely equal, it is 
recommended that the standard deviations are assumed to be unequal. The Welch-
Satterthwaite confidence interval calculation is generally accepted and commonly used.  
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Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the difference between two population means such that the width of the 
interval is no wider than 20 units. The confidence level is set at 0.95, but 0.99 is included for 
comparative purposes. The standard deviation estimates, based on the range of data values, are 32 
for Population 1 and 38 for Population 2. Instead of examining only the interval half-width of 10, 
a series of half-widths from 5 to 15 will also be considered.  
The goal is to determine the necessary sample size for each group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference Between Two 
Means procedure window by clicking on Confidence Intervals, then Means, then Two Means. 
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 0.99 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Interval Type ...........................................Two-Sided 
Distance from Mean Diff to Limit(s).........5 to 15 by 1 
S1 (Standard Deviation Group 1)............32 
S2 (Standard Deviation Group 2)............38 
SD Equality Assumption..........................Assume S1 and S2 are Unequal 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
The standard deviations are assumed to be Unknown and Unequal. 
 
    Target Actual   
    Dist from Dist from   
Confidence   Allocation Mean Diff Mean Diff   
Level N1 N2 Ratio to Limits to Limits S1 S2 
0.95 380 380 1.000 5.000 4.995 32.00 38.00 
0.95 265 265 1.000 6.000 5.995 32.00 38.00 
0.95 195 195 1.000 7.000 6.995 32.00 38.00 
0.95 150 150 1.000 8.000 7.984 32.00 38.00 
0.95 119 119 1.000 9.000 8.973 32.00 38.00 
0.95 97 97 1.000 10.000 9.951 32.00 38.00 
0.95 80 80 1.000 11.000 10.973 32.00 38.00 
0.95 68 68 1.000 12.000 11.918 32.00 38.00 
0.95 58 58 1.000 13.000 12.926 32.00 38.00 
0.95 50 50 1.000 14.000 13.947 32.00 38.00 
0.95 44 44 1.000 15.000 14.895 32.00 38.00 
0.99 655 655 1.000 5.000 5.000 32.00 38.00 
0.99 455 455 1.000 6.000 5.999 32.00 38.00 
0.99 335 335 1.000 7.000 6.991 32.00 38.00 
0.99 258 258 1.000 8.000 7.997 32.00 38.00 
0.99 205 205 1.000 9.000 8.981 32.00 38.00 
0.99 166 166 1.000 10.000 9.991 32.00 38.00 
0.99 138 138 1.000 11.000 10.972 32.00 38.00 
0.99 116 116 1.000 12.000 11.983 32.00 38.00 
0.99 99 99 1.000 13.000 12.991 32.00 38.00 
0.99 86 86 1.000 14.000 13.960 32.00 38.00 
0.99 75 75 1.000 15.000 14.975 32.00 38.00 
 
References 
Ostle, B. and Malone, L.C. 1988. Statistics in Research. Iowa State University Press. Ames, Iowa. 
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true difference in population means. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Dist from Mean Diff to Limit is the distance from the confidence limit(s) to the difference in sample means. 
     For two-sided intervals, it is also know as the precision, half-width, or margin of error. 
Target Dist from Mean Diff to Limit is the value of the distance that is entered into the procedure. 
Actual Dist from Mean Diff to Limit is the value of the distance that is obtained from the procedure. 
S1 and S2 are the standard deviations upon which the distance from mean difference to limit calculations are 
     based. 
 
Summary Statements 
Group sample sizes of 380 and 380 produce a two-sided 95% confidence interval with a distance 
from the difference in means to the limits that is equal to 4.995 when the estimated standard 
deviations are 32.00 and 38.00. 
 

This report shows the calculated sample size for each of the scenarios.  



Confidence Intervals for the Difference Between Two Means  471-7 

Plots Section 
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This plot shows the sample size of each group versus the precision for the two confidence levels. 

Example 2 – Validation using Ostle and Malone 
Ostle and Malone (1988) page 150 give an example of a precision calculation for a confidence 
interval for the difference between two means when the confidence level is 95%, the two standard 
deviations are 6.2185 and 16.06767, and the sample sizes are 7 and 6. The precision is 13.433 
(when df = 6.257, not 6).  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference Between Two 
Means procedure window by clicking on Confidence Intervals, then Means, then Two Means. 
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.90 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................6 
R (Sample Allocation Ratio).................... Ignored 
Interval Type ...........................................Two-Sided 
Distance from Mean Diff to Limit(s).........13.433 
S1 (Standard Deviation Group 1)............6.2185 
S2 (Standard Deviation Group 2)............16.06767 
SD Equality Assumption..........................Assume S1 and S2 are Unequal 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
The standard deviations are assumed to be Unknown and Unequal. 
 
    Target Actual   
    Dist from Dist from   
Confidence   Allocation Mean Diff Mean Diff   
Level N1 N2 Ratio to Limits to Limits S1 S2 
0.90 7 6 0.857 13.433 13.433 6.22 16.07 
 

PASS also calculated the sample size in Group 1 to be 7.  

Example 3 – Validation using Zar 
Zar (1984) page 132 gives an example of a precision calculation for a confidence interval for the 
difference between two means when the confidence level is 95%, the pooled standard deviation 
estimate is 0.7206, and the sample sizes are 6 and 7. The precision is 0.88. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference Between Two 
Means procedure window by clicking on Confidence Intervals, then Means, then Two Means. 
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Distance from Mean Difference to Limit 
Confidence Level ....................................0.95 
N1 (Sample Size Group 1) ......................6 
N2 (Sample Size Group 2) ......................7 
R (Sample Allocation Ratio) ....................Ignored 
Interval Type ...........................................Two-Sided 
Distance from Mean Diff to Limit(s)......... Ignored since this is the Find setting 
S1 (Standard Deviation Group 1)............0.7206 
S2 (Standard Deviation Group 2)............S1 
SD Equality Assumption..........................Assume S1 and S2 are Equal 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
The standard deviations are assumed to be Unknown and Equal. 
 
    Target Actual   
    Dist from Dist from   
Confidence   Allocation Mean Diff Mean Diff   
Level N1 N2 Ratio to Limits to Limits S1 S2 
0.95 6 7 1.167  0.882 0.72 0.72 
 

PASS also calculated the precision to be 0.88.  
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Chapter 472 

Confidence 
Intervals for the 
Difference Between 
Two Means with 
Tolerance 
Probability 
Introduction 
This procedure calculates the sample size necessary to achieve a specified distance from the 
difference in sample means to the confidence limit(s) with a given tolerance probability at a 
stated confidence level for a confidence interval about the difference in means when the 
underlying data distribution is normal.  

Sample sizes are calculated only for the case where the standard deviations are assumed to be 
equal, wherein the pooled standard deviation formula is used. 

Technical Details 
Let the means of the two populations be represented by μ1  and μ2 , and let the standard 
deviations of the two populations be represented as σ1  and σ2 . 

When σ σ σ1 2= =  are unknown, the appropriate two-sided confidence interval for μ1  - μ2 is 
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Upper and lower one-sided confidence intervals can be obtained by replacing α / 2 with α. 

The required sample size for a given precision, D, can be found by solving the following equation 
iteratively 

21
221

11
21 nn

stD pnn += −+− ,/α  

This equation can be used to solve for D or n1 or n2 based on the values of the remaining 
parameters. 

There is an additional subtlety that arises when the standard deviation is to be chosen for 
estimating sample size. The sample sizes determined from the formula above produce confidence 
intervals with the specified widths only when the future samples have a pooled standard deviation 
that is no greater than the value specified. 

As an example, suppose that 15 individuals are sampled from each population in a pilot study, 
and a pooled standard deviation estimate of 5.4 is obtained from the sample. The purpose of a 
later study is to estimate the difference in means within 10 units. Suppose further that the sample 
size needed is calculated to be 62 per group using the formula above with 5.4 as the estimate for 
the pooled standard deviation. The samples of size 62 are then obtained from each population, but 
the pooled standard deviation turns out to be 6.3 rather than 5.4. The confidence interval is 
computed and the distance from the difference in means to the confidence limits is greater than 10 
units. 

This example illustrates the need for an adjustment to adjust the sample size such that the distance 
from the difference in means to the confidence limits will be below the specified value with 
known probability. 

Such an adjustment for situations where a previous sample is used to estimate the standard 
deviation is derived by Harris, Horvitz, and Mood (1948) and discussed in Zar (1984). The 
adjustment is 
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where 1 – γ  is the probability that the distance from the difference in means to the confidence 
limit(s) will be below the specified value, and m1 and m2  are the sample sizes in the previous 
samples that were used to estimate the pooled standard deviation. 

The corresponding adjustment when no previous sample is available is discussed in Kupper and 
Hafner (1989). The adjustment in this case is 
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where, again, 1 – γ  is the probability that the distance from the difference in means to the 
confidence limit(s) will be below the specified value. 

Each of these adjustments accounts for the variability in a future estimate of the pooled standard 
deviation. In the first adjustment formula (Harris, Horvitz, and Mood, 1948), the distribution of 
the pooled standard deviation is based on the estimate from previous samples. In the second 
adjustment formula, the distribution of the pooled standard deviation is based on a specified value 
that is assumed to be the population pooled standard deviation.  

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n1 and n2 
items are drawn from populations using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α. 

Notice that is a long term statement about many, many samples.  

 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence and Tolerance 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n1 and n2 
items are drawn from populations using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α. 

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90 ,0.95 or 0.90 to 0.99 by 0.01. 

Tolerance Probability 
This is the probability that a future interval with sample sizes N1 and N2 and the specified 
confidence level will have a distance from the difference in means to the limit(s) that is less than or 
equal to the distance specified. 
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If a tolerance probability is not used, as in the 'Confidence Intervals for the Difference between Two 
Means' procedure, the sample size is calculated for the expected distance from the difference in 
means to the limit(s), which assumes that the future standard deviation will also be the one 
specified. 

Using a tolerance probability implies that the standard deviation of the future sample will not be 
known in advance, and therefore, an adjustment is made to the sample size formula to account for 
the variability in the standard deviation. Use of a tolerance probability is similar to using an upper 
bound for the standard deviation in the 'Confidence Intervals for the Difference between Two 
Means' procedure. 

The range of values that can be entered here is values between 0 and 1. 

You can enter a range of values such as .70 .80 .90 or .70 to .95 by .05. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Precision 

Distance from Mean Difference to Limit(s) 
This is the distance from the confidence limit(s) to the difference in means. For two-sided 
intervals, it is also known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  
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Pooled Standard Deviation 

Standard Deviation Source 
This procedure permits two sources for estimates of the pooled standard deviation: 

• S is a Population Standard Deviation 
This option should be selected if there are no previous samples that can be used to obtain an 
estimate of the pooled standard deviation. In this case, the algorithm assumes that the future 
sample obtained will be from a population with standard deviation S. 

• S from a Previous Sample 
This option should be selected if the estimate of the pooled standard deviation is obtained 
from previous random samples from the same distributions as those to be sampled. The total 
sample size of the previous samples must also be entered under 'Total Sample Size of 
Previous Sample'. 

Pooled Standard Deviation – S is a 
Population Standard Deviation 

S (Standard Deviation) 
Enter an estimate of the pooled standard deviation (must be positive). In this case, the algorithm 
assumes that future samples obtained will be from a population with pooled standard deviation S. 

One common method for estimating the standard deviation is the range divided by 4, 5, or 6. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Pooled Standard Deviation – S from a 
Previous Sample 

S (Standard Deviation) 
Enter an estimate of the pooled standard deviation from a previous (or pilot) study. This value 
must be positive. 

A range of values may be entered. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Total Sample Size of Previous Sample 
Enter the total sample size that was used to estimate the pooled standard deviation entered in S 
(SD Estimated from a Previous Sample). The total sample size should be the total of the two 
sample sizes (m1 + m2) that were used to estimate the pooled standard deviation.  

If the previous sample used for the estimate of the pooled standard deviation is a single sample 
rather than two samples, enter the sample size of the previous sample plus one. 

This value is entered only when 'Standard Deviation Source:' is set to 'S from a Previous Sample'.  
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Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the difference between two population means. It is very important that the 
mean weight is estimated within 10 units. The pooled standard deviation estimate, based on the 
range of data values, is 25.6. Instead of examining only the interval half-width of 10, a series of 
half-widths from 5 to 15 will also be considered.  
The goal is to determine the sample size necessary to obtain a two-sided confidence interval such 
that the difference in means is estimated within 10 units. Tolerance probabilities of 0.70 to 0.95 
will be examined. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference between Two 
Means with Tolerance Probability procedure window by clicking on Confidence Intervals, 
then Means, then Two Means with Tolerance Probability. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 
Tolerance Probability ..............................0.70 to 0.95 by 0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Interval Type ...........................................Two-Sided 
Distance from Mean Diff to Limit(s).........10 
Standard Deviation Source .....................S is a Population Standard Deviation 
S ..............................................................25.6 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
 
    Target Actual   
    Dist from Dist from Pooled  
Confidence   Allocation Mean Diff Mean Diff Standard Tolerance 
Level N1 N2 Ratio to Limits to Limits Deviation Probability 
0.95 55 55 1.000 10.000 9.994 25.60 0.70 
0.95 56 56 1.000 10.000 9.998 25.60 0.75 
0.95 58 58 1.000 10.000 9.919 25.60 0.80 
0.95 59 59 1.000 10.000 9.951 25.60 0.85 
0.95 61 61 1.000 10.000 9.921 25.60 0.90 
0.95 63 63 1.000 10.000 9.962 25.60 0.95 
 
References 
Kupper, L. L. and Hafner, K. B. 1989. 'How Appropriate are Popular Sample Size Formulas?', The American 
     Statistician, Volume 43, No. 2, pp. 101-105. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true difference in population means. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Dist from Mean Diff to Limit(s) is the distance from the confidence limit(s) to the difference in sample 
     means. For two-sided intervals, it is also know as the precision, half-width, or margin of error. 
Target Dist from Mean Diff to Limit(s) is the value of the distance that is entered into the procedure. 
Actual Dist from Mean Diff to Limit(s) is the value of the distance that is obtained from the procedure. 
Pooled Standard Deviation is the standard deviation upon which the distance from mean difference to limit 
     calculations are based. 
Tolerance Probability is the probability that a future interval with sample size N and corresponding 
     confidence level will have a distance from the mean to the limit(s) that is less than or equal to the 
     specified distance. 
 
Summary Statements 
The probability is 0.70 that group sample sizes of 55 and 55 will produce a two-sided 95% 
confidence interval with a distance from the difference in means to the limits that is less 
than or equal to 9.994 if the pooled standard deviation is 25.60. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
 

 

N1 vs Tol. Prob. with Sp=25.60 C.L.=.95 Dist. to
Limit=9.962 N2=N1 2-Sided C.I.
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This plot shows the sample size of each group versus the precision for the two confidence levels. 
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Example 2 – Validation using Zar 
Zar (1984) pages 133-134 gives an example of a precision calculation for a confidence interval 
for the difference between two means when the confidence level is 95%, the pooled standard 
deviation is 0.720625 from a total sample size of 13, the precision is 0.5, and the tolerance 
probability is 0.90. The sample size for each group is determined to be 34.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference between Two 
Means with Tolerance Probability procedure window by clicking on Confidence Intervals, 
then Means, then Two Means with Tolerance Probability. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 
Tolerance Probability ..............................0.90 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Interval Type ...........................................Two-Sided 
Distance from Mean Diff to Limit(s).........0.5 
Standard Deviation Source .....................S from a Previous Sample 
S ..............................................................0.720625 
Total Sample Size of Previous Sample...13 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
 
    Target Actual   
    Dist from Dist from Pooled  
Confidence   Allocation Mean Diff Mean Diff Standard Tolerance 
Level N1 N2 Ratio to Limits to Limits Deviation Probability 
0.95 34 34 1.000 0.500 0.496 0.72 0.90 
 
Total sample size for estimate of pooled standard deviation from previous samples = 13.  
 

PASS also calculated the sample size in each group to be 34.  
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Chapter 475 

Group-Sequential 
Tests for Two 
Means 
Introduction 
Clinical trials are longitudinal. They accumulate data sequentially through time. The participants 
cannot be enrolled and randomized on the same day. Instead, they are enrolled as they enter the 
study. It may take several years to enroll enough patients to meet sample size requirements. 
Because clinical trials are long term studies, it is in the interest of both the participants and the 
researchers to monitor the accumulating information for early convincing evidence of either harm 
or benefit. This permits early termination of the trial.  

Group sequential methods allow statistical tests to be performed on accumulating data while a 
phase III clinical trial is ongoing. Statistical theory and practical experience with these designs 
have shown that making four or five interim analyses is almost as effective in detecting large 
differences between treatment groups as performing a new analysis after each new data value. 
Besides saving time and resources, such a strategy can reduce the experimental subject’s 
exposure to an inferior treatment and make superior treatments available sooner.  

When repeated significance testing occurs on the same data, adjustments have to be made to the 
hypothesis testing procedure to maintain overall significance and power levels. The landmark 
paper of Lan & DeMets (1983) provided the theory behind the alpha spending function approach 
to group sequential testing. This paper built upon the earlier work of Armitage, McPherson, & 
Rowe (1969), Pocock (1977), and O’Brien & Fleming (1979). PASS implements the methods 
given in Reboussin, DeMets, Kim, & Lan (1992) to calculate the power and sample sizes of 
various group sequential designs. 

This module calculates sample size and power for group sequential designs used to compare two 
treatment means. Other modules perform similar analyses for the comparison of proportions and 
survival functions. The program allows you to vary the number and times of interim tests, the 
type of alpha spending function, and the test boundaries. It also gives you complete flexibility in 
solving for power, significance level, sample size, or effect size. The results are displayed in both 
numeric reports and informative graphics.  
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Technical Details 
Suppose the means of two samples of N1 and N2 individuals will be compared at various stages 
of a trial using the  statistic: zk
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The subscript k indicates that the computations use all data that are available at the time of the kth 
interim analysis or kth look (k goes from 1 to K). This formula computes the standard z test that is 
appropriate when the variances of the two groups are different. The statistic, , is assumed to be 
normally distributed.  

zk

Spending Functions 
Lan and DeMets (1983) introduced alpha spending functions, ( )α τ , that determine a set of 
boundaries for the sequence of test statistics . These boundaries are the 
critical values of the sequential hypothesis tests. That is, after each interim test, the trial is 
continued as long as 

b b bK1 2, , ,L z z1 2 zK, , ,L

z bk < k . When z bk ≥ k , the hypothesis of equal means is rejected and the 
trial is stopped early.  

The time argumentτ either represents the proportion of elapsed time to the maximum duration of 
the trial or the proportion of the sample that has been collected. When elapsed time is being used 
it is referred to as calendar time. When time is measured in terms of the sample, it is referred to 
as information time. Since it is a proportion,τ can only vary between zero and one. 

Alpha spending functions have the characteristics: 
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( )

α

α α
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The last characteristic guarantees a fixed α  level when the trial is complete. That is,  

( ) ( )Pr z b or z b or or z bk k1 1 2 2≥ ≥ ≥ =L α τ  

This methodology is very flexible since neither the times nor the number of analyses must be 
specified in advance. Only the functional form of ( )α τ  must be specified.  

PASS provides five popular spending functions plus the ability to enter and analyze your own 
boundaries. These are calculated as follows: 
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3.  Alpha * time     ατ  
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4.  Alpha * time^1.5     ατ 3 2/  
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5.  Alpha * time^2      ατ 2
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6.  User Supplied 

A custom set of boundaries may be entered. 

The O’Brien-Fleming boundaries are commonly used because they do not significantly increase 
the overall sample size and because they are conservative early in the trial. Conservative in the 
sense that the means must be extremely different before statistical significance is indicated. The 
Pocock boundaries are nearly equal for all times. The Alpha*t boundaries use equal amounts of 
alpha when the looks are equally spaced. You can enter your own set of boundaries using the 
User Supplied option. 

Theory 
A detailed account of the methodology is contained in Lan & DeMets (1983), DeMets & Lan 
(1984), Lan & Zucker (1993), and DeMets & Lan (1994). The theoretical basis of the method will 
be presented here.  

Group sequential procedures for interim analysis are based on their equivalence to discrete 
boundary crossing of a Brownian motion process with drift parameter θ . The test statistics  

follow the multivariate normal distribution with means 

zk

θ τ k  and, for j k≤ , covariances 

τ τk / j . The drift parameter is related to the parameters of the z-test through the equation 
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Hence, the algorithm is as follows: 

1.  Compute boundary values based on a specified spending function and alpha value. 

2.  Calculate the drift parameter based on those boundary values and a specified power 
value. 

3.  Use the drift parameter and estimates of the other parameters in the above equation to 
calculate the appropriate sample size. 

Procedure Tabs 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Reports, Bnd Plot Axes, and Options tabs. To find out more 
about using the other tabs such as Axes/Legend, Plot Text, or Template, go to the Procedure 
Window chapter. 

Data Tab 
The Data tab contains the parameters associated with the z test such as the means, variances, 
sample sizes, alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Mean1, Mean2, Alpha, Power and Beta, N1 or N2. Under most 
situations, you will select either Power and Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run since power is equal to one minus beta.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 
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A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. For this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact they are equal. 

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R N1] 

where R is the Sample Allocation Ratio and [Y] is the first integer greater than or equal to Y. 
For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2=[R N1] where [Y] is the next integer 
greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided hypothesis is selected, the 
value of alpha is halved. Everything else remains the same. 

Note that the accepted procedure is to use Two Sided option unless you can justify using a one-
sided test.  
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Effect Size 

Mean1 
Enter value(s) for the mean of the first group under both hypotheses and the mean of the second 
group under the null hypothesis of equal means. Note that only the difference between the two 
means is used in the calculations. You may enter a range of values such as 10,20,30 or 0 to 100 
by 25. 

If you want to use a single difference rather than the two means, enter the value of the difference 
as Mean2 and zero for Mean1 (or vice versa). 

Mean2 
Enter value(s) for the mean of the second group under the alternative hypothesis. Note that only 
the difference between the two means is used in the calculations. You may enter a range of values 
such as 10,20,30 or 0 to 100 by 25. 

If you want to use a single difference rather than the two means, enter the value of the difference 
as Mean2 and zero for Mean1 (or vice versa). 

S1 (SD, Group 1) 
Enter an estimate of the standard deviation of group 1. The standard deviation must be a positive 
number. Refer to the chapter on Estimating the Standard Deviation for more information on 
estimating the standard deviation. Press the SD button to obtain a special window designed to 
help you obtain a realistic value for the standard deviation. 

Above all else, remember that the experience of consulting statisticians is that researchers tend to 
underestimate the standard deviation! 

S2 (SD, Group 2) 
Enter an estimate of the standard deviation of group 2. The standard deviation must be a positive 
number. Refer to the chapter on Estimating the Standard Deviation for more information on 
estimating the standard deviation. Press the SD button to obtain a special window designed to 
help you obtain a realistic value for the standard deviation.  

You can enter S1 here if you want to assume that the standard deviations are equal and use the 
value entered for S1. 

Look Details 
This box contains the parameters associated with Group Sequential Design such as the type of 
spending function, the times, and so on. 

Number of Looks 
This is the number of interim analyses (including the final analysis). For example, a five here 
means that four interim analyses will be run in addition to the final analysis. 

Boundary Truncation 
You can truncate the boundary values at a specified value. For example, you might decide that no 
boundaries should be larger than 4.0. If you want to implement a boundary limit, enter the value 
here. 

If you do not want a boundary limit, enter None here. 
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Spending Function 
Specify which alpha spending function to use. The most popular is the O'Brien-Fleming boundary 
that makes early tests very conservative. Select User Specified if you want to enter your own set 
of boundaries. 

Max Time 
This is the total running time of the trial. It is used to convert the values in the Times box to 
fractions. The units (months or years) do not matter, as long as they are consistent with those 
entered in the Times box. 

For example, suppose Max Time = 3 and Times = 1, 2, 3. Interim analyses would be assumed to 
have occurred at 0.33, 0.67, and 1.00. 

Times 
Enter a list of time values here at which the interim analyses will occur. These values are scaled 
according to the value of the Max Time option. 

For example, suppose a 48-month trial calls for interim analyses at 12, 24, 36, and 48 months. 
You could set Max Time to 48 and enter 12,24,36,48 here or you could set Max Time to 1.0 and 
enter 0.25,0.50,0.75,1.00 here.  

The number of times entered here must match the value of the Number of Looks. 

• Equally Spaced 
If you are planning to conduct the interim analyses at equally spaced points in time, you can 
enter Equally Spaced and the program will generate the appropriate time values for you. 

Informations 
You can weight the interim analyses on the amount of information obtained at each time point 
rather than on actual calendar time. If you would like to do this, enter the information amounts 
here. Usually, these values are the sample sizes obtained up to the time of the analysis. 

For example, you might enter 50, 76, 103, 150 to indicate that 50 individuals where included in 
the first interim analysis, 76 in the second, and so on. 

Upper and Lower Boundaries (Spending = User) 
If the Spending Function is set to User Supplied you can enter a set of lower test boundaries, one 
for each interim analysis. The lower boundaries should be negative and the upper boundaries 
should be positive. Typical entries are 4,3,3,3,2 and 4,3,2,2,2. 

• Symmetric 
If you only want to enter the upper boundaries and have them copied with a change in sign to 
the lower boundaries, enter Symmetric for the lower boundaries. 

Bnd Plot Axes Tab 
The Bnd Axes tab, short for Boundary Axes tab, allows the axes of the spending function plots to 
be set separately from those of the power plots. The options are identical to those of the Axes tab. 
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Options Tab 
The Options tab controls the convergence of the various iterative algorithms used in the 
calculations. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations to be run before the search for the criterion of interest 
(Alpha, Beta, etc.) is aborted. When the maximum number of iterations is reached without 
convergence, the criterion is left blank. 

Recommended: 500 (or more). 

Maximum Iterations (Lan-Demets algorithm) 
This is the maximum number of iterations used in the Lan-DeMets algorithm during its search 
routine. We recommend a value of at least 200. 

Tolerance 

Probability Tolerance 
During the calculation of the probabilities associated with a set of boundary values, probabilities 
less than this are assumed to be zero. 

We suggest a value of 0.00000000001. 

Power Tolerance 
This is the convergence level for the search for the spending function values that achieve a certain 
power. Once the iteration changes are less than this amount, convergence is assumed. We suggest 
a value of 0.0000001. 

If the search is too time consuming, you might try increasing this value. 

Alpha Tolerance 
This is the convergence level for the search for a given alpha value. Once the changes in the 
computed alpha value are less than this amount, convergence is assumed and iterations stop. We 
suggest a value of 0.0001. 

This option is only used when you are searching for alpha. 

If the search is too time consuming, you can try increasing this value. 
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Example 1 – Finding the Sample Size 
A clinical trial is to be conducted over a two-year period to compare the mean response of a new 
treatment with the current treatment. The current mean is 127 with a standard deviation of 55.88. 
The health community will be interested in the new treatment if the mean response rate is 
increased by 20%. So that the sample size requirements for different effect sizes can be 
compared, it is also of interest to compute the sample size at 10%, 30%, 40%, 50%, 60%, and 
70% increases in the response rates.  

Testing will be done at the 0.05 significance level and the power should be set to 0.10. A total of 
four tests are going to be performed on the data as they are obtained. The O’Brien-Fleming 
boundaries will be used.  

Find the necessary sample sizes and test boundaries assuming equal sample sizes per arm and 
two-sided hypothesis tests. 

We could enter these amounts directly into the Group Sequential Means window. Since the base 
mean is 127, a 20% increase would translate to a new mean response of 127(120/100) = 152.4. 
The other mean response rates could be computed similarly. However, to make the results more 
meaningful, we will scale the input by dividing by the current mean. The scaled standard 
deviation will be 100(55.88)/127 = 44.00. We set Mean1 to zero since we are only interested in 
the changes in Mean2. The values of Mean2 will then be 10, 20, 30, 40, 50, 60, and 70. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by clicking on Group-Sequential Tests, then Two Means. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Alternative Hypothesis ............................ Two-Sided 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................10 to 70 by 10 
S1 (Standard Deviation Group 1)............44 
S2 (Standard Deviation Group 2)............S1 
Number of Looks.....................................4 
Spending Function ..................................O’Brien-Fleming 
Times.......................................................Equally Spaced 
Max Time.................................................2 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.9005 415 415 0.0500 0.0995 0.00 10.00 44.00 44.00 
0.9012 104 104 0.0500 0.0988 0.00 20.00 44.00 44.00 
0.9058 47 47 0.0500 0.0942 0.00 30.00 44.00 44.00 
0.9012 26 26 0.0500 0.0988 0.00 40.00 44.00 44.00 
0.9071 17 17 0.0500 0.0929 0.00 50.00 44.00 44.00 
0.9116 12 12 0.0500 0.0884 0.00 60.00 44.00 44.00 
0.9170 9 9 0.0500 0.0830 0.00 70.00 44.00 44.00 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from groups 1 and 2. 
Alpha is the probability of rejecting a true null hypothesis in at least one of the sequential tests. 
Beta is the probability of accepting a false null hypothesis at the conclusion of all tests. 
Mean1 is the mean of populations 1 and 2 under the null hypothesis of equality. 
Mean2 is the mean of population 2 under the alternative hypothesis. The mean of population 1 is unchanged. 
S1 and S2 are the population standard deviations of groups 1 and 2. 
 
Summary Statements 
Sample sizes of 415 and 415 achieve 90% power to detect a difference of 10.00 between the group 
means with standard deviations of 44.00 and 44.00 at a significance level (alpha) of 0.0500 
using a two-sided z-test. These results assume that 4 sequential tests are made using the 
O'Brien-Fleming spending function to determine the test boundaries. 
 

This report shows the values of each of the parameters, one scenario per row. Note that 104 
participants in each arm of the study are required to meet the 90% power requirement when the 
mean increase is 20%. 
The values from this table are in the chart below. Note that this plot actually occurs further down 
in the report. 

Plots Section 
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This plot shows that a large increase in sample size is necessary to test mean differences below 
20%. 
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Details Section 
 
Details when Spending = O'Brien-Fleming, N1 = 415, N2 =415, S1 = 44.00, S2 = 44.00, Diff = -10.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.50 -4.33263 4.33263 0.000015 0.000015 0.000015 0.003512 0.003512  
2 1.00 -2.96311 2.96311 0.003045 0.003036 0.003051 0.254998 0.258510  
3 1.50 -2.35902 2.35902 0.018323 0.016248 0.019299 0.427601 0.686111 
4 2.00 -2.01406 2.01406 0.044003 0.030701 0.050000 0.214371 0.900483  
Drift 3.27383 
 

This report shows information about the individual interim tests. One report is generated for each 
scenario. 

Look 
These are the sequence numbers of the interim tests. 

Time 
These are the time points at which the interim tests are conducted. Since the Max Time was set to 
2 (for two years), these time values are in years. Hence, the first interim test is at half a year, the 
second at one year, and so on. 

We could have set Max Time to 24 so that the time scale was in months. 

Lower and Upper Boundary 
These are the test boundaries. If the computed value of the test statistic z is between these values, 
the trial should continue. Otherwise, the trial can be stopped.  

Nominal Alpha 
This is the value of alpha for these boundaries if they were used for a single, standalone, test. 
Hence, this is the significance level that must be found for this look in a standard statistical 
package that does not adjust for multiple looks. 

Inc Alpha 
This is the amount of alpha that is spent by this interim test. It is close to, but not equal to, the 
value of alpha that would be achieved if only a single test was conducted. For example, if we 
lookup the third value, 2.35902, in normal probability tables, we find that this corresponds to a 
(two-sided) alpha of 0.0183. However, the entry is 0.0162. The difference is due to the correction 
that must be made for multiple tests. 

Total Alpha 
This is the total amount of alpha that is used up to and including the current test.  

Inc Power 
These are the amounts that are added to the total power at each interim test. They are often called 
the exit probabilities because they give the probability that significance is found and the trial is 
stopped, given the alternative hypothesis.  

Total Power 
These are the cumulative power values. They are also the cumulative exit probabilities. That is, 
they are the probability that the trial is stopped at or before the corresponding time. 

Drift 
This is the value of the Brownian motion drift parameter. 
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Boundary Plots 
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This plot shows the interim boundaries for each look. This plot shows very dramatically that the 
results must be extremely significant at early looks, but that they are near the single test boundary 
(1.96 and -1.96) at the last look. 

Example 2 – Finding the Power 
A clinical trial is to be conducted over a two-year period to compare the mean response of a new 
treatment with the current treatment. The current mean is 127 with a standard deviation of 55.88. 
The health community will be interested in the new treatment if the mean response rate is 
increased by 20%. The researcher wishes to calculate the power of the design at sample sizes 20, 
60, 100, 140, 180, and 220. Testing will be done at the 0.01, 0.05, 0.10 significance levels and the 
overall power will be set to 0.10. A total of four tests are going to be performed on the data as 
they are obtained. The O’Brien-Fleming boundaries will be used. Find the power of these sample 
sizes and test boundaries assuming equal sample sizes per arm and two-sided hypothesis tests. 

Proceeding as in Example1, we decide to translate the mean and standard deviation into a percent 
of mean scale. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by clicking on Group-Sequential Tests, then Two Means. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.01, 0.05, 0.10 
N1 (Sample Size Group 1) ......................20 to 220 by 40 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Alternative Hypothesis ............................Two-Sided 
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Data Tab (continued) 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................20 
S1 (Standard Deviation Group 1)............44 
S2 (Standard Deviation Group 2)............S1 
Number of Looks.....................................4 
Spending Function ..................................O’Brien-Fleming 
Times.......................................................Equally Spaced 
Max Time.................................................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.9005 415 415 0.0500 0.0995 0.00 10.00 44.00 44.00 
0.1256 20 20 0.0100 0.8744 0.00 20.00 44.00 44.00 
0.4605 60 60 0.0100 0.5395 0.00 20.00 44.00 44.00 
0.7335 100 100 0.0100 0.2665 0.00 20.00 44.00 44.00 
0.8871 140 140 0.0100 0.1129 0.00 20.00 44.00 44.00 
0.9572 180 180 0.0100 0.0428 0.00 20.00 44.00 44.00 
0.9851 220 220 0.0100 0.0149 0.00 20.00 44.00 44.00 
0.2948 20 20 0.0500 0.7052 0.00 20.00 44.00 44.00 
0.6929 60 60 0.0500 0.3071 0.00 20.00 44.00 44.00 
0.8897 100 100 0.0500 0.1103 0.00 20.00 44.00 44.00 
0.9650 140 140 0.0500 0.0350 0.00 20.00 44.00 44.00 
0.9898 180 180 0.0500 0.0102 0.00 20.00 44.00 44.00 
0.9972 220 220 0.0500 0.0028 0.00 20.00 44.00 44.00 
0.4094 20 20 0.1000 0.5906 0.00 20.00 44.00 44.00 
0.7909 60 60 0.1000 0.2091 0.00 20.00 44.00 44.00 
0.9368 100 100 0.1000 0.0632 0.00 20.00 44.00 44.00 
0.9827 140 140 0.1000 0.0173 0.00 20.00 44.00 44.00 
0.9956 180 180 0.1000 0.0044 0.00 20.00 44.00 44.00 
0.9989 220 220 0.1000 0.0011 0.00 20.00 44.00 44.00 
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These data show the power for various sample sizes and alphas. It is interesting to note that once 
the sample size is greater than 150, the value of alpha makes little difference on the value of 
power. 
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Example 3 – Effect of Number of Looks 
Continuing with examples one and two, it is interesting to determine the impact of the number of 
looks on power. PASS allows only one value for the Number of Looks parameter per run, so it 
will be necessary to run several analyses. To conduct this study, set alpha to 0.05, N1 to 100, and 
leave the other parameters as before. Run the analysis with Number of Looks equal to 1, 2, 3, 4, 
6, 8, 10, and 20. Record the power for each run. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by clicking on Group-Sequential Tests, then Two Means. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example3 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................100 
N2 (Sample Size Group 2) ......................  Use R 
R (Sample Allocation Ratio)....................1.0 
Alternative Hypothesis ............................Two-Sided 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................20 
S1 (Standard Deviation Group 1)............44 
S2 (Standard Deviation Group 2)............S1 
Number of Looks.....................................1 (Also run with 2, 3, 4, 6, 8, 10, and 20) 
Spending Function ..................................O’Brien-Fleming 
Times.......................................................Equally Spaced 
Max Time ................................................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 Looks 
0.8951 100 100 0.0500 0.1049 0.00 20.00 44.00 44.00 1 
0.8941 100 100 0.0500 0.1059 0.00 20.00 44.00 44.00 2 
0.8916 100 100 0.0500 0.1084 0.00 20.00 44.00 44.00 3 
0.8897 100 100 0.0500 0.1103 0.00 20.00 44.00 44.00 4 
0.8871 100 100 0.0500 0.1129 0.00 20.00 44.00 44.00 6 
0.8856 100 100 0.0500 0.1144 0.00 20.00 44.00 44.00 8 
0.8845 100 100 0.0500 0.1155 0.00 20.00 44.00 44.00 10 
0.8820 100 100 0.0500 0.1180 0.00 20.00 44.00 44.00 20 
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This analysis shows how little the number of looks impact the power of the design. The power of 
a study with no interim looks is 0.8951. When twenty interim looks are made, the power falls just 
0.0131, to 0.8820—a very small change. 

Example 4 – Studying a Boundary Set 
Continuing with the previous examples, suppose that you are presented with a set of boundaries 
and want to find the quality of the design (as measured by alpha and power). This is easy to do 
with PASS. Suppose that the analysis is to be run with five interim looks at equally spaced time 
points. The upper boundaries to be studied are 3.5, 3.5, 3.0, 2.5, 2.0. The lower boundaries are 
symmetric. The analysis would be run as follows. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by clicking on Group-Sequential Tests, then Two Means. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example4 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 (will be calculated from boundaries) 
N1 (Sample Size Group 1) ......................100 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Alternative Hypothesis ............................Two-Sided 
Mean1 (Mean of Group 1).......................0 
Mean2 (Mean of Group 2).......................20 
S1 (Standard Deviation Group 1)............44 
S2 (Standard Deviation Group 2)............S1 
Number of Looks.....................................5 
Spending Function ..................................User Supplied 
Max Time.................................................2 
Times.......................................................Equally Spaced 
Upper Boundaries ...................................3.5, 3.5, 3.0, 2.5, 2.0 
Lower Boundaries ...................................Symmetric 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.8898  100 100 0.0482 0.1102 0.00 20.00 44.00 44.00 

 
Details when Spending = User Supplied, N1 = 100, N2 =100, S1 = 44.00, S2 = 44.00, Diff = -20.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.40 -3.50000 3.50000 0.000465 0.000465 0.000465 0.019576 0.019576  
2 0.80 -3.50000 3.50000 0.000465 0.000408 0.000874 0.058835 0.078411  
3 1.20 -3.00000 3.00000 0.002700 0.002410 0.003284 0.232486 0.310897  
4 1.60 -2.50000 2.50000 0.012419 0.010331 0.013615 0.339966 0.650863  
5 2.00 -2.00000 2.00000 0.045500 0.034542 0.048157 0.238928 0.889791  
Drift 3.21412 
 

The power for this design is about 0.89. This value depends on both the boundaries and the 
sample size. The alpha level is 0.048157. This value only depends on the boundaries. 

Example 5 – Validation using O’Brien-Fleming 
Boundaries 
Reboussin (1992) presents an example for normally distributed data for a design with two-sided 
O’Brien-Fleming boundaries, looks = 5, alpha = 0.05, beta = 0.10, Mean1 = 220, Mean2 = 200, 
standard deviation = 30. They compute a drift of 3.28 and a sample size of 48.41 per group. The 
upper boundaries are: 4.8769, 3.3569, 2.6803, 2.2898, 2.0310.  

To test that PASS provides the same result, enter the following. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by clicking on Group-Sequential Tests, then Two Means. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example5 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Alternative Hypothesis ............................Two-Sided 
Mean1 (Mean of Group 1).......................220 
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Data Tab (continued) 
Mean2 (Mean of Group 2).......................200 
S1 (Standard Deviation Group 1)............30 
S2 (Standard Deviation Group 2)............S1 
Number of Looks.....................................5 
Spending Function ..................................O’Brien-Fleming 
Max Time.................................................1 
Times.......................................................Equally Spaced 
Upper Boundaries ...................................Ignored 
Lower Boundaries ...................................Ignored 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.903623 49 49 0.050000 0.096377 220.00 200.00 30.00 30.00 
 
Details when Spending = O'Brien-Fleming, N1 = 49, N2 =49, S1 = 30.00, S2 = 30.00, Diff = 20.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.20 -4.87688 4.87688 0.000001 0.000001 0.000001 0.000336 0.000336  
2 0.40 -3.35695 3.35695 0.000788 0.000787 0.000788 0.101727 0.102062  
3 0.60 -2.68026 2.68026 0.007357 0.006828 0.007616 0.350673 0.452735  
4 0.80 -2.28979 2.28979 0.022034 0.016807 0.024424 0.299186 0.751921  
5 1.00 -2.03100 2.03100 0.042255 0.025576 0.050000 0.151702 0.903623  
Drift 3.29983 
 

The slight difference in the power and the drift parameter is attributable to the rounding of the 
sample size from 48.41 to 49. 

Example 6 – Validation with Pocock Boundaries 
Reboussin (1992) presents an example for normally distributed data for a design with two-sided 
Pocock boundaries, looks = 5, alpha = 0.05, beta = 0.10, Mean1 = 220, Mean2 = 200, standard 
deviation = 30. They compute a drift of 3.55 and a sample size of 56.71 per group. The upper 
boundaries are: 2.4380, 2.4268, 2.4101, 2.3966, and 2.3859. 

To test that PASS provides the same result, enter the following. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by clicking on Group-Sequential Tests, then Two Means. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example6 from the 
Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Alternative Hypothesis ............................Two-Sided 
Mean1 (Mean of Group 1).......................220 
Mean2 (Mean of Group 2).......................200 
S1 (Standard Deviation Group 1)............30 
S2 (Standard Deviation Group 2)............S1 
Number of Looks.....................................5 
Spending Function ..................................Pocock 
Max Time ................................................1 
Times.......................................................Equally Spaced 
Upper Boundaries ................................... Ignored 
Lower Boundaries ................................... Ignored 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.903263 57 57 0.050000 0.096737 220.00 200.00 30.00 30.00 
 
Details when Spending = O'Brien-Fleming, N1 = 49, N2 =49, S1 = 30.00, S2 = 30.00, Diff = 20.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.20 -2.43798 2.43798 0.014770 0.014770 0.014770 0.198712 0.198712  
2 0.40 -2.42677 2.42677 0.015234 0.011387 0.026157 0.260597 0.459308  
3 0.60 -2.41014 2.41014 0.015946 0.009269 0.035426 0.214118 0.673426  
4 0.80 -2.39658 2.39658 0.016549 0.007816 0.043242 0.143792 0.817218  
5 1.00 -2.38591 2.38591 0.017037 0.006758 0.050000 0.086045 0.903263  
Drift 3.55903 
 

The slight difference in the power and the drift parameter is attributable to the rounding of the 
sample size from 56.71 to 57. 
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Chapter 480 

Inequality Tests 
for Two Means in a 
Cluster-
Randomized 
Design 
Introduction 
Cluster Randomization refers to the situation in which the means of two groups, made up of M 
clusters of N individuals each, are to be tested using a modified t test. In this case, the basic 
experimental unit is a cluster instead of an individual.  

Technical Details 
Our formulation comes from Donner and Klar (1996). Denote an observation by where i = 
1,2 is the group, j = 1,2,…,M is a cluster in group i, and k = 1,2,…N is an individual in cluster j of 
group i. Each cluster mean,

Xijk

Xij , has a population mean ofμi  and variance  
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where  is the variance of  and σ 2 Xijk ρ  is the intracluster correlation coefficient. This correlation 
made be thought of as the simple correlation between any two observations on the same individual. 
It may also be thought of as the proportion of total variance in the observations that can be 
attributed to difference between clusters. 
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The power for the two-sided, two-sample t test using the above formulation is calculated by 

Power P t t df P t t df= − ≤ + ≤ −1 2 2( , , ) ( , ,/ /α α )λ λ  

where  

df = 2(M-1) 
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/  
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−μ μ
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1 2  

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data tab. To find out more about using the other tabs such as 
Axes/Legend/Grid, Plot Text, or Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are D, S, M, N, Alpha, and Power and Beta.  

Under most situations, you will select either Power and Beta to calculate power or N to calculate 
sample size. 

Note that the value selected here always appears as the vertical axis on the charts. 

The program is set up to evaluate power directly. For the other parameters, a search is made using 
an iterative procedure until an appropriate value is found.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 
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If your only interest is in determining the appropriate sample size for a confidence interval, set 
beta to 0.5. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

M (Number of Clusters) 
Enter a value (or range of values) for the number of clusters, M, per group. 

You may enter a range of values such as 2,4,6 or 2 to 12 by 2. 

N (Individuals Per Cluster) 
Enter a value (or range of values) for the number of individuals, N, per cluster. 

You may enter a range of values such as 100,200,300 or 100 to 300 by 50. 

Effect Size – Mean Difference 

D (Difference Between Means) 
This is the absolute value of the difference between the two group means. This value, divided by 
the standard deviation, becomes the effect size. 

Effect Size – Standard Deviation 

S (Standard Deviation) 
Enter a value (or range of values) for the standard deviation. This value is only used as the divisor 
of the effect size. Hence, if you do not know the standard deviation, you can enter a one here and 
use effect size units for D, the difference.  

Remember, this is the standard deviation that occurs when the same individual is measured over 
and over. 

Effect Size – Intracluster Correlation 

R (Intracluster Correlation) 
Enter a value (or range of values) for the intracluster correlation. This correlation made be thought 
of as the simple correlation between any two observations on the same individual. It may also be 
thought of as the proportion of total variance in the observations that can be attributed to difference 
between clusters.  

Although the actual range for this value is from zero to one, typical values range from 0.002 to 
0.010. 
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Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. A two-sided hypothesis states that the values 
are not equal without specifying which is greater. If you do not have any special reason to do 
otherwise, you should use the two-sided option.  

When a two-sided hypothesis is selected, the value of alpha is split in half. Everything else 
remains the same.  

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Power 
Suppose that a study is to be conducted in which D = 0.2; S = 1.0; R = 0.01; M = 6; Alpha = 0.01, 
0.05; and N = 50 to 300 by 50 and beta is to be calculated.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a Cluster-Randomized 
Design procedure window by clicking on Means, then Two Means, then Independent, then 
Inequality Tests, then Cluster-Randomized Designs. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find parameter 
Alpha .......................................................0.01, 0.05 
M (Number of Clusters)...........................6 
N (Individuals Per Cluster) ......................50 to 300 by 50 
D (Difference Between Means)...............0.2 
S (Standard Deviation)............................1.0 
R (Intracluster Correlation)......................0.01 
Alternative Hypothesis ............................Two-Sided 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
 M N  R S 
 Number of Individuals D Intracluster Standard 
Power Clusters Per Clusters Difference Correlation  Deviation Alpha Beta 
0.18754 6 50 0.200 0.01000 1.000 0.01000 0.81246  
0.44200 6 50 0.200 0.01000 1.000 0.05000 0.55800  
0.30320 6 100 0.200 0.01000 1.000 0.01000 0.69680  
0.60128 6 100 0.200 0.01000 1.000 0.05000 0.39872  
0.37332 6 150 0.200 0.01000 1.000 0.01000 0.62668  
0.67912 6 150 0.200 0.01000 1.000 0.05000 0.32088  
0.41910 6 200 0.200 0.01000 1.000 0.01000 0.58090  
0.72389 6 200 0.200 0.01000 1.000 0.05000 0.27611  
0.45101 6 250 0.200 0.01000 1.000 0.01000 0.54899  
0.75259 6 250 0.200 0.01000 1.000 0.05000 0.24741  
0.47443 6 300 0.200 0.01000 1.000 0.01000 0.52557  
0.77242 6 300 0.200 0.01000 1.000 0.05000 0.22758 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
M is the number of clusters per group. There are two groups. 
N is the number of individuals per cluster. 
D is difference between the group means. 
R is intracluster correlation. 
S is standard deviation within an individual. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
A sample size of 6 clusters per group with 50 individuals per cluster achieves 19% power to 
detect a difference of 0.200 between the group means when the standard deviation is 1.000 and 
the intracluster correlation is 0.01000 using a two-sided T-test with a significance level of 
0.01000. 
 

This report shows the power for each of the scenarios.  

Plots Section 
 

 

Power vs N by Alpha with D=0.200 R=0.010 S=1.000
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This plot shows the power versus the cluster size for the two alpha values. 
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Example 2 – Validation using Donner and Klar 
Donner and Klar (1996) page 436 provide a table in which several power values are calculated. 
When alpha is 0.05, D is 0.2, R is 0.001, S is 1.0, and M is 3, they calculate a power of 0.43 for an 
N of 100, 0.79 for an N of 300, and 0.91 for an N of 500.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a Cluster-Randomized 
Design procedure window by clicking on Means, then Two Means, then Independent, then 
Inequality Tests, then Cluster-Randomized Designs. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find parameter 
Alpha .......................................................0.05 
M (Number of Clusters)...........................3 
N (Individuals Per Cluster) ......................100 300 500 
D (Difference Between Means)...............0.2 
S (Standard Deviation)............................1.0 
R (Intracluster Correlation)......................0.001 
Alternative Hypothesis ............................Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
 M N  R S 
 Number of Individuals D Intracluster Standard 
Power Clusters Per Clusters Difference Correlation  Deviation Alpha Beta 
0.43008 3 100 0.200 0.00100 1.000 0.05000 0.56992  
0.79236 3 300 0.200 0.00100 1.000 0.05000 0.20764  
0.90905 3 500 0.200 0.00100 1.000 0.05000 0.09095 
 

As you can see, PASS has calculated the same power values as Donner and Klar (1996).  
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Chapter 490 

Inequality Tests 
for Paired Means 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of several statistical tests of the null 
hypothesis that the difference between two correlated means is equal to a specific value versus the 
alternative that it is greater than, less than, or not-equal to that value. The paired t-test is commonly 
used in this situation. Other tests have been developed for the case when the data are not normally 
distributed. These additional tests include the Wilcoxon signed-ranks test, the sign test, and the 
computer-intensive bootstrap test.  

Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other, often 
demographic, variables. Hypothesis tests on paired data can be analyzed by considering the 
differences between the paired items. The distribution of differences is usually symmetric. In fact, 
the distribution must be symmetric if the individual distributions of the two items are identical. 
Hence, the paired t-test and the Wilcoxon signed-rank test are appropriate for paired data even when 
the distributions of the individual items are not normal. 

The details of the power analysis of the paired t-test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 

Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify the test procedure and the test statistic. This includes the significance level, sample 
size, and underlying data distributions. 
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2. Generate a random sample  from the distribution specified by the X X Xn1 2, , ,K
alternative hypothesis. Calculate the test statistic from the simulated data and determine if 
the null hypothesis is accepted or rejected. These samples are used to calculate the power of 
the test. In the case of paired data, the individual values are simulated as the difference 
between two other random variables. These samples are constructed so that they exhibit a 
certain amount of correlation. 

3. Generate a random sample  from the distribution specified by the Y Y Yn1 2, , ,K null 
hypothesis. Calculate the test statistic from the simulated data and determine if the null 
hypothesis is accepted or rejected. These samples are used to calculate the significance-
level of the test. In the case of paired data, the individual values are simulated as the 
difference between two other random variables. These samples are constructed so that they 
exhibit a certain amount of correlation. 

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Simulating Paired Distributions 
Paired data occur when two observations are correlated. Examples of paired designs are pre – post 
designs, cross-over designs, and matched pair designs.  

In order to simulate paired data, the simulation should mimic the actual data generation process as 
closely as possible. Since paired data are analyzed by creating the individual difference between 
each pair, the simulation should also create data as the difference between two variates. Paired data 
exhibit a correlation between the two variates. As this correlation between the variates increases, the 
variance of the difference decreases. Thus it is important not only to specify the distributions of the 
two variates that will be differenced, but to also specify their correlation. 

Obtaining paired samples from arbitrary distributions with a set correlation is difficult because the 
joint, bivariate distribution must be specified and simulated. Rather than specify the bivariate 
distribution, PASS requires the specification of the two marginal distributions and the correlation 
between them. 

Monte Carlo samples with given marginal distributions and correlation are generated using the 
method suggested by Gentle (1998). The method begins by generating a large population of random 
numbers from the two distributions. Each of these populations is evaluated to determine if their 
means are within a small relative tolerance (0.0001) of the target mean. If the actual mean is not 
within the tolerance of the target mean, individual members of the population are replaced with new 
random numbers if the new random number moves the mean towards its target. Only a few hundred 
such swaps are required to bring the actual mean to within tolerance of the target mean.  

The next step is to obtain the target correlation. This is accomplished by permuting one of the 
populations until they have the desired correlation.  

The above steps provide a large pool of random numbers that exhibit the desired characteristics. 
This pool is then sampled at random using the uniform distribution to obtain the random numbers 
used in the simulation.  
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This algorithm may be stated as follows. 

1. Draw individual samples of size M from the two distributions where M is a large number, 
usually over 10,000. Adjust these samples so that they have the specified mean and 
standard deviation. Label these samples A and B. Create an index of the values of A and B 
according to the order in which they are generated. Thus, the first value of A and the first 
value of B are indexed as one, the second values of A and B are indexed as two, and so on 
up to the final set which is indexed as M. 

2. Compute the correlation between the two generated variates. 

3. If the computed correlation is within a small tolerance (usually less than 0.001) of the 
specified correlation, go to step 7. 

4. Select two indices (I and J) at random using uniform random numbers.  

5. Determine what will happen to the correlation if  is swapped with . If the swap will 
result in a correlation that is closer to the target value, swap the indices and proceed to 
step 6. Otherwise, go to step 4. 

BI BJ

6. If the computed correlation is within the desired tolerance of the target correlation, go to 
step 7. Otherwise, go to step 4. 

7. End with a population with the required marginal distributions and correlation.  

Now, to complete the simulation, random samples of the designated size are drawn from this 
population.  

Test Statistics 
This section describes the test statistics that are available in this procedure. Note that these test 
statistics are computed on the differences. Thus, when the equation refers to an X value, this X 
value is assumed to be a difference between two individual variates. 

One-Sample t-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 
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and M0 is the value of the difference hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps. 

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to 
their absolute values.  

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 
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where ti represents the number of times the ith value occurs. 

4. Compute the z value using 
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For cases when n is less than 38, the significance level is found from a table of exact probabilities 
for the Wilcoxon test. When n is greater than or equal to 38, the significance of the test statistic is 
determined by computing the p-value using the standard normal distribution. If this p-value is less 
than a specified level (usually 0.05), the null hypothesis is rejected in favor of the alternative 
hypothesis. Otherwise, no conclusion can be reached. 

Sign Test  
The sign test is popular because it is simple to compute. It assumes that the data follow the same 
distribution. The test is computed using the following steps.  

1. Count the number of values strictly greater than M0. Call this value X. 

2. Count the number of values strictly less than M0. Call this value Y. 

3. Set m = X + Y. 

4. Under the null hypothesis, X is distributed as a binomial random variable with a 
proportion of 0.5 and sample size of m.  

The significance of X is calculated using binomial probabilities. 

Bootstrap Test  
The one-sample bootstrap procedure for testing whether the mean is equal to a specific value is 
given in Efron & Tibshirani (1993) pages 224-227. The bootstrap procedure is as follows.  

1. Compute the mean of the sample. Call it X . 
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2. Compute the t-value using the standard t-test. The formula for this computation is 

t X M
sX

X

=
− 0

 

3. Draw a random, with-replacement sample of size n from the original X values. Call this 
sample .  Y Y Yn1 2, , ,L

4. Compute the t-value of this bootstrap sample using the formula 

t Y X
sY

Y

=
−

 

5. For a two-tailed test, if t tY > x  then add one to a counter variable A. 

6. Repeat steps 3 – 5 B times. B may be anywhere from 100 to 10,000. 

7. Compute the p-value of the bootstrap test as (A + 1) / (B + 1) 

8. Steps 1 – 7 complete one simulation iteration. Repeat these steps M times, where M is the 
number of simulations. The power and significance level is equal to the percent of the 
time the p-value is less than the nominal alpha of the test. 

Note that the bootstrap test is a time-consuming test to run, especially if you set B to a value 
larger than 100.  

The Problem of Differing Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, note that although the shape parameters are 
constant, the standard deviations are not. Thus the null and alternatives not only have different 
means, but different standard deviations! 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data and Options tabs. To find out more about using the other tabs such as Axes/Legend/Grid, 
Plot Text, or Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that will be of interest. 

Solve For 

Find (Solve For) 
This option specifies whether you want to find Power or N from the simulation. Select Power 
when you want to estimate the power of a certain scenario. Select N when you want to determine 
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the sample size needed to achieve a given power and alpha error level. Finding N is very 
computationally intensive, and so it may take a long time to complete. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.   

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of subjects in the study. 
The paired design assumes that a pair of observations will be obtained from each subject. Thus 
there will be 2N observations simulated, resulting in N differences.  

This value must be an integer greater than one. You may enter a list of values using the syntax 50 
100 150 200 250 or 50 to 250 by 50.  

Test 

Test Type 
Specify which test statistic (t-test, Wilcoxon test, sign test, or bootstrap test) is to be simulated. 
Although the t-test is the most commonly used test statistic, it is based on assumptions that may 
not be viable in many situations. For your data, you may find that one of the other tests is more 
accurate (actual alpha = target alpha) and more precise (better power). 

Note that the bootstrap test is computationally intensive, so it can be very slow to calculate. 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0: Diff = Diff0. 
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Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Difference <> Diff0 
This is the most common selection. It yields a two-tailed test. Use this option when you are 
testing whether the mean is different from a specified value Diff0, but you do not want to 
specify beforehand whether it is smaller or larger. Most scientific journals require two-tailed 
tests. 

• Difference < Diff0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is less 
than Diff0. 

• Difference > Diff0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is 
greater than Diff0. Note that this option could be used for a non-inferiority test.  

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  
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Effect Size 

Item A (and B) Distribution|H0 
These options specify the distributions of the two items making up the pair under the null 
hypothesis, H0. The difference between the means of these two distributions is the difference that 
is tested, Diff0.  

Usually, you will want Diff0 = 0. This zero difference is specified by entering M0 for the mean 
parameter in each of the distributions and then entering an appropriate value for the M0 
parameter below.  

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to test whether the mean of a normal distributed variable is five, you could enter N(5, S) 
or N(M0, S) here. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Item A (and B) Distribution|H1 
These options specify the distributions of the two items making up the pair under the alternative 
hypothesis, H1. The difference between the means of these two distributions is the difference that 
is assumed to be the true value of the difference. That is, this is the difference at which the power 
is computed. 
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Usually, the mean difference is specified by entering M1 for the mean parameter in the 
distribution expression for item A and M0 for the mean parameter in the distribution expression 
for item B. The mean difference under H1 then becomes the value of M1 – M0.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean under 
the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for the M0 in the four distribution specifications given above. M0 is 
intended to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for the M1 in the four distribution specifications given above. M1 is 
intended to be the value of the mean hypothesized by the alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 
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Effect Size – Distribution Parameters 

R (Correlation of Items A & B) 
Specify the value of the correlation between items (variates) A and B of the pair.  

Since this is a correlation, it must be between -1 and 1. However, some distributions (such as the 
multinomial distribution) have a maximum possible correlation that is far less than one. 

Typical values are between 0 and 0.4. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Bootstrap Iterations  

Bootstrap Iterations 
Specify the number of iterations used in the bootstrap hypothesis test. This value is only used if 
the bootstrap test is displayed on the reports. The running time of the procedure depends heavily 
on the number of iterations specified here.  

Recommendations by authors of books discussing the bootstrap are from 100 to 10,000. If you 
enter a large (greater than 500) value, the simulation may take several hours to run. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Populations of at least 10,000 should be used. Also, the value should be about twice the number 
of simulations. You can enter Automatic and an appropriate value will be calculated. 

Note that values over 50,000 may take a long time to permute to achieve the target means and 
correlation. 

Correlation 

Maximum Switches 
This option specifies the maximum number of index switches that can be made while searching 
for a permutation of item B that yields a correlation within the specified range. A value near 
5,000,000 may be necessary when the correlation is near one.  
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Correlation Tolerance 
Specify the amount above and below the target correlation that will still let a particular index-
permutation to be selected for the population. For example, if you have selected a correlation of 
0.3 and you set this tolerance to 0.001, then only populations with a correlation between 0.299 
and 0.301 will be used. The recommended is 0.001 or smaller. Valid values are between 0 and 
0.999. 

Example 1 – Power at Various Sample Sizes 
Researchers are planning a pre-post experiment to test whether the difference in response to a 
certain drug is different from zero. The researchers will use a paired t-test with an alpha level of 
0.05. They want to compare the power at sample sizes of 50, 100, and 150 when the shift in the 
means is 0.6 from pre-test to post-test. They assume that the data are normally distributed with a 
standard deviation of 2 and that the correlation between the pre-test and post-test values is 0.20. 
Since this is an exploratory analysis, they set the number of simulation iterations to 2000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Paired Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Correlated (Paired), then Inequality 
Tests, then Specify using Differences (Simulation). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................50 100 150 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................2000 
Item A Distribution|H0 .............................N(M0 S) 
Item B Distribution|H0 .............................N(M0 S) 
Item A Distribution|H1 .............................N(M0 S) 
Item B Distribution|H1 .............................N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................0.6 
S ..............................................................2 
R (Correlation of Items A & B) ................0.2 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M0 S) 
H1 Dist'n: Normal(M0 S) - Normal(M1 S) 
Test Statistic: Paired T-Test 
 
  H0 H1 Corr Target Actual   
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S   
0.393 50 0.0 -0.6 0.200 0.050 0.055 0.608 0.0 0.6 2.0   
(0.021) [0.371 0.414]    (0.010) [0.045 0.064]    

  
0.734 100 0.0 -0.6 0.200 0.050 0.050 0.266 0.0 0.6 2.0   
(0.019) [0.715 0.753]    (0.010) [0.040 0.060]     
 
0.808 150 0.0 -0.6 0.200 0.050 0.058 0.193 0.0 0.6 2.0   
(0.017) [0.790 0.825]    (0.010) [0.048 0.068]     
 
Notes: 
Number of Monte Carlo Samples: 2000.   Simulation Run Time: 19.33 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Diff0 is the paired-difference mean (A-B) assuming the null hypothesis, H0. This is the value being tested. 
Diff1 is the paired-difference mean (A-B) assuming the alternative hypothesis, H1. This is the true value. 
R is the correlation between the paired items. 
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
 
Summary Statements 
A sample size of 50 achieves 39% power to detect a difference of -0.6 between the null 
hypothesis mean difference of 0.0 and the actual mean difference of -0.6 at the 0.050 
significance level (alpha) using a two-sided Paired T-Test. These results are based on 2000 
Monte Carlo samples from the null distribution: Normal(M0 S) - Normal(M0 S) and the alternative 
distribution: Normal(M0 S) - Normal(M1 S). 
 
Plots Section 

Power vs N with M0=0.0 M1=-0.6 S=2.0 Alpha=0.05
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  
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The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 

Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Paired Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Correlated (Paired), then Inequality 
Tests, then Specify using Differences (Simulation). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................2000 
Item A Distribution|H0 .............................N(M0 S) 
Item B Distribution|H0 .............................N(M0 S) 
Item A Distribution|H1 .............................N(M0 S) 
Item B Distribution|H1 .............................N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................0.6 
S ..............................................................2 
R (Correlation of Items A & B) ................0.2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results of Search for N 
 

  H0 H1 Corr Target Actual   
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S   
0.885 193 0.0 -0.6 0.200 0.050 0.057 0.115 0.0 0.6 2.0   
(0.016) [0.869 0.901]    (0.010) [0.046 0.067]     
Notes: 
Number of Monte Carlo Samples: 2000.   Simulation Run Time: 95.53 seconds. 

   
The required sample size of 193 achieved a power of 0.885. The power of 0.885 is less than the 
target value of 0.900 because the sample size search algorithm re-simulates the power for the 
final sample size. Thus it is possible for the search algorithm to converge to a sample size which 
exhibits the desired power, but then on a succeeding simulation to achieve a power that is slightly 
less than the target. To achieve more accuracy, a reasonable strategy would be to run simulations 
to obtain the powers using N’s from 190 to 200 using a simulation size of 5000. 

Example 3 – Comparative Results  
Continuing with Example 2, the researchers want to study the characteristics of alternative test 
statistics. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Paired Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Correlated (Paired), then Inequality 
Tests, then Specify using Differences (Simulation). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example3 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................50 100 150 200 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................2000 
Item A Distribution|H0 .............................N(M0 S) 
Item B Distribution|H0 .............................N(M0 S) 
Item A Distribution|H1 .............................N(M0 S) 
Item B Distribution |H1 ............................N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................0.6 
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Data Tab (continued) 
S..............................................................2 
R (Correlation of Items A & B) ................0.2 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M0 S) 
H1 Dist'n: Normal(M0 S) - Normal(M1 S) 
 
 H0 H1       
 Diff Diff Corr Target T-Test Wilcxn Sign   
N (Diff0) (Diff1) (R) Alpha Power Power Power M0 M1 S 
50 0.0 -0.6 0.200 0.050 0.367 0.356 0.206 0.0 0.6 2.0 
100 0.0 -0.6 0.200 0.050 0.661 0.664 0.467 0.0 0.6 2.0 
150 0.0 -0.6 0.200 0.050 0.755 0.740 0.532 0.0 0.6 2.0 
200 0.0 -0.6 0.200 0.050 0.960 0.960 0.849 0.0 0.6 2.0 
Number of Monte Carlo Iterations: 2000.   Simulation Run Time: 36.70 seconds. 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M0 S) 
H1 Dist'n: Normal(M0 S) - Normal(M1 S) 
 
 H0 H1       
 Diff Diff Corr Target T-Test Wilcxn Sign   
N (Diff0) (Diff1) (R) Alpha Alpha Alpha Alpha M0 M1 S 
50 0.0 -0.6 0.200 0.050 0.062 0.060 0.041 0.0 0.6 2.0 
100 0.0 -0.6 0.200 0.050 0.046 0.045 0.040 0.0 0.6 2.0 
150 0.0 -0.6 0.200 0.050 0.045 0.049 0.047 0.0 0.6 2.0 
200 0.0 -0.6 0.200 0.050 0.041 0.039 0.041 0.0 0.6 2.0 
Number of Monte Carlo Iterations: 2000.   Simulation Run Time: 36.70 seconds. 

   
These results show that for paired data, the t-test and Wilcoxon test have very similar power and 
alpha values. The sign test is less accurate and less powerful. 
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Example 4 – Validation 
We will validate this procedure by comparing its results to those of the regular one-sample t-test, 
a procedure that has already by validated. For this run, we will use the settings of Example 1: M0 
= 0, M1 = 0.6, alpha = 0.05, N = 50, R = 0.2, and S = 2.   

Note that to run this example using the regular one-sample t-test procedure, the variance will have 
to be altered to account for the correlation of 0.20. The adjusted standard deviation is equal to S 
times the square root of 2(1 – R), which, in this case, is 2.530. Running this through the regular 
One Mean procedure yields a power of 0.376. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Paired Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Correlated (Paired), then Inequality 
Tests, then Specify using Differences (Simulation). You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example4 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................50 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff<>Diff0 
Simulations..............................................10000 
Item A Distribution|H0 .............................N(M0 S) 
Item B Distribution|H0 .............................N(M0 S) 
Item A Distribution|H1 .............................N(M0 S) 
Item B Distribution|H1 .............................N(M1 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................0.6 
S ..............................................................2 
R (Correlation of Items A & B) ................0.2 

Options Tab 
Random Number Pool Size.....................50000 (Increase to 5 times Simulations) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  H0 H1 Corr Target Actual   
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S   
0.373 50 0.0 -0.6 0.200 0.050 0.049 0.627 0.0 0.6 2.0  
(0.009) [0.363 0.382]    (0.004) [0.045 0.053]     
 
Notes: 
Number of Monte Carlo Samples: 10000.   Simulation Run Time: 30.97 seconds. 

 

The power matches the exact value of 0.376 quite well. We re-ran the procedure several times 
and obtained power values from 0.370 to 0.396. 

Example 5 – Non-Inferiority Test 
A non-inferiority test is appropriate when you want to show that a new treatment is no worse than 
the standard. For example, suppose that a standard diagnostic test has an average score of 70. 
Unfortunately, this diagnostic test is expensive. A promising new diagnostic test must be 
compared to the standard. Researchers want to show that it is no worse than the standard.  

Because of many benefits from the new test, clinicians are willing to adopt it even if it is slightly 
less accurate than the current test. How much less can the score of the new treatment be and still 
be adopted? Should it be adopted if the difference is -1? -2? -5? -10? There is an amount below 0 
at which the difference between the two treatments is no longer considered ignorable. After 
thoughtful discussion with several clinicians, the margin of equivalence is set to -5.  

The developers decided to use a paired t-test. They must design an experiment to test the 
hypothesis that the average difference between the two tests is greater than -5. The statistical 
hypothesis to be tested is 

H A B0 5: − ≤ −  versus H A B1 5: − > −  

where A represents the mean of the new test and B represents the mean of the standard test. 
Notice that when the null hypothesis is rejected, the conclusion is that the average difference is 
greater than -5.  

Past experience has shown that the standard deviation is 5.0 and the correlation is 0.2. Following 
proper procedure, the researchers decide to use a significance level of 0.025 for this one-sided test 
to keep it comparable to the usual value of 0.05 for a two-sided test. They decide to look at the 
power for sample sizes of 5, 10, 15, 20, and 25 subjects. They decide to compute the power for 
the case when the two tests are actually equal. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Paired Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Correlated (Paired), then Inequality 
Tests, then Specify using Differences (Simulation). You may then follow along here by making 
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the appropriate entries as listed below or load the completed template Example5 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.025 
N (Sample Size) ......................................5 10 15 20 25 
Test Type ................................................T-Test 
Alternative Hypothesis ............................Diff>Diff0 
Simulations..............................................2000 
Item A Distribution|H0 .............................N(M0 S) 
Item B Distribution|H0 .............................N(M1 S) 
Item A Distribution|H1 .............................N(M0 S) 
Item B Distribution|H1 .............................N(M0 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................5 
S ..............................................................5 
R (Correlation of Items A & B) ................0.2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 
 
  H0 H1 Corr Target Actual 
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S 
0.308 5 -5.0 0.0 0.200 0.025 0.023 0.692 0.0 5.0 5.0 
(0.020) [0.288 0.328]    (0.007) [0.016 0.030] 
 
0.617 10 -5.0 0.0 0.200 0.025 0.024 0.383 0.0 5.0 5.0 
(0.021) [0.596 0.638]    (0.007) [0.017 0.030] 
 
0.816 15 -5.0 0.0 0.200 0.025 0.027 0.184 0.0 5.0 5.0 
(0.017) [0.799 0.833]    (0.007) [0.019 0.034] 
 
0.916 20 -5.0 0.0 0.200 0.025 0.022 0.085 0.0 5.0 5.0 
(0.012) [0.903 0.928]    (0.006) [0.016 0.028] 
 
0.968 25 -5.0 0.0 0.200 0.025 0.025 0.032 0.0 5.0 5.0 
(0.008) [0.960 0.976]    (0.007) [0.018 0.031] 
 
Notes: 
Number of Monte Carlo Samples: 2000.   Simulation Run Time: 13.34 seconds. 

 
We see that a power of 0.8 is achieved at about 15 subjects, while a power of 0.9 requires about 
20 subjects. 



  495-1 

Chapter 495 

Equivalence Tests 
for Paired Means 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of tests of equivalence of means of 
two correlated variables. Schuirmann’s (1987) two one-sided tests (TOST) approach is used to test 
equivalence. The paired t-test is commonly used in this situation. Other tests have been developed 
for the case when the data are not normally distributed. These additional tests include the Wilcoxon 
signed-ranks test, the sign test, and the computer-intensive bootstrap test.  

Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other, often 
demographic, variables. Hypothesis tests on paired data can be analyzed by considering the 
differences between the paired items. The distribution of differences is usually symmetric. In fact, 
the distribution must be symmetric if the individual distributions of the two items are identical. 
Hence, the paired t-test and the Wilcoxon signed-rank test are appropriate for paired data even when 
the distributions of the individual items are not normal. 

The details of the power analysis of the paired t-test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 

Technical Details 
Computer simulation allows us to estimate the power and significance-level that is actually 
achieved by a test procedure in situations that are not mathematically tractable. Computer 
simulation was once limited to mainframe computers. But, in recent years, as computer speeds have 
increased, simulation studies can be completed on desktop and laptop computers in a reasonable 
period of time.  

The steps to a simulation study are as follows. 

1. Specify the test procedure and the test statistic. This includes the significance level, sample 
size, and underlying data distributions. 
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2. Generate a random sample  from the distribution specified by the X X Xn1 2, , ,K
alternative hypothesis. Calculate the test statistic from the simulated data and determine if 
the null hypothesis is accepted or rejected. These samples are used to calculate the power of 
the test. In the case of paired data, the individual values are simulated as the difference 
between two other random variables. These samples are constructed so that they exhibit a 
certain amount of correlation. 

3. Generate a random sample  from the distribution specified by the Y Y Yn1 2, , ,K null 
hypothesis. Calculate the test statistic from the simulated data and determine if the null 
hypothesis is accepted or rejected. These samples are used to calculate the significance-
level of the test. In the case of paired data, the individual values are simulated as the 
difference between two other random variables. These samples are constructed so that they 
exhibit a certain amount of correlation. 

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulation 
samples in step 2 that lead to rejection. The significance-level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Simulating Paired Distributions 
Paired data occur when two observations are correlated. Examples of paired designs are pre – post 
designs, cross-over designs, and matched pair designs. 

In order to simulate paired data, the simulation should mimic the actual data generation process as 
closely as possible. Since paired data are analyzed by creating the individual difference between 
each pair, the simulation should also create data as the difference between two variates. Paired data 
exhibit a correlation between the two variates. As this correlation between the variates increases, the 
variance of the difference decreases. Thus it is important not only to specify the distributions of the 
two variates that will be differenced, but to also specify their correlation. 

Obtaining paired samples from arbitrary distributions with a set correlation is difficult because the 
joint, bivariate distribution must be specified and simulated. Rather than specify the bivariate 
distribution, PASS requires the specification of the two marginal distributions and the correlation 
between them. 

Monte Carlo samples with given marginal distributions and correlation are generated using the 
method suggested by Gentle (1998). The method begins by generating a large population of random 
numbers from the two distributions. Each of these populations is evaluated to determine if their 
means are within a small relative tolerance (0.0001) of the target mean. If the actual mean is not 
within the tolerance of the target mean, individual members of the population are replaced with new 
random numbers if the new random number moves the mean towards its target. Only a few hundred 
such swaps are required to bring the actual mean to within tolerance of the target mean.  

The next step is to obtain the target correlation. This is accomplished by permuting one of the 
populations until they have the desired correlation.  

The above steps provide a large pool of random numbers that exhibit the desired characteristics. 
This pool is then sampled at random using the uniform distribution to obtain the random numbers 
used in the simulation.  
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This algorithm may be stated as follows. 

1. Draw individual samples of size M from the two distributions where M is a large number, 
usually over 10,000. Adjust these samples so that they have the specified mean and 
standard deviation. Label these samples A and B. Create an index of the values of A and B 
according to the order in which they are generated. Thus, the first value of A and the first 
value of B are indexed as one, the second values of A and B are indexed as two, and so on 
up to the final set which is indexed as M. 

2. Compute the correlation between the two generated variates. 

3. If the computed correlation is within a small tolerance (usually less than 0.001) of the 
specified correlation, go to step 7. 

4. Select two indices (I and J) at random using uniform random numbers.  

5. Determine what will happen to the correlation if  is swapped with . If the swap will 
result in a correlation that is closer to the target value, swap the indices and proceed to 
step 6. Otherwise, go to step 4. 

BI BJ

6. If the computed correlation is within the desired tolerance of the target correlation, go to 
step 7. Otherwise, go to step 4. 

7. End with a population with the required marginal distributions and correlation.  

Now, to complete the simulation, random samples of the designated size are drawn from this 
population. 

Simulating Data for an Equivalence Test 
Simulating equivalence data is more complex than simulating data for a regular two-sided test. An 
equivalence test essentially reverses the roles of the null and alternative hypothesis. In so doing, the 
null hypothesis becomes 

( ) ( )H D or D0 1 2 1 2: μ μ μ μ− ≤ − − ≥  

where D is the margin of equivalence. Thus the null hypothesis is made up of two simple 
hypotheses:  

( )H D01 1 2: μ μ− ≤ −  

( )H D02 1 2: μ μ− ≥  

The additional complexity comes in deciding which of the two simple null hypotheses are used to 
simulate data for the null hypothesis situation. The choice becomes more problematic when 
asymmetric equivalence limits are chosen. In that case, you may want to try simulating using 
each simple null hypothesis in turn. 

To generate data for the null hypotheses, you generate data for each group. The difference in the 
means of these two groups will become one of the equivalence limits. The other equivalence limit 
will be determined by symmetry and will always have a sign that is the negative of the first 
equivalence limit.  
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Test Statistics 
This section describes the test statistics that are available in this procedure. Note that these test 
statistics are computed on the differences. Thus, when the equation refers to an X value, this X 
value is assumed to be a difference between two individual variates. 

One-Sample t-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 
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and M0 is the value of the difference hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps.  

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to 
their absolute values. 

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 
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where ti represents the number of times the ith value occurs. 

4. Compute the z value using 
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For cases when n is less than 38, the significance level is found from a table of exact probabilities 
for the Wilcoxon test. When n is greater than or equal to 38, the significance of the test statistic is 
determined by computing the p-value using the standard normal distribution. If this p-value is less 
than a specified level (usually 0.05), the null hypothesis is rejected in favor of the alternative 
hypothesis. Otherwise, no conclusion can be reached. 

Sign Test  
The sign test is popular because it is simple to compute. It assumes that the data follow the same 
distribution. The test is computed using the following steps.  

1. Count the number of values strictly greater than M0. Call this value X. 

2. Count the number of values strictly less than M0. Call this value Y. 

3. Set m = X + Y. 

4. Under the null hypothesis, X is distributed as a binomial random variable with a 
proportion of 0.5 and sample size of m.  

The significance of X is calculated using binomial probabilities. 

Bootstrap Test  
The one-sample bootstrap procedure for testing whether the mean is equal to a specific value is 
given in Efron & Tibshirani (1993) pages 224-227. The bootstrap procedure is as follows.  

1. Compute the mean of the sample. Call it X . 

2. Compute the t-value using the standard t-test. The formula for this computation is 

t X M
sX

X

=
− 0

 

3. Draw a random, with-replacement sample of size n from the original X values. Call this 
sample .  Y Y Yn1 2, , ,L

4. Compute the t-value of this bootstrap sample using the formula 

t Y X
sY

Y

=
−

 

5. For a two-tailed test, if t tY > x  then add one to a counter variable A. 

6. Repeat steps 3 – 5 B times. B may be anywhere from 100 to 10,000. 

7. Compute the p-value of the bootstrap test as (A + 1) / (B + 1) 

8. Steps 1 – 7 complete one simulation iteration. Repeat these steps M times, where M is the 
number of simulations. The power and significance level is equal to the percent of the 
time the p-value is less than the nominal alpha of the test. 

Note that the bootstrap test is a time-consuming test to run, especially if you set B to a value 
larger than 100.  
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The Problem of Differing Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, note that although the shape parameters are 
constant, the standard deviations are not. Thus the null and alternatives not only have different 
means, but different standard deviations! 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data and Options tabs. To find out more about using the other tabs such as Axes/Legend/Grid, 
Plot Text, or Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies whether you want to find Power or N from the simulation. Select Power 
when you want to estimate the power of a certain scenario. Select N when you want to determine 
the sample size needed to achieve a given power and alpha error level. Finding N is very 
computationally intensive, and so it may take a long time to complete. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  
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You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of subjects in the study. 
The paired design assumes that a pair of observations will be obtained from each subject. Thus 
there will be 2N observations simulated, resulting in N differences.  

This value must be an integer greater than one. You may enter a list of values using the syntax 50 
100 150 200 250 or 50 to 250 by 50.  

Test 

Test Type 
Specify which test statistic (t-test, Wilcoxon test, sign test, or bootstrap test) is to be simulated. 
Although the t-test is the most commonly used test statistic, it is based on assumptions that may 
not be viable in many situations. For your data, you may find that one of the other tests is more 
accurate (actual alpha = target alpha) and more precise (better power). 

Note that the bootstrap test is computationally intensive, so it can be very slow to calculate. 

Equivalence Limit 
Equivalence limits are defined as the positive and negative limits around zero that define a zone 
of equivalence. This zone of equivalence is a set of difference values that define a region in which 
the two means are ‘close enough’ so that they are considered to be the same for practical 
purposes.  

Rather than define these limits explicitly, they are set implicitly. This is done as follows. One 
limit is found by subtracting the Item B mean | H0 from the Item A mean | H0. If the limits are 
symmetric, the other limit is this difference times -1. To obtain symmetric limits, enter 
‘Symmetric’ here. 

If asymmetric limits are desired, a numerical value is specified here. It will be given the sign (+ 
or -) that is opposite the difference in the means discussed above. 

For example, if the mean of A under H0 is 5, the mean of B under H0 is 4, and ‘Symmetric’ is 
entered here, the equivalence limits will be 5 - 4 = 1 and -1. However, if the value ‘1.25’ is 
entered here, the equivalence limits are 1 and -1.25. 

If you do not have a specific value in mind for the equivalence limit, a common value for an 
equivalence limit is 20% or 25% of the Item A (reference) mean. 

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 



495-8  Equivalence Tests for Paired Means (Simulation) 

true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Effect Size 

Item A (and B) Distribution|H0 
These options specify the distributions of the two items making up the pair under the null 
hypothesis, H0. The difference between the means of these two distributions is the difference that 
is tested, Diff0.  

Usually, you will want Diff0 = 0. This zero difference is specified by entering M0 for the mean 
parameter in each of the distributions and then entering an appropriate value for the M0 
parameter below.  

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to test whether the mean of a normal distributed variable is five, you could enter N(5, S) 
or N(M0, S) here. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
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Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Item A (and B) Distribution|H1 
These options specify the distributions of the two items making up the pair under the alternative 
hypothesis, H1. The difference between the means of these two distributions is the difference that 
is assumed to be the true value of the difference. That is, this is the difference at which the power 
is computed. 

Usually, the mean difference is specified by entering M1 for the mean parameter in the 
distribution expression for item A and M0 for the mean parameter in the distribution expression 
for item B. The mean difference under H1 then becomes the value of M1 – M0.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean under 
the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 
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Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for the M0 in the four distribution specifications given above. M0 is 
intended to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for the M1 in the four distribution specifications given above. M1 is 
intended to be the value of the mean hypothesized by the alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

R (Correlation of Items A & B) 
Specify the value of the correlation between items (variates) A and B of the pair.  

Since this is a correlation, it must be between -1 and 1. However, some distributions (such as the 
multinomial distribution) have a maximum possible correlation that is far less than one. 

Typical values are between 0 and 0.4. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Bootstrap Iterations  

Bootstrap Iterations 
Specify the number of iterations used in the bootstrap hypothesis test. This value is only used if 
the bootstrap test is displayed on the reports. The running time of the procedure depends heavily 
on the number of iterations specified here.  

Recommendations by authors of books discussing the bootstrap are from 100 to 10,000. If you 
enter a large (greater than 500) value, the simulation may take several hours to run. 
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Random Numbers 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Populations of at least 10,000 should be used. Also, the value should be about twice the number 
of simulations. You can enter Automatic and an appropriate value will be calculated. 

Note that values over 50,000 may take a long time to permute to achieve the target means and 
correlation. 

Correlation 

Maximum Switches 
This option specifies the maximum number of index switches that can be made while searching 
for a permutation of item B that yields a correlation within the specified range. A value near 
5,000,000 may be necessary when the correlation is near one.  

Correlation Tolerance 
Specify the amount above and below the target correlation that will still let a particular 
permutation to be selected for the population. For example, if you have selected a correlation of 
0.3 and you set this tolerance to 0.001, then only populations with a correlation between 0.299 
and 0.301 will be used. The recommended is 0.001 or smaller. Valid values are between 0 and 
0.999. 

Example 1 – Power at Various Sample Sizes 
Researchers are planning an experiment to determine if the response to a new drug is equivalent 
to the response to the standard drug. The average response level to the standard drug is 63 with a 
standard deviation of 5.  The researchers decide that if the average response level to the new drug 
is between 60 and 66, they will consider it to be equivalent to the standard drug.   

The researchers decide to use a paired design so that each subject can serve as their own control. 
The response level for the standard drug will be measured for each subject. Then, followed by an 
appropriate wash-out period of two days, the response level to the new drug will be measured. 
From previous studies, they know that the correlation between the two response levels will be 
between 0.1 and 0.20. 

The researchers will analyze the data using an equivalence test based on the paired t-test with an 
alpha level of 0.05. They want to compare the power at sample sizes of 10, 30, 50, and 70. They 
assume that the data are normally distributed and that the true difference between the response 
level of the two drugs is zero. Since this is an exploratory analysis, they set the number of 
simulation iterations to 2000. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Paired Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Correlated (Paired), then Equivalence 
Tests using Differences (Simulation). You may then follow along here by making the 
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appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................10 30 50 70 
Test Type ................................................T-Test 
Equivalence Limit ....................................Symmetric 
Simulations..............................................2000 
Item A (Reference) Dist’n|H0 ..................N(M0 S) 
Item B (Treatment) Dist’n|H0 ..................N(M1 S) 
Item A (Reference) Dist’n|H1 ..................N(M0 S) 
Item B (Treatment) Dist’n|H1 ..................N(M0 S) 
M0 (Mean|H0) .........................................63 
M1 (Mean|H1) .........................................66 
S ..............................................................5 
R (Correlation of Items A & B) ................0.1 0.2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 
 
   Lower Upper 
  H1 Equiv. Equiv. Corr Target Actual  
Power N Diff1 Limit Limit R Alpha Alpha M0 M1 S 
0.030 10 0.0 -3.0 3.0 0.100 0.050 0.009 63.0 66.0 5.0 
(0.007) [0.022 0.037]     (0.004) [0.005 0.013] 
 
0.055 10 0.0 -3.0 3.0 0.200 0.050 0.019 63.0 66.0 5.0 
(0.010) [0.045 0.065]     (0.006) [0.013 0.025] 
 
0.560 30 0.0 -3.0 3.0 0.100 0.050 0.050 63.0 66.0 5.0 
(0.022) [0.538 0.581]     (0.010) [0.040 0.060] 
 
Population Size: 10000. Number of Monte Carlo Samples: 2000.   Simulation Run Time: 30.02 seconds. 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Diff1 is the paired-difference mean (A-B) assuming the alternative hypothesis, H1. This is the true value. 
Lower Equiv Limit is the lower limit on a difference (A-B) that is considered as equivalent. 
Upper Equiv Limit is the upper limit on a difference (A-B) that is considered as equivalent. 
Diff0 is the paired-difference mean (A-B) assuming the null hypothesis, H0. This is one of the equivalence limits. 
R is the correlation between the paired items. 
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
 
Summary Statements 
A sample size of 10 pairs with a correlation of 0.100 achieves 3% power to detect equivalence 
when the margin of equivalence is from -3.0 to 3.0 and the actual mean difference is 0.0. The 
significance level (alpha) is 0.050 using two one-sided Paired T-Tests. These results are based 
on 2000 Monte Carlo samples from the null distribution: Normal(M0 S) - Normal(M1 S) and the 
alternative distribution: Normal(M0 S) - Normal(M0 S). 
 
 
Chart Section 
 

Power vs N by R with M0=-3.0 M1=0.0 S=5.0
Alpha=0.05 Paired T-Test
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  
The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 
We see that a sample size of about 50 is needed to obtain a reasonable power level. 
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Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90? They decide to use a correlation of 0.10, since that will result in a larger, 
more conservative, sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Paired Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Correlated (Paired), then Equivalence 
Tests using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.9  
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Simulations..............................................2000 
Test Type ................................................T-Test 
Equivalence Limit ....................................Symmetric 
Item A (Reference) Dist’n|H0 ..................N(M0 S) 
Item B (Treatment) Dist’n|H0 ..................N(M1 S) 
Item A (Reference) Dist’n|H1 ..................N(M0 S) 
Item B (Treatment) Dist’n|H1 ..................N(M0 S) 
M0 (Mean|H0) .........................................63 
M1 (Mean|H1) .........................................66 
S ..............................................................5 
R (Correlation of Items A & B) ................0.1 0.2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 
 
   Lower Upper 
  H1 Equiv. Equiv. Corr Target Actual  
Power N Diff1 Limit Limit R Alpha Alpha M0 M1 S 
0.899 54 0.0 -3.0 3.0 0.100 0.050 0.044 63.0 66.0 5.0 
(0.013) [0.885 0.912]     (0.009) [0.035 0.052] 
 

The required sample size was 54 which achieved a power of 0.899.  
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The power of 0.899 is slightly less than the target value of 0.900 because the sample size search 
algorithm re-simulates the power for the final sample size. Thus it is possible for the search 
algorithm to converge to a sample size which exhibits the desired power, but then on the second 
simulation, achieves a power that is slightly less than the target. To obtain more accuracy, a 
reasonable strategy would be to run simulations to obtain the powers using N’s from 50 to 60 
using a simulation size of 5000. 

Example 3 – Comparing Test Statistics  
Continuing with Example 2, the researchers want to study the characteristics of alternative test 
statistics. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Paired Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Correlated (Paired), then Equivalence 
Tests using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example3 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................10 30 50 70 
Test Type ................................................T-Test 
Equivalence Limit ....................................Symmetric 
Simulations..............................................2000 
Item A (Reference) Dist’n|H0 ..................N(M0 S) 
Item B (Treatment) Dist’n|H0 ..................N(M1 S) 
Item A (Reference) Dist’n|H1 ..................N(M0 S) 
Item B (Treatment) Dist’n|H1 ..................N(M0 S) 
M0 (Mean|H0) .........................................63 
M1 (Mean|H1) .........................................66 
S ..............................................................5 
R (Correlation of Items A & B) ................0.1 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing Equivalence.   Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
 
 H1 Lower Upper      
 Diff Equiv. Equiv. Corr Target T-Test Wilcxn Sign   
N (Diff1) Limit Limit (R) Alpha Power Power Power M0 M1 S 
10 0.0 -3.0 3.0 0.100 0.050 0.034 0.024 0.002 63.0 66.0 5.0 
30 0.0 -3.0 3.0 0.100 0.050 0.537 0.494 0.275 63.0 66.0 5.0 
50 0.0 -3.0 3.0 0.100 0.050 0.870 0.855 0.500 63.0 66.0 5.0 
70 0.0 -3.0 3.0 0.100 0.050 0.966 0.953 0.768 63.0 66.0 5.0 
 
Alpha Comparison for Testing Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
 
 H1 Lower Upper      
 Diff Equiv. Equiv. Corr Target T-Test Wilcxn Sign   
N (Diff1) Limit Limit (R) Alpha Alpha Alpha Alpha M0 M1 S 
10 0.0 -3.0 3.0 0.100 0.050 0.010 0.009 0.001 63.0 66.0 5.0 
30 0.0 -3.0 3.0 0.100 0.050 0.057 0.056 0.052 63.0 66.0 5.0 
50 0.0 -3.0 3.0 0.100 0.050 0.052 0.049 0.024 63.0 66.0 5.0 
70 0.0 -3.0 3.0 0.100 0.050 0.044 0.045 0.041 63.0 66.0 5.0 
 

Power vs N by Test with M0=-3.0 M1=0.0 S=5.0
Alpha=0.05 R=0.10
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These results show that for paired data, the t-test and Wilcoxon test have very similar power and 
alpha values. The sign test is less accurate and less powerful. 
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Example 4 – Validation using Chow et al. 
We will validate this procedure by comparing its results to those of Chow et al. (2003) page 55 in 
which the parameter values are: M0 = 0, M1 = 0.05, alpha = 0.05, N = 35, R = 0.0, and S = 
0.070711. For these parameters, the power is given as 0.800.   

Note that they give the standard deviation of the differences as 0.1. Since the correlation is 0.0, 
the standard deviation of the individual data values is given by 0.1/Sqrt(2) = 0.070711. 

In order to understand the accuracy of the simulation, we will re-run the analysis five times. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Paired Means (Simulation) procedure 
window by clicking on Means, then Two Means, then Correlated (Paired), then Equivalence 
Tests using Differences (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example4 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................35 35 35 35 35 
Test Type ................................................T-Test 
Equivalence Limit ....................................Symmetric 
Simulations..............................................2000 
Item A (Reference) Dist’n|H0 ..................N(M0 S) 
Item B (Treatment) Dist’n|H0 ..................N(M1 S) 
Item A (Reference) Dist’n|H1 ..................N(M0 S) 
Item B (Treatment) Dist’n|H1 ..................N(M0 S) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................0.05 
S ..............................................................0.070711 
R (Correlation of Items A & B) ................0.0 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 

 
   Lower Upper 
  H1 Equiv. Equiv. Corr Target Actual  
Power N Diff1 Limit Limit R Alpha Alpha M0 M1 S 
0.813 35 0.0 -0.1 0.1 0.000 0.050 0.050 0.0 0.1 0.1 
(0.017) [0.795 0.830]     (0.010) [0.040 0.059] 
 
0.813 35 0.0 -0.1 0.1 0.000 0.050 0.045 0.0 0.1 0.1 
(0.017) [0.796 0.830]     (0.009) [0.036 0.054] 
 
0.803 35 0.0 -0.1 0.1 0.000 0.050 0.051 0.0 0.1 0.1 
(0.017) [0.785 0.820]     (0.010) [0.041 0.061] 
 
0.799 35 0.0 -0.1 0.1 0.000 0.050 0.045 0.0 0.1 0.1 
(0.018) [0.781 0.816]     (0.009) [0.035 0.054] 
 
0.826 35 0.0 -0.1 0.1 0.000 0.050 0.051 0.0 0.1 0.1 
(0.017) [0.809 0.843]     (0.010) [0.041 0.060] 
 
Notes: 
Population Size: 10000. Number of Monte Carlo Samples: 2000.   Simulation Run Time: 16.80 seconds. 
 

The powers match the analytic value of 0.800 quite well. Note how informative the confidence 
intervals are. 
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Chapter 496 

Confidence 
Intervals for 
Paired Means 
Introduction 
This routine calculates the sample size necessary to achieve a specified distance from the paired 
sample mean difference to the confidence limit(s) at a stated confidence level for a confidence 
interval about the mean difference when the underlying data distribution is normal.  

Caution: This procedure assumes that the standard deviation of the future sample will be the same 
as the standard deviation that is specified. If the standard deviation to be used in the procedure is 
estimated from a previous paired sample or represents the population standard deviation, the 
Confidence Intervals for Paired Means with Tolerance Probability procedure should be 
considered. That procedure controls the probability that the distance from the mean paired 
difference to the confidence limits will be less than or equal to the value specified.  

Technical Details 
For a paired sample mean difference from a normal distribution with known variance, a two-
sided, 100(1 – α)% confidence interval is calculated by  

n
z

X diff
Diff

σα 21 /−±  

where DiffX  is the mean of the paired differences of the sample, and diffσ is the known standard 
deviation of paired sample differences. 

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
z

X diff
Diff

σα−+ 1  
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Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
z

X diff
Diff

σα−− 1  

For a paired sample mean difference from a normal distribution with unknown variance, a two-
sided, 100(1 – α)% confidence interval is calculated by  

n
t

X diffn
Diff

σα ˆ,/ 121 −−±  

where DiffX  is the mean of the paired differences of the sample, and diffσ̂  is the estimated 
standard deviation of paired sample differences. 

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
t

X diffn
Diff

σα ˆ, 11 −−+  

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
t

X diffn
Diff

σα ˆ, 11 −−−  

Each confidence interval is calculated using an estimate of the mean difference plus and/or minus a 
quantity that represents the distance from the mean difference to the edge of the interval. For two-
sided confidence intervals, this distance is sometimes called the precision, margin of error, or half-
width. We will label this distance, D.  

The basic equation for determining sample size when D has been specified is 

n
z

D diffσα 21 /−=  

when the standard deviation is known, and 

n
t

D diffn σα ˆ,/ 121 −−=  

when the standard deviation is unknown. These equations can be solved for any of the unknown 
quantities in terms of the others. The value α / 2 is replaced by α when a one-sided interval is used. 

Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), an adjustment must be made. The adjustment reduces the 
standard deviation as follows: 

σ σfinite
n
N

= −⎛
⎝⎜

⎞
⎠⎟

1  

This new standard deviation replaces the regular standard deviation in the above formulas. 
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Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean difference 
is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean difference 
is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size (Number of Pairs) 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of pairs selected at random from 
the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 
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Precision 

Distance from Mean Difference to Limit(s) 
This is the distance from the confidence limit(s) to the mean paired difference. For two-sided 
intervals, it is also known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Standard Deviation of Paired 
Differences 

S (Standard Deviation) 
Enter a value (or range of values) for the standard deviation. You can use the results of a pilot 
study, a previous study, or a ball park estimate based on the range (e.g., Range/4) to estimate this 
parameter. 

Know Standard Deviation 
Check this box when you want to base your results on the normal distribution. When the box is 
not checked, calculations are based on the t-distribution. The difference between the two 
distributions is negligible when the sample sizes are large (>50).  

Population 

Population Size 
This is the number of pairs in the population. Usually, you assume that samples are drawn from a 
very large (infinite) population. Occasionally, however, situations arise in which the population 
of interest is of limited size. In these cases, appropriate adjustments must be made. This option 
sets the population size. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
A researcher would like to estimate the mean difference in weight following a specific diet using 
a two-sided 95% confidence interval.  The confidence level is set at 0.95, but 0.99 is included for 
comparative purposes. The standard deviation estimate, based on the range of paired differences, 
is 9.6 lbs. The researcher would like the interval to be no wider than 10 lbs. (half-width = 5 lbs.), 
but will examine half-widths of 3, 4, 5, 6, and 7 lbs.  
The goal is to determine the necessary sample size.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Paired Means procedure window 
by clicking on Confidence Intervals, then Means, then Paired Means. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 0.99 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Mean to Limit(s) ...............3 to 7 by 1 
S (Standard Deviation)............................9.6 
Population Size .......................................Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals with Unknown Standard Deviation 
 
  Target Actual  
 Sample Dist from Dist from Standard 
Confidence Size Mean Diff Mean Diff Deviation 
Level (N) to Limits to Limits (S) 
0.95000 42 3.000 2.992 9.600 
0.99000 72 3.000 2.995 9.600 
0.95000 25 4.000 3.963 9.600 
0.99000 43 4.000 3.950 9.600 
0.95000 17 5.000 4.936 9.600 
0.99000 29 5.000 4.926 9.600 
0.95000 13 6.000 5.801 9.600 
0.99000 21 6.000 5.961 9.600 
0.95000 10 7.000 6.867 9.600 
0.99000 17 7.000 6.801 9.600 
 
References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
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Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population mean difference. 
N is the size of the sample (or number of pairs) drawn from the population. 
Dist from Mean Diff to Limit is the distance from the confidence limit(s) to the mean paired difference. For 
     two-sided intervals, it is also know as the precision, half-width, or margin of error. 
Target Dist from Mean Diff to Limit is the value of the distance that is entered into the procedure. 
Actual Dist from Mean Diff to Limit is the value of the distance that is obtained from the procedure. 
The standard deviation (S) is the standard deviation of the paired differences. 
 
Summary Statements 
A sample size of 42 produces a two-sided 95% confidence interval with a distance from the mean 
paired difference to the limits that is equal to 2.992 when the estimated standard deviation of 
the paired differences is 9.600. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size versus the precision for the two confidence limits. 

Example 2 – Validation 
This procedure uses the same mechanics as the Confidence Intervals for One Mean procedure. 
The validation of this procedure is given in Examples 2 and 3 of the Confidence Intervals for One 
Mean procedure.  
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Chapter 497 

Confidence Intervals 
for Paired Means 
with Tolerance 
Probability 
Introduction 
This routine calculates the sample size necessary to achieve a specified distance from the paired 
sample mean difference to the confidence limit(s) with a given tolerance probability at a stated 
confidence level for a confidence interval about a single mean difference when the underlying 
data distribution is normal.  

Technical Details 
For a paired sample mean difference from a normal distribution with unknown variance, a two-
sided, 100(1 – α)% confidence interval is calculated by  

n
t

X Diffn
Diff

σα ˆ,/ 121 −−±
 

where DiffX  is the mean of the paired differences of the sample, and diffσ is the known standard 
deviation of paired sample differences. 

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
t

X Diffn
Diff

σα ˆ, 11 −−+
 

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
t

X Diffn
Diff

σα ˆ, 11 −−−
 

Each confidence interval is calculated using an estimate of the mean difference plus and/or minus 
a quantity that represents the distance from the mean difference to the edge of the interval. For 
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two-sided confidence intervals, this distance is sometimes called the precision, margin of error, or 
half-width. We will label this distance, D.  

The basic equation for determining sample size when D has been specified is 

n
t

D Diffn σα ˆ,/ 121 −−=
 

Solving for n, we obtain 
2

121
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −−

D
t

n Diffn σα ˆ,/

 
This equation can be solved for any of the unknown quantities in terms of the others. The value 
α/2 is replaced by α when a one-sided interval is used. 

There is an additional subtlety that arises when the standard deviation is to be chosen for 
estimating sample size. The sample sizes determined from the formula above produce confidence 
intervals with the specified widths only when the future sample has a sample standard deviation 
of differences that is no greater than the value specified. 

As an example, suppose that 15 pairs of individuals are sampled in a pilot study, and a standard 
deviation estimate of 3.5 is obtained from the sample. The purpose of a later study is to estimate 
the mean difference within 10 units. Suppose further that the sample size needed is calculated to 
be 57 pairs using the formula above with 3.5 as the estimate for the standard deviation. The 
sample of size 57 pairs is then obtained from the population, but the standard deviation of the 57 
paired differences turns out to be 3.9 rather than 3.5. The confidence interval is computed and the 
distance from the mean difference to the confidence limits is greater than 10 units. 

This example illustrates the need for an adjustment to adjust the sample size such that the distance 
from the mean difference to the confidence limits will be below the specified value with known 
probability. 

Such an adjustment for situations where a previous sample is used to estimate the standard 
deviation is derived by Harris, Horvitz, and Mood (1948) and discussed in Zar (1984) and Hahn 
and Meeker (1991). The adjustment is 
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where 1 – γ  is the probability that the distance from the mean difference to the confidence 
limit(s) will be below the specified value, and m is the sample size in the previous paired sample 
that was used to estimate the standard deviation. 

The corresponding adjustment when no previous sample is available is discussed in Kupper and 
Hafner (1989) and Hahn and Meeker (1991). The adjustment in this case is 
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where, again, 1 – γ  is the probability that the distance from the mean difference to the confidence 
limit(s) will be below the specified value. 
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Each of these adjustments accounts for the variability in a future estimate of the standard 
deviation. In the first adjustment formula (Harris, Horvitz, and Mood, 1948), the distribution of 
the standard deviation is based on the estimate from a previous paired sample. In the second 
adjustment formula, the distribution of the standard deviation is based on a specified value that is 
assumed to be the population standard deviation of differences.  

Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), an adjustment must be made. The adjustment reduces 
the standard deviation as follows: 

σ σfinite
n
N

= −⎛
⎝⎜

⎞
⎠⎟

1  

This new standard deviation replaces the regular standard deviation in the above formulas. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items 
are drawn from a population using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence and Tolerance 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean difference 
is 1 – α.  
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Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90 0.95 0.99 or 0.90 to 0.99 by 0.01. 

Tolerance Probability 
This is the probability that a future interval with sample size N and the specified confidence level 
will have a distance from the mean paired difference to the limit(s) that is less than or equal to the 
distance specified. 

If a tolerance probability is not used, as in the 'Confidence Intervals for Paired Means' procedure, 
the sample size is calculated for the expected distance from the mean paired difference to the 
limit(s), which assumes that the future standard deviation will also be the one specified. 

Using a tolerance probability implies that the standard deviation of the future sample will not be 
known in advance, and therefore, an adjustment is made to the sample size formula to account for 
the variability in the standard deviation. Use of a tolerance probability is similar to using an upper 
bound for the standard deviation in the 'Confidence Intervals for Paired Means' procedure. 

Values between 0 and 1 can be entered. The choice of the tolerance probability depends upon how 
important it is that the distance from the interval limit(s) to the mean difference is at most the value 
specified. 

You can enter a range of values such as 0.70 0.80 0.90 or 0.70 to 0.95 by 0.05. 

Sample Size (Number of Pairs) 

N (Sample Size or Number of Pairs) 
Enter one or more values for the sample size. This is the number of pairs selected at random from 
the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Precision 

Distance from Mean Difference to Limit(s) 
This is the distance from the confidence limit(s) to the mean paired difference. For two-sided 
intervals, it is also known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  
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Standard Deviation of Paired 
Differences 

Standard Deviation Source 
This procedure permits two sources for estimates of the standard deviation of paired differences: 

• S is a Population Standard Deviation 
This option should be selected if there is no previous sample that can be used to obtain an 
estimate of the standard deviation of the paired differences. In this case, the algorithm 
assumes that future sample obtained will be from a population with standard deviation S. 

• S from a Previous Sample 
This option should be selected if the estimate of the standard deviation of the paired 
differences is obtained from a previous random sample from the same distribution as the one 
to be sampled. The sample size of the previous sample must also be entered under 'Sample 
Size of Previous Sample'. 

Standard Deviation of Paired 
Differences– S is a Population 
Standard Deviation 

S (Standard Deviation) 
Enter an estimate of the standard deviation of paired differences (must be positive). In this case, 
the algorithm assumes that future samples obtained will be from a population with standard 
deviation S. 

One common method for estimating the standard deviation is the range divided by 4, 5, or 6. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Standard Deviation of Paired 
Differences – S from a Previous 
Sample 

S (SD Estimated from a Previous Sample) 
Enter an estimate of the standard deviation of paired differences from a previous (or pilot) study. 
This value must be positive. 

A range of values may be entered. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Sample Size (# of Pairs) of Previous Sample 
Enter the sample size (number of pairs) that was used to estimate the standard deviation entered 
in S (SD Estimated from a Previous Sample). 

This value is entered only when 'Standard Deviation Source:' is set to 'S from a Previous Sample'.  



497-6  Confidence Intervals for Paired Means with Tolerance Probability 

Population 

Population Size 
This is the number of pairs in the population. Usually, you assume that samples are drawn from a 
very large (infinite) population. Occasionally, however, situations arise in which the population 
of interest is of limited size. In these cases, appropriate adjustments must be made. This option 
sets the population size. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
A researcher would like to estimate the mean difference in weight following a specific diet with 
95% confidence. It is very important that the mean difference is estimated within 5 lbs.  Data 
available from a previous study are used to provide an estimate of the standard deviation. The 
estimate of the standard deviation of before/after differences is 16.7 lbs, from a sample of size 17 
individuals.  
The goal is to determine the sample size necessary to obtain a two-sided confidence interval such 
that the mean weight is estimated within 5 lbs. Tolerance probabilities of 0.70 to 0.95 will be 
examined. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Paired Means with Tolerance 
Probability procedure window by clicking on Confidence Intervals, then Means, then Paired 
Means with Tolerance Probability. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
Tolerance Probability ..............................0.70 to 0.95 by 0.05 
N (Sample Size or Number of Pairs)....... Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Mean Diff to Limit(s).........5 
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Data Tab (continued) 
Standard Deviation Source .....................S from a Previous Sample 
S ..............................................................16.7 
Sample Size of Previous Sample............17 
Population Size .......................................Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Dist from Dist from Standard  
Confidence Size Mean Diff Mean Diff Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.95 58 5.000 4.970 16.700 0.70 
0.95 61 5.000 4.996 16.700 0.75 
0.95 66 5.000 4.967 16.700 0.80 
0.95 71 5.000 4.985 16.700 0.85 
0.95 79 5.000 4.973 16.700 0.90 
0.95 92 5.000 4.981 16.700 0.95 
 
Sample size for estimate of S from previous paired sample = 17.  
 
References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
Zar, J. H. 1984. Biostatistical Analysis. Second Edition. Prentice-Hall. Englewood Cliffs, New Jersey. 
Harris, M., Horvitz, D. J., and Mood, A. M. 1948. 'On the Determination of Sample Sizes in Designing 
     Experiments', Journal of the American Statistical Association, Volume 43, No. 243, pp. 391-402. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population mean difference. 
N is the size of the sample (or number of pairs) drawn from the population. 
Dist from Mean Diff to Limit is the distance from the confidence limit(s) to the mean paired difference. For 
     two-sided intervals, it is also know as the precision, half-width, or margin of error. 
Target Dist from Mean Diff to Limit is the value of the distance that is entered into the procedure. 
Actual Dist from Mean Diff to Limit is the value of the distance that is obtained from the procedure. 
The standard deviation (S) is the standard deviation of the paired differences. 
Tolerance Probability is the probability that a future interval with sample size N and corresponding 
     confidence level will have a distance from the mean difference to the limit(s) that is less than or equal to 
     the specified distance. 
 
Summary Statements 
The probability is 0.70 that a sample size of 58 will produce a two-sided 95% confidence 
interval with a distance from the mean paired difference to the limits that is less than or 
equal to 4.970 if the population standard deviation is estimated to be 16.700 by a previous 
paired sample of size 17. 

 

This report shows the calculated sample size for each of the scenarios.  
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Plots Section 
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This plot shows the sample size versus the tolerance probability. 

Example 2 – Validation 
This procedure uses the same mechanics as the Confidence Intervals for One Mean with 
Tolerance Probability procedure. The validation of this procedure is given in Examples 2, 3, and 
4 of the Confidence Intervals for One Mean with Tolerance Probability procedure.  
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Chapter 500 

Inequality Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Differences 
Introduction 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carry-over effect.  

A 2x2 cross-over design contains to two sequences (treatment orderings) and two time periods 
(occasions). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry over to the second. Thus, the groups in this design are 
defined by the sequence in which the drugs are administered, not by the treatments they receive. 
Indeed, higher-order cross-over designs have been used in which the same treatment is used at 
both occasions. 

Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 
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Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment into the study may 
be easier because each patient will receive both treatments. Finally, it is often more difficult to 
obtain a subject than to obtain a measurement. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. It may be difficult to separate the treatment 
effect from the period effect, the carry-over effect of the previous treatment, and the interaction 
between period and treatment. 

The design cannot be used when the treatment (or the measurement of the response) alters the 
subject permanently. Hence, it should not be used to compare treatments that are intended to 
provide a cure. 

Because subjects must be measured at least twice, it is often more difficult to keep patients 
enrolled in the study. It is arguably simpler to measure a subject once than to obtain their 
measurement twice. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Technical Details 
The 2x2 crossover design may be described as follows. Randomly assign the subjects to one of 
two sequence groups so that there are  subjects in sequence one and  subjects in sequence 
two. In order to achieve design balance, the sample sizes  and  are assumed to be equal so 
that . 

N1 N2

N1 N2

N N N1 2 2= = /

Sequence one is given treatment A followed by treatment B. Sequence two is given treatment B 
followed by treatment A. The sequence is replicated m times. So, if m = 3, the sequences are 
ABABAB and BABABA. 

The usual method of analysis is the analysis of variance. However, the power and sample size 
formulas that follow are based on the t-test, not the F-test. This is done because, in the balanced 
case, the t-test and the analysis of variance F-test are equivalent. Also, the F-test is limited to a 
two-sided hypothesis, while the t-test allows both one-sided and two-sided hypotheses. This is 
important because one-sided hypotheses are used for non-inferiority and equivalence testing. 

Cross-Over Analysis 
The following discussion summarizes the presentation of Chow and Liu (1999). The general 
linear model for the standard 2x2 cross-over design is 

( ) ( )Y S P Cijkl ik j j k j k ijkl= + e+ + + +−μ μ , ,1  

where i represents a subject (1 to ), j represents the period (1 or 2), k represents the sequence 
(1 or 2), and l represents the replicate. The  represent the random effects of the subjects. The 

Nk

Sik
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Pj  represent the effects of the two periods. The ( )μ j k,  represent the means of the two treatments. 

In the case of the 2x2 cross-over design 

μ
μ

if
if( )μ j k

k j
k j, =
=
≠

⎧
⎨
⎩

1

2

C if
C if

 

where the subscripts 1 and 2 represent treatments A and B, respectively. 

The  represent the carry-over effects. In the case of the 2x2 cross-over design (C j k−1, )

( )C
j k
j k

otherwise
j k− =

= =
= =

⎧

⎨
⎪

⎩
⎪

1

1

2

2 1
2 2

0
,

,
,  

where the subscripts 1 and 2 represent treatments A and B, respectively.  

Assuming that the average effect of the subjects is zero, the four means from the 2x2 cross-over 
design can be summarized using the following table. 

Sequence Period Period
AB P P C
BA P P C

1 2
1
2

11 1 1

2

μ
μ

+
+

21 2 2 1

12 1 22 2 1 2

( )
( )

μ μ μ μ μ
μ μ μ μ μ

= + = + + +
= + = + + +

 

where  and C CP P1 2 0+ = 1 2 0+ = . 

Test Statistic  
The presence of a treatment effect can be studied by testing whether μ μ δ1 2− =  using a t-test or 
an F-test. If the F-test is used, only a two-sided test is possible. The t statistic is calculated as 
follows 

( )

N

x

w

R

2σ̂

xt T
d

−− δ
=  

where  is the within mean square error from the appropriate ANOVA table.  $σw
2

The two-sided null hypothesis is rejected at the α  significance level if t td > −α / ,2 N 2

d
2

. Similar 
results are available for a one-sided hypothesis test. 

The F-test is calculated using a standard repeated-measures analysis of variance table in which 
the between factor is the sequence and the within factor is the treatment. The within mean square 
error provides an estimate of the within-subject variance . If prior studies used a t-test rather 
than an ANOVA to analyze the data, you may not have a direct estimate of . Instead, you will 
have an estimate of the variance of the period differences from the t-test, .The two variances, 

 and , are functionally related by . Either variance can be entered. 

σw
2

σw
2

2
dσ̂

σd
2 σw

2 σ σw
2 2=
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Computing the Power 
The power is calculated as follows for a directional alternative (one-sided test). 

1. Find tα  such that , where ( )1− =T tdf α α ( )T xdf  is the area left of x under a central-t 
curve and df = N - 2. 

2. Calculate the noncentrality parameter: 
2w

N
σ
δλ = . 

3. Calculate: Power = , where ( )1− ′T tdf ,λ α ( )′T xdf ,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom df and noncentrality parameter λ . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Mean Differences 

Diff0 (Mean Difference|H0) 
Enter the difference between the treatment means under the null (H0) hypothesis. This is the 
value that is to be rejected when the t-test is significant. This value is commonly set to zero. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 

Diff1 (Mean Difference|H1) 
Enter the difference between the population means under the alternative (H1) hypothesis. This is 
the value of the difference at which the power is calculated. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 

Effect Size – Standard Deviation 

Specify S as Sw or Sd 
Specify the form of the standard deviation that is entered in the box below.  

• Sw 
Specify S as the square root of the within mean square error from a repeated measures 
ANOVA. This is the most common method since cross-over designs are usually analyzed 
using ANOVA. 

• Sd 
Specify S as the standard deviation of the individual differences created for each subject. This 
option is used when you have previous studies that have produced this value. 

S (Value of Sw or Sd) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in Specify S as Sw or Sd above. If S=Sw is selected, this is the value of Sw which is 
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SQR(WMSE) where WMSE is the within mean square error from the ANOVA table used to 
analyze the Cross-Over design. If S = Sd is selected, this is the value of Sd which is the standard 
deviation of the period differences—pooled from both sequences. 

These values must be positive. A list of values may be entered.  

You can press the SD button to load the Standard Deviation Estimator window. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always : Diff0 = Diff1. H0

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• H1: DIFF0 <> DIFF1 
This is the most common selection. It yields the two-sided t-test. Use this option when you 
are testing whether the means are different but you do not want to specify beforehand which 
mean is larger. Many scientific journals require two-sided tests. 

• H1: DIFF0 > DIFF1 
This option yields a one-sided t-test. Use it when you are only interested in the case in which 
the actual difference is less than Diff0. 

• H1: DIFF0 < DIFF1 
This option yields a one-sided t-test. Use it when you are only interested in the case in which 
actual difference is greater than Diff0. 
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Example 1 – Power Analysis 
Suppose you want to consider the power of a balanced cross-over design that will be analyzed 
using the two-sided t-test approach. The difference between the treatment means under H0 is 0. 
Similar experiments have had a standard deviation of the differences (Sd) of 10. Compute the 
power when the true differences are 5 and 10 at sample sizes between 5 and 50. The significance 
level is 0.05.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Inequality Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................5 10 15 20 30 40 50 
Diff0 (Mean Difference|H0) .....................0 
Diff1 (Mean Difference|H1) .....................5 10 
Specify S as Sw or Sd.............................Sd 
S (Value of Sw or Sd)..............................10 
Alternative Hypothesis ............................H1: Diff0 <> Diff1 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Cross-Over Design 
Null Hypothesis: Diff0=Diff1     Alternative Hypothesis: Diff0<>Diff1 
       Effect 
Power N Diff0 Diff1 Alpha Beta Sd Size 
0.0691 5 0.000 5.000 0.0500 0.9309 10.000 0.500 
0.1077 10 0.000 5.000 0.0500 0.8923 10.000 0.500 
0.1463 15 0.000 5.000 0.0500 0.8537 10.000 0.500 
0.1851 20 0.000 5.000 0.0500 0.8149 10.000 0.500 
0.2624 30 0.000 5.000 0.0500 0.7376 10.000 0.500 
0.3379 40 0.000 5.000 0.0500 0.6621 10.000 0.500 
0.4101 50 0.000 5.000 0.0500 0.5899 10.000 0.500 
0.1266 5 0.000 10.000 0.0500 0.8734 10.000 1.000 
0.2863 10 0.000 10.000 0.0500 0.7137 10.000 1.000 
0.4339 15 0.000 10.000 0.0500 0.5661 10.000 1.000 
0.5620 20 0.000 10.000 0.0500 0.4380 10.000 1.000 
0.7529 30 0.000 10.000 0.0500 0.2471 10.000 1.000 
0.8690 40 0.000 10.000 0.0500 0.1310 10.000 1.000 
0.9337 50 0.000 10.000 0.0500 0.0663 10.000 1.000 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
Alpha is the probability of a false positive. 
Beta is the probability of a false negative. 
Diff0 is the mean difference under the null hypothesis, H0. 
Diff1 is the mean difference under the alternative hypothesis, H1. 
Sd is the standard deviation of the difference. 
Effect Size, |Diff0-Diff1|/Sd, is the relative magnitude of the effect under the alternative. 
 
Summary Statements 
A two-sided t-test achieves 7% power to infer that the mean difference is not 0.000 when the 
total sample size of a 2x2 cross-over design is 5, the actual mean difference is 5.000, the 
standard deviation of the differences is 10.000, and the significance level is 0.0500. 
 

Plots Sections 
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This report shows the values of each of the parameters, one scenario per row. This plot shows the 
relationship between sample size and power. We see that a sample size of about 46 is needed 
when Diff1 = 10 for 90% power, while Diff1 = 5 never reaches 90% power in this range of 
sample sizes. 
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Example 2 – Finding the Sample Size 
Continuing with Example 1, suppose the researchers want to find the exact sample size necessary 
to achieve 90% power for both values of Diff1.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Inequality Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting  
Diff0 (Mean Difference|H0) .....................0 
Diff1 (Mean Difference|H1) .....................5 10 
Specify S as Sw or Sd.............................Sd 
S (Value of Sw or Sd)..............................10 
Alternative Hypothesis ............................H1: Diff0 <> Diff1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Cross-Over Design 
Null Hypothesis: Diff0=Diff1     Alternative Hypothesis: Diff0<>Diff1 
 
       Effect 
Power N Diff0 Diff1 Alpha Beta Sd Size 
0.9032 172 0.000 5.000 0.0500 0.0968 10.000 0.500 
0.9125 46 0.000 10.000 0.0500 0.0875 10.000 1.000 
 

This report shows the exact sample size necessary for each scenario.  

Note that the search for N is conducted across only even values of N since the design is assumed 
to be balanced. 
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Example 3 – Validation using Julious 
Julious (2004) page 1933 presents an example in which Diff0 = 0.0, Diff1 = 10, Sw = 20, alpha = 
0.05, and beta = 0.10. Julious obtains a sample size of 86.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Inequality Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting  
Diff0 (Mean Difference|H0) .....................0 
Diff1 (Mean Difference|H1) .....................10 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................20 
Alternative Hypothesis ............................H1: Diff0 <> Diff1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

       Effect 
Power N Diff0 Diff1 Alpha Beta Sw Size 
0.906483 88 0.000 10.000 0.050000 0.093435 20.000 0.500 
 

PASS obtained a sample size of 88, two higher than that obtained by Julious (2004). However, if 
you look at the power achieved by an N of 86, you will find that it is 0.899997—slightly less than 
the goal of 0.90. 
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Chapter 505 

Inequality Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size for a 2x2 cross-over design in which the 
logarithm of the outcome is a continuous normal random variable. This routine deals with the case 
in which the statistical hypotheses are expressed in terms of ratios of means instead of differences of 
means.  

The details of testing two treatments using data from a 2x2 cross-over design are given in another 
chapter and they will not be repeated here. If the logarithms of the responses can be assumed to 
follow a normal distribution, hypotheses stated in terms of the ratio can be transformed into 
hypotheses about the difference. The details of this analysis are given in Julious (2004). They will 
only be summarized here. 

Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment (group 2) mean. T

μR  Not used Reference mean. This is the reference (group 1) mean.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 
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Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 

The null hypothesis is 

H0 0:φ φ=  

and the alternative hypothesis is  

H1 0:φ φ≠  

Log Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as percentages, but differences must 
be interpreted as actual amounts in their original scale. Hence, it has become a common practice 
to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 

( ) ( ) ( ){ }

φ φ

φ μ
μ

φ μ μ

=

⇒ =
⎧
⎨
⎩

⎫
⎬
⎭

⇒ ≠ −

0

T

R

T Rln ln ln

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

σY
2
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From this relationship, the coefficient of variation of Y can be found to be  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 
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Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Power and Beta for a power analysis or N1 for sample size determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the total sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50 100 150 200 250 or 50 to 250 by 50.  

Effect Size – Ratios 

R0 (Ratio Under H0) 
This is the value of the ratio of the two means assumed by the null hypothesis, H0. Usually, R0 = 
1.0 which implies that the two means are equal. However, you may test other values of R0 as 
well. Strictly speaking, any positive number is valid, but, usually, 1.0 is used. 

Warning: you cannot use the same value for both R0 and R1. 
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R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Often, a 
range of values will be tried. For example, you might try the four values: 

1.05 1.10 1.15 1.20 

Strictly speaking, any positive number is valid. However, numbers between 0.50 and 2.00 are 
usually used. 

Warning: you cannot use the same value for both R0 and R1. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not log) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related by . 

$σw
2

σd
2 σw

2 σ σd w
2 22=

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. Possible selections are: 

• H1: R1 <> R0 
This is the most common selection. It yields the two-tailed t-test. Use this option when you 
are testing whether the means are different, but you do not want to specify beforehand which 
mean is larger. 

• H1: R1 < R0 
This option yields a one-tailed t-test. Use it when you are only interested in the case in which 
Mean1 is greater than Mean2. 

• H1: R1 > R0 
This option yields a one-tailed t-test. Use it when you are only interested in the case in which 
Mean1 is less than Mean2. 
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Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
better than the standard drug. Responses for either treatment are assumed to follow a lognormal 
distribution. A 2x2 cross-over design will be used and the logged data will be analyzed using an 
appropriate analysis of variance. Note that using an analysis of variance instead of a t-test to 
analyze the data forces the researchers to use two-sided tests.   

Past experience leads the researchers to set the COV to 0.50. The significance level is 0.05. The 
power will be computed for R1 equal to 1.10 and 1.20. Sample sizes between 20 and 220 will be 
included in the initial analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a 2x2 Cross-Over 
Design [Ratios] procedure window by clicking on Means, then Two Means, then 2x2 Cross-
Over Designs, then Inequality Tests, then Specify using Ratios. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................20 to 220 by 40 
R0 (Ratio Under H0) ...............................1.0 
R1 (True Ratio) .......................................1.1  1.2 
COV (Coefficient of Variation).................0.50 
Alternative Hypothesis ............................R1<>R0 (Two-Sided) 



Inequality Tests for Two Means in a 2x2 Cross-Over Design using Ratios  505-7 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for 2x2 Cross-Over Design Using Ratios 
H0: R1=R0.  H1: R1<>R0. 
 
 Total Mean Mean  Coefficient   
 Sample Ratio Ratio Effect of Significance  
 Size Under H0 Under H1 Size Variation Level  
Power (N) (R0) (R1) (ES) (COV) (Alpha) Beta 
0.0928 20 1.000 1.100 0.143 0.500 0.0500 0.9072 
0.1925 60 1.000 1.100 0.143 0.500 0.0500 0.8075 
0.2925 100 1.000 1.100 0.143 0.500 0.0500 0.7075 
0.3885 140 1.000 1.100 0.143 0.500 0.0500 0.6115 
0.4777 180 1.000 1.100 0.143 0.500 0.0500 0.5223 
0.5627 220 1.000 1.100 0.143 0.500 0.0500 0.4373 
0.2116 20 1.000 1.200 0.273 0.500 0.0500 0.7884 
0.5474 60 1.000 1.200 0.273 0.500 0.0500 0.4526 
0.7711 100 1.000 1.200 0.273 0.500 0.0500 0.2289 
0.8937 140 1.000 1.200 0.273 0.500 0.0500 0.1063 
0.9537 180 1.000 1.200 0.273 0.500 0.0500 0.0463 
0.9808 220 1.000 1.200 0.273 0.500 0.0500 0.0192 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
R0 is the ratio of the means (Mean2/Mean1) under the null hypothesis, H0. 
R1 is the ratio of the means (Mean2/Mean1) at which the power is calculated. 
ES is the effect size which is |Ln(R0)-Ln(R1)| / (sigma). 
COV is the coefficient of variation on the original scale. The value of sigma is calculated from this. 
Alpha is the probability of a false positive H0. 
Beta is the probability of a false negative H0. 
 
Summary Statements 
A two-sided t-test achieves 9% power to infer that the mean ratio is not 1.000 when the total 
sample size of a 2x2 cross-over design is 20, the actual mean ratio is 1.100, the coefficient 
of variation is 0.500, and the significance level is 0.0500. 

 

This report shows the power for the indicated scenarios.  

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Validation 
We will validate this procedure by showing that it gives the identical results to the regular test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example 1. Since the output for this example is shown above, all that we need is the output from 
the procedure that uses differences.   

To run the power analysis on differences, we need the values of Diff1 (which correspond to R1) 
and Sw. The value of Diff0 will be zero. 
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= +
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Inequality Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1d from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................20 to 220 by 40 
Diff0 (Mean Difference|H0) .....................0 
Diff1 (Mean Difference|H1) .....................0.095310 0.182322 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................0.472381 
Alternative Hypothesis ............................H1: DIFF0<>Diff1 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for 2x2 Cross-Over Design 
Null Hypothesis: Diff0=Diff1     Alternative Hypothesis: Diff0<>Diff1 
       Effect 
Power N Diff0 Diff1 Alpha Beta Sw Size 
0.0928 20 0.000 0.095 0.0500 0.9072 0.472 0.202 
0.1925 60 0.000 0.095 0.0500 0.8075 0.472 0.202 
0.2925 100 0.000 0.095 0.0500 0.7075 0.472 0.202 
0.3885 140 0.000 0.095 0.0500 0.6115 0.472 0.202 
0.4777 180 0.000 0.095 0.0500 0.5223 0.472 0.202 
0.5627 220 0.000 0.095 0.0500 0.4373 0.472 0.202 
0.2116 20 0.000 0.182 0.0500 0.7884 0.472 0.386 
0.5474 60 0.000 0.182 0.0500 0.4526 0.472 0.386 
0.7711 100 0.000 0.182 0.0500 0.2289 0.472 0.386 
0.8937 140 0.000 0.182 0.0500 0.1063 0.472 0.386 
0.9537 180 0.000 0.182 0.0500 0.0463 0.472 0.386 
0.9808 220 0.000 0.182 0.0500 0.0192 0.472 0.386 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 510 

Non-Inferiority & 
Superiority Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Differences 
Introduction 
This procedure computes power and sample size for non-inferiority and superiority tests in 2x2 
cross-over designs in which the outcome is a continuous normal random variable. The details of 
sample size calculation for the 2x2 cross-over design are presented in the 2x2 Cross-Over 
Designs chapter and they will not be duplicated here. This chapter only discusses those changes 
necessary for non-inferiority and superiority tests. Sample size formulas for non-inferiority and 
superiority tests of cross-over designs are presented in Chow et al. (2003) pages 63-68.  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carry-over effect. 
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A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry-over to the second. Thus, the groups in this design are 
defined by the sequence in which the two drugs are administered, not by the treatments they 
receive. 

Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size can be calculated using the 2x2 Cross-Over Design procedure. However, 
at the urging of our users, we have developed this module which provides the input and output in 
formats that are convenient for these types of tests. This section reviews the specifics of non-
inferiority and superiority testing. 

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0:μX A  versus H1:μX A>  ≤

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tailed 
test because it is rejected in samples in which the difference in sample means is larger than A. 

Following is an example of a lower-tailed test. 

H0:μX A≥  versus H1:μX A<  

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum difference that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value is shown to emphasize that this is a 
magnitude. The sign of the value will be determined by 
the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 
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Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than a small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied. 

A superiority test tests that the treatment mean is better than reference mean by more than a small 
equivalence margin. The actual direction of the hypothesis depends on the response variable 
being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. 

H0:μ μ εT R≤ −  versus  H1:μ μ εT R> −  

H0:μ μ εT R− ≤ −   versus  H1:μ μ εT R− > −  

H0:δ ε≤ −   versus  H1:δ ε> −  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. 

H0:μ μ εT R≥ +  versus  H1:μ μ εT R< +  

H0:μ μ εT R− ≥   versus  H1:μ μ εT R− <  

H0:δ ε≥   versus  H1:δ ε<  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of equivalence. The value of δ  must be greater than ε . 

H0:μ μ εT R≤ +  versus  H1:μ μ εT R> +  

H0:μ μ εT R− ≤   versus  H1:μ μ εT R− >  

H0:δ ε≤   versus  H1:δ ε>  
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Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of equivalence. The value of δ  must be less than − ε . 

H0:μ μ εT R≥ −  versus  H1:μ μ εT R< −  

H0:μ μ εT R− ≥ −   versus  H1:μ μ εT R− < −  

H0:δ ε≥ −   versus  H1:δ ε< −  

Test Statistics 
This section describes the test statistic that is used to perform the hypothesis test.  

T-Test 
A t-test is used to analyze the data. When the data are balanced between sequences, the two-sided 
t-test is equivalent to an analysis of variance F-test. The test assumes that the data are a simple 
random sample from a population of normally-distributed values that have the same variance. 
This assumption implies that the differences are continuous and normal. The calculation of the t-
statistic proceeds as follow 

( )

N

xxt

w

RT
d 2σ̂

ε−−
=  

where  is the within mean square error from the appropriate ANOVA table.  $σw
2

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. That is, the one-sided null 
hypothesis is rejected at the α  significance level if . Otherwise, no conclusion can be 
reached. 

t td N> −α , 2

If prior studies used a t-test rather than an ANOVA to analyze the data, you may not have a direct 
estimate of . Instead, you will have an estimate of the variance of the period differences from 
the t-test, . These variances are functionally related by . Either variance can be 
entered. 

σw
2

2ˆdσ σ σw
2 2= d

2

Computing the Power 
The power is calculated as follows.  

1. Find tα  such that , where ( )1− =T tdf α α ( )T xdf  is the area under a central-t curve to the 
left of x and df = N - 2. 

2. Calculate the noncentrality parameter: 
( )

2w

N
σ
εδλ −

= . 
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3. Calculate: Power = ( )1− ′T tdf ,λ α , where ( )′T xdf ,λ  is the area under a noncentral-t curve 
with degrees of freedom df and noncentrality parameter λ  to the left of x. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of inferiority 
when in fact the treatment mean is non-inferior. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of different means when in fact the means are different.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  
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You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 

 50 to 250 by 50.  using the syntax 50,100,150,200,250 or

Effect Size – Mean Difference 

|E| (Equivalence Margin) 
This is the magnitude of the margin of equivalence. It is the smallest difference between the mean 

alue that still results in the conclusion of non-inferiority (or superiority). Note 

zero as long as the values are consistent with the 
alternative hypothesis, H1. For superiority tests, this value is usually non-zero. Again, it must be 

1. 

and the reference v
that the sign of this value is assigned depending on the selections for Higher Is and Test Type. 

D (True Value) 
This is the actual difference between the mean and the reference value. For non-inferiority tests, 
this value is often set to zero, but it can be non-

consistent with the alternative hypothesis, H

Effect Size – Standard Deviation 

Specify
Specify the form

 S as Sw or Sd 
 of the standard deviation that is entered in the box below.  

• 
s the square root of the within mean square error from a 

ated measures ANOVA. This is the most common method since cross-over designs are 

• 
eviation S as the standard deviation of the individual treatment 

ANOVA table used to 
lue of Sd which is the standard 

These values must be positive. A list of values may be entered.  

n press the SD button to load the Standard Deviation Estimator window. 

Sw 
Specify the standard deviation S a
repe
usually analyzed using ANOVA. 

Sd 
Specify the standard d
differences. This option is used when you have previous studies that produced this value. 

S (Value of Sw or Sd) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in Specify S as Sw or Sd above. If S=Sw is selected, this is the value of Sw which is 
SQR(WMSE) where WMSE is the within mean square error from the 
analyze the Cross-Over design. If S = Sd is selected, this is the va
deviation of the period differences—pooled from both sequences. 

You ca
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Test 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 

This option defines whether higher values of the response variable are to be considered good or 
 pressure, higher values are usually considered 
igher values are considered good. 

treatment mean is within the margin of equivalence of being no worse than the reference mean. 
Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 

Higher is 

bad. For example, if the response variable is blood
bad. However, if the response variable is income, h

This option is used with Test Type to determine the direction of the hypothesis test. 

Example 1 – Power Analysis 
Suppose you want to consider the power of a balanced, cross-over design that will be analyzed 

-test approach. You want to compute the power when the margin of equivalence is 
 10 at several sample sizes between 5 and 50. The true difference between the means 

using the t
either 5 or
under H0 is assumed to be 0. Similar experiments have had an Sw of 10. The significance level is 
0.025.   

Setup 
This section presents the values of each of the parameters needed to run this example. Firs
the PASS

t, from 
 Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
s-Over Design [Differences] procedure window by clicking on Means, then Two 
hen 2x2 Cross-Over Designs, -Inferiority & Superiority Tests, then Specify 

rences. You may then follow along here by making the appropriate entries as listed 
emplate tab on the procedure 

2x2 Cros
Means, t then Non
using Diffe
below or load the completed template Example1 from the T
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 

red since this is the Find setting 
5 

 50 

D (True Difference) .................................0 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................10 
Test Type ................................................Non-Inferiority 
Higher Is..................................................Good 

Power ...................................................... Igno
Alpha .......................................................0.02
N (Total Sample Size) .............................5 10 15 20 30 40
|E| (Equivalence Margin).........................5 10 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Non-Inferiority T-Test (H0: D <= -|E|; H1: D > -|E|) 
 
 Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (Sw)  
0.08310 5 -5.000 0.000 0.02500 0.91690 10.000 
0.16563 10 -5.000 0.000 0.02500 0.83437 10.000 
0.24493 15 -5.000 0.000 0.02500 0.75507 10.000 
0.32175 20 -5.000 0.000 0.02500 0.67825 10.000 
0.46414 30 -5.000 0.000 0.02500 0.53586 10.000 
0.58682 40 -5.000 0.000 0.02500 0.41318 10.000 
0.68785 50 -5.000 0.000 0.02500 0.31215 10.000 
0.20131 5 -10.000 0.000 0.02500 0.79869 10.000 
0.50245 10 -10.000 0.000 0.02500 0.49755 10.000 
0.71650 15 -10.000 0.000 0.02500 0.28350 10.000 
0.84845 20 -10.000 0.000 0.02500 0.15155 10.000 
0.96222 30 -10.000 0.000 0.02500 0.03778 10.000 
0.99173 40 -10.000 0.000 0.02500 0.00827 10.000 
0.99835 50 -10.000 0.000 0.02500 0.00165 10.000 
 
Report Definitions 
H0 (null hypothesis) is that D <= -|E|, where D = Treatment Mean - Reference Mean. 
H1 (alternative hypothesis) is that D > -|E|. 
Power is the probability of rejecting H0 when it is false. It should be close to one. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
Alpha is the probability of a false positive H0. 
Beta is the probability of a false negative H0. 
|E| is the magnitude of the margin of equivalence. It is the largest difference that is not of practical significance. 
D is actual difference between the treatment and reference means. 
Sw is the square root of the within mean square error from the ANOVA table. 
 
Summary Statements 
A total sample size of 5 achieves 8% power to detect non-inferiority using a one-sided t-test 
when the margin of equivalence is -5.000, the true mean difference is 0.000, the significance 
level is 0.02500, and the square root of the within mean square error is 10.000. A 2x2 
cross-over design with an equal number in each sequence is used. 
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This report shows the values of each of the parameters, one scenario per row. The plot shows the 
relationship between sample size and power. We see that a sample size of about 20 is needed to 
achieve 80% power when E = -10. 

Example 2 – Finding the Sample Size 
Continuing with Example 1, suppose the researchers want to find the exact sample size necessary 
to achieve 90% power for both values of D.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
2x2 Cross-Over Design [Differences] procedure window by clicking on Means, then Two 
Means, then 2x2 Cross-Over Designs, then Non-Inferiority & Superiority Tests, then Specify 
using Differences. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power ......................................................0.90 
Alpha .......................................................0.025 
N (Total Sample Size) ............................. Ignored since this is the Find setting  
|E| (Equivalence Margin).........................5 10 
D (True Difference) .................................0 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................10 
Test Type ................................................Non-Inferiority 
Higher Is..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority T-Test (H0: D <= -|E|; H1: D > -|E|) 
 
 Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (Sw)  
0.90648 88 -5.000 0.000 0.02500 0.09352 10.000 
0.91139 24 -10.000 0.000 0.02500 0.08861 10.000 
 

This report shows the exact sample size necessary for each scenario.  

Note that the search for N is conducted across only even values of N since the design is assumed 
to be balanced. 
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Example 3 – Validation using Julious 
Julious (2004) page 1953 presents an example in which D = 0.0, E = 10, Sw = 20.00, alpha = 
0.025, and beta = 0.10. Julious obtains a sample size of 86.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
2x2 Cross-Over Design [Differences] procedure window by clicking on Means, then Two 
Means, then 2x2 Cross-Over Designs, then Non-Inferiority & Superiority Tests, then Specify 
using Differences. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example3 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power ......................................................0.10 
Alpha .......................................................0.025 
N (Total Sample Size) .............................Ignored since this is the Find setting  
|E| (Equivalence Margin).........................10 
D (True Difference) .................................0 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................20 
Test Type ................................................Non-Inferiority 
Higher Is ..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority T-Test (H0: D <= -|E|; H1: D > -|E|) 
 
 Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (Sw)  
0.90648 88 -10.000 0.000 0.02500 0.09352 20.000 
 

PASS obtained a sample size of 88, two higher than that obtained by Julious (2004). However, if 
you look at the power achieved by an N of 86, you will find that it is 0.899997—slightly less than 
the goal of 0.90. 
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Chapter 515 

Non-Inferiority & 
Superiority Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests for non-inferiority and 
superiority tests from a 2x2 cross-over design. This routine deals with the case in which the 
statistical hypotheses are expressed in terms mean ratios rather than mean differences.  

The details of testing the non-inferiority of two treatments using data from a 2x2 cross-over design 
are given in another chapter and they will not be repeated here. If the logarithms of the responses 
can be assumed to follow the normal distribution, hypotheses about non-inferiority and superiority 
stated in terms of the ratio can be transformed into hypotheses about the difference. The details of 
this analysis are given in Julious (2004). They will only be summarized here.  
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Non-Inferiority Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  E Margin of equivalence. This is a tolerance value that 
defines the maximum amount that is not of practical 
importance. This is the largest change in the mean ratio 
from the baseline value (usually one) that is still 
considered to be trivial.  

 φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of inferiority is 

H0 1: .φ φ φ≤ <L Lwhere  

and the alternative hypothesis of non-inferiority is  

H1:φ φ> L  

Log Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter is used to represent the variation in the data because of a unique relationship that it has 
in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be expressed as  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

 

Thus, the hypotheses can be stated in the original (Y) scale and then power can be analyzed in the 
transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented in another chapter and are not duplicated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of inferiority when in fact the treatment 
mean is non-inferior. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

Alpha (Significance Level) 
Specify one or more values of alpha. Alpha is the probably of a type-I error. A type-I error occurs 
when you reject the null hypothesis of inferiority when in fact the treatment group is not inferior 
to the reference group.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  
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When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Ratios 

E (Equivalence Margin) 
This is the magnitude of the relative margin of equivalence. It is the smallest change in the ratio 
of the two means that still results in the conclusion of non-inferiority (or superiority).  

For example, suppose the non-inferiority boundary for the mean ratio is to be 0.80. This value is 
interpreted as follows: if the mean ratio (Treatment Mean / Reference Mean) is greater than 0.80, 
the treatment group is non-inferior to the reference group. In this example, the margin of 
equivalence would be 1.00 - 0.80 = 0.20. 

This example assumed that higher values are better. If higher values are worse, an equivalence 
margin of 0.20 would be translated into a non-inferiority bound of 1.20. In this case, if the mean 
ratio is less than 1.20, the treatment group is non-inferior to the reference group. 

Note that the sign of this value is ignored. Only the magnitude is used. 

Recommended values: 

0.20 is a common value for the parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 0.95 since this will require a larger sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related. The relationship between these 
quantities is . 

$σw
2

σd
2 σw

2

σ σd w
2 22=

Test 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
treatment mean is within the margin of equivalence of being no worse than the reference mean. 
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Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are usually considered 
bad. However, if the response variable is income, higher values are probably considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is not 
inferior to standard drug. A 2x2 cross-over design will be used to test the non-inferiority of the 
treatment drug to the reference drug.   

Researchers have decided to set the margin of equivalence to 0.20. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.05. The power will be computed 
assuming that the true ratio is one. Sample sizes between 50 and 550 will be included in the 
analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
2x2 Cross-Over Design [Ratios] procedure window by clicking on Means, then Two Means, 
then 2x2 Cross-Over Designs, then Non-Inferiority & Superiority Tests, then Specify using 
Ratios. You may then follow along here by making the appropriate entries as listed below or load 
the completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Higher Is ..................................................Good 
Test Type ................................................Non-Inferiority 
E (Equivalence Margin)...........................0.20 
R1 (True Ratio) .......................................1.0 
COV (Coefficient of Variation).................1.50 
N (Total Sample Size) .............................50 to 550 by 100 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Ratio Test (H0: R <= 1-E; H1: R > 1-E) 
 
  Relative Ratio      
  Equivalence Equivalence Actual Significance    
  Margin Bound Ratio Level    
Power N (E) (RB) (R1) (Alpha) Beta COV  
0.2638 50 0.2000 0.8000 1.0000 0.0500 0.7362 1.5000 
0.5505 150 0.2000 0.8000 1.0000 0.0500 0.4495 1.5000 
0.7411 250 0.2000 0.8000 1.0000 0.0500 0.2589 1.5000 
0.8574 350 0.2000 0.8000 1.0000 0.0500 0.1426 1.5000 
0.9241 450 0.2000 0.8000 1.0000 0.0500 0.0759 1.5000 
0.9607 550 0.2000 0.8000 1.0000 0.0500 0.0393 1.5000 
 
Report Definitions 
H0 (null hypothesis) is that R <= 1-E, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is that R > 1-E. 
E is the magnitude of the relative margin of equivalence. 
RB is equivalence bound for the ratio. 
R1 is actual ratio between the treatment and reference means. 
COV is the coefficient of variation on the original scale.  
Power is the probability of rejecting H0 when it is false. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
Alpha is the probability of falsely rejecting H0. 
Beta is the probability of not rejecting H0 when it is false. 
 
Summary Statements 
A total sample size of 50 achieves 26% power to detect non-inferiority using a one-sided t-test 
when the relative margin of equivalence is 0.2000, the true mean ratio is 1.0000, the 
significance level is 0.0500, and the coefficient of variation on the original, unlogged scale 
is 1.5000. A 2x2 cross-over design with an equal number in each sequence is used. 

 

This report shows the power for the indicated scenarios. Note that if they want 90% power, they 
will require a sample of around 450 subjects. 

Plot Section 
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This plot shows the power versus the sample size. 
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Example 2 – Validation 
We could not find a validation example for this procedure in the statistical literature. Therefore, 
we will show that this procedure gives the same results as the non-inferiority test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example 1. Since the output for this example is shown above, only the output from the procedure 
that uses differences is shown below.   

To run the inferiority test on differences, we need the values of |E| and Sw. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
2x2 Cross-Over Design [Differences] procedure window by clicking on Means, then Two 
Means, then 2x2 Cross-Over Designs, then Non-Inferiority & Superiority Tests, then Specify 
using Differences. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example1a from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Higher Is ..................................................Good 
Test Type ................................................Non-Inferiority 
|E| (Equivalence Margin).........................0.223144 
D (True Difference) .................................0 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................1.085659 
N (Total Sample Size) .............................50 to 550 by 100 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority T-Test (H0: D <= -|E|; H1: D > -|E|) 
 
 Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (Sw)  
0.2638 50 -0.223 0.000 0.0500 0.7362 1.086 
0.5505 150 -0.223 0.000 0.0500 0.4495 1.086 
0.7411 250 -0.223 0.000 0.0500 0.2589 1.086 
0.8574 350 -0.223 0.000 0.0500 0.1426 1.086 
0.9242 450 -0.223 0.000 0.0500 0.0758 1.086 
0.9607 550 -0.223 0.000 0.0500 0.0393 1.086 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 520 

Equivalence Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Differences 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of the means of a 
2x2 cross-over design which is analyzed with a t-test. Schuirmann’s (1987) two one-sided tests 
(TOST) approach is used to test equivalence. Only a brief introduction to the subject will be 
given here. For a comprehensive discussion on the subject, refer to Chow and Liu (1999) and 
Julious (2004).  

Measurements are made on individuals that have been randomly assigned to one of two sequences. 
The first sequence receives the treatment followed by the reference (AB). The second sequence 
receives the reference followed by the treatment (BA). This cross-over design may be analyzed 
by a TOST equivalence test to show that the two means do not differ by more than a small 
amount, called the margin of equivalence. 

The definition of equivalence has been refined in recent years using the concepts of 
prescribability and switchability. Prescribability refers to ability of a physician to prescribe either 
of two drugs at the beginning of the treatment. However, once prescribed, no other drug can be 
substituted for it. Switchability refers to the ability of a patient to switch from one drug to another 
during treatment without adverse effects. Prescribability is associated with equivalence of 
location and variability. Switchability is associated with the concept of individual equivalence. 
This procedure analyzes average equivalence. Thus, it partially analyzes prescribability. It does 
not address equivalence of variability or switchability. 
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Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carryover effect. 

A 2x2 cross-over design contains to two sequences (treatment orderings) and two time periods 
(occasions). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry over to the second. Thus, the groups in this design are 
defined by the sequence in which the drugs are administered, not by the treatments they receive. 
Indeed, higher-order cross-over designs have been used in which the same treatment is used at 
both occasions. 

Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment into the study may 
be easier because each patient will receive both treatments. Finally, it is often more difficult to 
obtain a subject than to obtain a measurement. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. It may be difficult to separate the treatment 
effect from the period effect, the carry-over effect of the previous treatment, and the interaction 
between period and treatment. 

The design cannot be used when the treatment (or the measurement of the response) alters the 
subject permanently. Hence, it should not be used to compare treatments that are intended to 
provide a cure. 

Because subjects must be measured at least twice, it is often more difficult to keep patients 
enrolled in the study. It is arguably simpler to measure a subject once than to obtain their 
measurement twice. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 
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Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialize notation for the discussion of these 
tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum change that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value is shown to emphasize that this is a 
magnitude. The sign of the value will be determined by 
the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

The null hypothesis of non-equivalence is 

H or0 0 0: , .δ ε δ ε ε ε≤ ≥ < >L U L Uwhere  

and the alternative hypothesis of equivalence is  

H1:ε δ εL U< <  

Test Statistics 
This section describes the test statistic that is used to perform the hypothesis test.  

T-Test 
A t-test is used to analyze the data. The test assumes that the data are a simple random sample 
from a population of normally-distributed values that have the same variance. This assumption 
implies that the differences are continuous and normal. The calculation of the two, one-sided t-
tests proceeds as follow  
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where  is the within mean square error from the appropriate ANOVA table.  $σw
2
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The significance of each test statistic is determined by computing the p-value. If this p-value is 
less than a specified level (usually 0.05), the null hypothesis is rejected.  

If prior studies used a t-test rather than an ANOVA to analyze the data, you may not have a direct 
estimate of . Instead, you will have an estimate of the variance of the period differences from 
the t-test, . These variances are functionally related by . Either variance can be 
entered. 

σw
2

2ˆdσ 22 2 dw σσ =

Power Calculation 
The power of this test is given by 

)  and  (Pr 2,12,1 −−−− −≤≥ NUNL tTtT αα  

where  and T   are distributed as the bivariate, noncentral t distribution with noncentrality 
parameters  and  given by 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  
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Select Power and Beta when you want to calculate the power of an experiment that has already 
been run. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of unequal means 
when in fact the means are equal. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of unequal means when in fact the means are unequal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Equivalence Limits 

|EU| (Upper Equivalence Limit) 
This value gives upper limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are considered equivalent. 

Note that EL<0 and EU>0. Also, you must have EL<D<EU. 

-|EL| (Lower Equivalence Limit) 
This value gives lower limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are. 
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If you want symmetric limits, enter -UPPER LIMIT for EL to force EL = -|EU|.  

Note that EL<0 and EU>0. Also, you must have EL<D<EU. Finally, the scale of these numbers 
must match the scale of S. 

Effect Size – True Mean Difference 

D (True Difference) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between the equivalence limits EL 
and EU. 

Effect Size – Standard Deviation 

Specify S as Sw or Sd 
Specify the form of the standard deviation that is entered in the box below.  

• Sw 
Specify S as the square root of the within mean square error from a repeated measures 
ANOVA. This is the most common method since cross-over designs are usually analyzed 
using ANOVA. 

• Sd 
Specify S as the standard deviation of the individual treatment differences computed for each 
subject. This option is used when you have previous studies that produced this value. 

S (Value of Sw or Sd) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in Specify S as Sw or Sd above. If S = Sw is selected, this is the value of Sw which is 
SQR(WMSE) where WMSE is the within mean square error from the ANOVA table used to 
analyze the Cross-Over design. If S = Sd is selected, this is the value of Sd which is the standard 
deviation of the period differences—pooled from both sequences. 

These values must be positive. A list of values may be entered.  

You can press the SD button to load the Standard Deviation Estimator window. 



Equivalence Tests for Two Means in a 2x2 Cross-Over Design using Differences  520-7 

Example 1 – Finding Power 
A cross-over design is to be used to compare the impact of two drugs on diastolic blood pressure. 
The average diastolic blood pressure after administration of the reference drug is known to be 96 
mmHg. Researchers believe this average may drop to 92 mmHg with the use of a new drug. The 
within mean square error of similar studies is 324. Its square root is 18.   

Following FDA guidelines, the researchers want to show that the diastolic blood pressure with the 
new drug is within 20% of the diastolic blood pressure with the reference drug. Thus, the 
equivalence limits of the mean difference of the two drugs are -19.2 and 19.2. They decide to 
calculate the power for a range of sample sizes between 6 and 100. The significance level is 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Equivalence Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................6 10 16 20 40 60 80 100 
|EU| (Upper Equivalence Limit)...............19.2 
-|EL| (Lower Equivalence Limit) ..............-Upper Limit 
D (True Difference) .................................-4 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................18 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.1470 6 -19.20 19.20 -4.00 18.00 0.0500 0.8530 
0.3873 10 -19.20 19.20 -4.00 18.00 0.0500 0.6127 
0.6997 16 -19.20 19.20 -4.00 18.00 0.0500 0.3003 
0.8104 20 -19.20 19.20 -4.00 18.00 0.0500 0.1896 
0.9804 40 -19.20 19.20 -4.00 18.00 0.0500 0.0196 
0.9983 60 -19.20 19.20 -4.00 18.00 0.0500 0.0017 
0.9999 80 -19.20 19.20 -4.00 18.00 0.0500 0.0001 
1.0000 100 -19.20 19.20 -4.00 18.00 0.0500 0.0000 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects split between both sequences. 
EU & EL are the maximum allowable differences that still result in equivalence. 
D is the difference between the means at which the power is computed. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of rejecting non-equivalence when the means are non-equivalent. 
Beta is the probability of accepting non-equivalence when the means are equivalent. 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-period cross-over 
design, a total sample size of 6 achieves 15% power at a 5% significance level when the true 
difference between the means is -4.00, the square root of the within mean square error is 
18.00, and the equivalence limits are -19.20 and 19.20. 

 

This report shows the power for the indicated scenarios. Note that if they want 90% power, they 
will require a sample of around 30 subjects. 

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example 1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Equivalence Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.8 0.9  
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit)...............19.2 
-|EL| (Lower Equivalence Limit) ..............-Upper Limit 
D (True Difference) .................................-4 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................18 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.9032 26 -19.20 19.20 -4.00 18.00 0.0500 0.0968 
0.8104 20 -19.20 19.20 -4.00 18.00 0.0500 0.1896 
 

We note that 20 subjects are needed to achieve 80% power and 26 subjects are needed to achieve 
90% power.  
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Example 3 – Validation using Phillips 
Phillips (1990) page 142 presents a table of sample sizes for various parameter values. In this 
table, the treatment mean, standard deviation, and equivalence limits are all specified as 
percentages of the reference mean. We will reproduce the second line of the table in which the 
square root of the within mean square error is 20%; the equivalence limits are 20%; the treatment 
mean is 100%, 95%, 90%, and 85%; the power is 70%; and the significance level is 0.05. Phillips 
reports total sample size as 16, 20, 40, and 152 corresponding to the four treatment mean 
percentages. We will now setup this example in PASS.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Equivalence Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.7  
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit)...............20 
-|EL| (Lower Equivalence Limit) ..............-Upper Limit 
D (True Difference) .................................0 -5 -10 -15 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................20 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.7001 152 -20.00 20.00 -15.00 20.00 0.0500 0.2999 
0.7092 40 -20.00 20.00 -10.00 20.00 0.0500 0.2908 
0.7221 20 -20.00 20.00 -5.00 20.00 0.0500 0.2779 
0.7031 16 -20.00 20.00 0.00 20.00 0.0500 0.2969 

 

Note that PASS has obtained the same samples sizes as Phillips (1990).  
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Example 4 – Validation using Machin 
Machin et al. (1997) page 107 present an example of determining the sample size for a cross-over 
design in which the reference mean is 35.03, the treatment mean is 35.03, the standard deviation, 
entered as the square root of the within mean square error, is 40% of the reference mean, the 
limits are plus or minus 20% of the reference mean, the power is 80%, and the significance level 
is 0.10. Machin et al. calculate the total sample size to be 54.  

When the parameters are given as percentages of the reference mean, it is easy enough to 
calculate the exact amounts by applying those percentages. However, the percentages can all be 
entered directly as long as all parameters (EU, EL, D, and Sw) are specified as percentages. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Equivalence Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.8  
Alpha .......................................................0.10 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit)...............20 
-|EL| (Lower Equivalence Limit) ..............-Upper Limit 
D (True Difference) .................................0 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................40 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.8050 54 -20.00 20.00 0.00 40.00 0.1000 0.1950 
 

Note that PASS also has obtained a sample size of 54.  
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Example 5 – Validation using Chow and Liu 
Chow and Liu (1999) page 153 present an example of determining the sample size for a cross-
over design in which the reference mean is 82.559, the treatment mean is 82.559, the standard 
deviation, entered as the square root of the within mean square error,  is 15.66%, the limits are 
plus or minus 20%, the power is 80%, and the significance level is 0.05. They calculate a sample 
size of 12. PASS calculates a sample size of 13. To see why PASS has increased the sample size 
by one, we will evaluate the power at sample sizes of 10, 12, 13, 14, and 16. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Equivalence Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................10 12 13 14 16 
|EU| (Upper Equivalence Limit)...............20 
-|EL| (Lower Equivalence Limit) ..............-Upper Limit 
D (True Difference) .................................0 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................15.66 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.6643 10 -20.00 20.00 0.00 15.66 0.0500 0.3357 
0.7932 12 -20.00 20.00 0.00 15.66 0.0500 0.2068 
0.8363 13 -20.00 20.00 0.00 15.66 0.0500 0.1637 
0.8752 14 -20.00 20.00 0.00 15.66 0.0500 0.1248 
0.9258 16 -20.00 20.00 0.00 15.66 0.0500 0.0742 

 

The power for N = 12 is 0.7932. The power for N = 13 is 0.8363. Hence, to achieve better than 
80% power, a sample size of 13 is necessary. However, 0.7932 is sufficiently close to 0.800 to 
make N = 12 a reasonable choice (as Chow and Liu did). 
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Example 6 – Validation using Senn 
Senn (1993) page 217 presents an example of determining the sample size for a cross-over design 
in which the reference mean is equal to the treatment mean, the standard deviation, entered as the 
square root of the within mean square error, is 45, the equivalence limits are plus or minus 30, the 
power is 80%, and the significance level is 0.05. He calculates a sample size of 40. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by clicking on Means, then Two Means, then 2x2 
Cross-Over Designs, then Equivalence Tests, then Specify using Differences. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.8  
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit)...............30 
-|EL| (Lower Equivalence Limit) ..............-Upper Limit 
D (True Difference) .................................0 
Specify S as Sw or Sd.............................Sw 
S (Value of Sw or Sd)..............................45 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.8004 40 -30.00 30.00 0.00 45.00 0.0500 0.1996 
 

PASS also calculates a sample size of 40. 
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Chapter 525 

Equivalence Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of the means 
from a 2x2 cross-over design which is analyzed with a t-test. This routine deals with the case in 
which the statistical hypotheses are expressed in terms mean of ratios rather than mean differences.  

The details of testing the equivalence of two treatments using data from a 2x2 cross-over design are 
given in another chapter and will not be repeated here. If the logarithms of the responses can be 
assumed to follow the normal distribution, hypotheses about the equivalence of two means stated in 
terms of the ratio can be transformed into hypotheses about the difference. The details of this 
analysis are given in Julious (2004). They will only be summarized here.  

Equivalence Testing Using Ratios 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialized notation for the discussion of 
these tests. 
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Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

φ φL U,  RL, RU Margin of equivalence. These limits that define an 
interval of the ratio of the means in which their 
difference is so small that it may be ignored.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of non-equivalence is 

H or0 1 1: , .φ φ φ φ φ φ≤ ≥ < >L U L Uwhere  

and the alternative hypothesis of equivalence is  

H1:φ φ φL U< <  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 

( ) ( ) ( ){ } ( )

φ φ φ

φ μ
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φ μ μ

L U
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≤ ≤
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≤

⇒ ≤ − ≤ln ln ln ln φU

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

When performing an equivalence test on the difference between means, the usual procedure is to 
set the equivalence limits symmetrically above and below zero. Thus the equivalence limits will 
be plus or minus an appropriate amount. The common practice is to do the same when the data 
are being analyzed on the log scale. However, when symmetric limits are set on the log scale, 
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they do not translate to symmetric limits on the original scale. Instead, they translate to limits that 
are the inverses of each other. 

Perhaps these concepts can best be understood by considering an example. Suppose the 
researchers have determined that the lower equivalence limit should be 80% on the original scale. 
Since they are planning to use a log scale for their analysis, they transform this limit to the log 
scale by taking the logarithm of 0.80. The result is -0.223144. Wanting symmetric limits, they set 
the upper equivalence limit to 0.223144. Exponentiating this value, they find that exp(0.223144) 
= 1.25. Note that 1/(0.80) = 1.25. Thus, the limits on the original scale are 80% and 125%, not 
80% and 120%.  

Using this procedure, appropriate equivalence limits for the ratio of two means can be easily 
determined. Here are a few sets of equivalence limits. 
 
 Lower Upper Lower Upper 
Specified Limit Limit  Limit Limit 
Percent Original Original  Log Log 
Change Scale Scale Scale Scale 
-25% 75.0% 133.3% -0.287682 0.287682 
+25% 80.0% 125.0% -0.223144 0.223144 
-20% 80.0% 125.0% -0.223144 0.223144 
+20% 83.3% 120.0% -0.182322 0.182322 
-10% 90.0% 111.1% -0.105361 0.105361 
+10% 90.9% 110.0% -0.095310 0.095310 

 

Note that negative percent-change values specify the lower limit first, while positive percent-
change values specify the upper limit first. After the first limit is found, the other limit is 
calculated as its inverse. 

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be expressed as  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented in another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of unequal means 
when in fact the means are equal. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of unequal means when in fact the means are unequal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Equivalence Limits 

RU (Upper Equivalence Limit) 
Enter the upper equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RL, the two means are said to be equivalent. The value must be greater 
than one. A popular choice is 1.25. Note that this value is not a percentage. 

If you enter 1/RL, then 1/RL will be calculated and used here. This choice is commonly used 
because RL and 1/RL give limits that are of equal magnitude on the log scale. 
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RL (Lower Equivalence Limit) 
Enter the lower equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RU, the two means are said to be equivalent. The value must be less than 
one. A popular choice is 0.80. Note that this value is not a percentage. 

If you enter 1/RU, then 1/RU will be calculated and used here. This choice is commonly used 
because RU and 1/RU give limits that are of equal magnitude on the log scale. 

Effect Size – True Ratio 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance using the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related. The relationship between these 
quantities is . 

$σw
2

σd
2 σw

2

σ σd w
2 22=
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Example 1 – Finding Power 
A company has opened a new manufacturing plant and wants to show that the drug produced in 
the new plant is equivalent to that produced in an older plant. A cross-over design will be used to 
test the equivalence of drugs produced at the two plants.   

Researchers have decided to set the equivalence limits for the ratio at 0.90 and 1.111 (note that 
1.111 = 1/0.90). Past experience leads the researchers to set the COV to 0.50. The significance 
level is 0.05. The power will be computed assuming that the true ratio is one. Sample sizes 
between 50 and 550 will be included in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Ratios] procedure window by clicking on Means, then Two Means, then 2x2 Cross-
Over Designs, then Equivalence Tests, then Specify using Ratios. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................50 to 550 by 100 
RU (Upper Equivalence Limit) ................1/RL 
RL (Lower Equivalence Limit) .................0.90 
R1 (True Ratio) .......................................1.0 
COV (Coefficient of Variation).................0.50 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
  Lower Upper    
 Total Equiv. Equiv.  Coefficient  
 Sample Limit Limit True of  
 Size of Ratio of Ratio Ratio Variation   
Power (N) (RL) (RU) (R1) (COV) Alpha Beta 
0.0000 50 0.9000 1.1111 1.0000 0.5000 0.0500 1.0000 
0.2190 150 0.9000 1.1111 1.0000 0.5000 0.0500 0.7810 
0.6002 250 0.9000 1.1111 1.0000 0.5000 0.0500 0.3998 
0.8064 350 0.9000 1.1111 1.0000 0.5000 0.0500 0.1936 
0.9101 450 0.9000 1.1111 1.0000 0.5000 0.0500 0.0899 
0.9596 550 0.9000 1.1111 1.0000 0.5000 0.0500 0.0404 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects split between both sequences. 
RU & RL are the upper and lower equivalence limits. Ratios between these limits are equivalent. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale.  
Alpha is the probability of rejecting non-equivalence when the means are non-equivalent. 
Beta is the probability of accepting non-equivalence when the means are equivalent. 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-period cross-over 
design, a total sample size of 50 achieves 0% power at a 5% significance level when the true 
ratio of the means is 1.0000, the coefficient of variation on the original, unlogged scale is 
0.5000, and the equivalence limits of the mean ratio are 0.9000 and 1.1111. 

 

This report shows the power for the indicated scenarios. Note that if they want 90% power, they 
will require a sample of around 450 subjects. 

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Validation using Julious 
Julious (2004) page 1963 presents a table of sample sizes for various parameter values. The 
power is 0.90 and the significance level is 0.05. The COV is set to 0.25, the ‘level of 
bioequivalence’ is set to 10%, 15%, 20%, and 25%, and the true ratio is set to 1.00, the necessary 
sample sizes are 120, 52, 28, and 18. Note that the level of bioequivalence as defined in Julious 
(2004) is equal to 1 – RL.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Ratios] procedure window by clicking on Means, then Two Means, then 2x2 Cross-
Over Designs, then Equivalence Tests, then Specify using Ratios. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
RU (Upper Equivalence Limit) ................1/RL 
RL (Lower Equivalence Limit) .................0.90 0.85 0.80 0.75 
R1 (True Ratio) .......................................1.00 
COV (Coefficient of Variation).................0.25 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
  Lower Upper    
 Total Equiv. Equiv.  Coefficient  
 Sample Limit Limit True of  
 Size of Ratio of Ratio Ratio Variation   
Power (N) (RL) (RU) (R1) (COV) Alpha Beta 
0.9121 18 0.7500 1.3333 1.0000 0.2500 0.0500 0.0879 
0.9023 28 0.8000 1.2500 1.0000 0.2500 0.0500 0.0977 
0.9060 52 0.8500 1.1765 1.0000 0.2500 0.0500 0.0940 
0.9012 120 0.9000 1.1111 1.0000 0.2500 0.0500 0.0988 

 

Note that PASS obtains the same samples sizes as Julious (2004). 
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Chapter 530 

Non-Inferiority & 
Superiority Tests 
for Two Means in a 
Higher-Order 
Cross-Over 
Design using 
Differences 
Introduction 
This procedure calculates power and sample size for non-inferiority and superiority tests which use 
the difference in the means of a higher-order cross-over design. Measurements are made on 
individuals that have been randomly assigned to one of several treatment sequences. Only a brief 
introduction to the subject will be given here. For a comprehensive discussion on the subject, 
refer to Chen et al. (1997) and Chow et al. (2003).  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
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between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 
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Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests. Remember 
that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-sided tests are 
defined as  

A  versus H1:δ > A  H0:δ ≤

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tailed 
test because H0 is rejected only in samples in which the difference in sample means is larger than 
A. 

Following is an example of a lower-tailed test. 

H0:δ ≥ A  versus H1:δ < A  

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  
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Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum difference that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value symbols are shown to emphasize that this 
is a magnitude. The sign of the value will be determined 
by the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than a small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

A superiority test tests that the treatment mean is better than the reference mean by more than a 
small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. The null and alternative hypotheses are 

H0:μ μ εT R≤ −  versus  H1:μ μ εT R> −  

H0:μ μ εT R− ≤ −   versus  H1:μ μ εT R− > −  

H0:δ ε≤ −   versus  H1:δ ε> −  
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Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. The null and alternative hypotheses are 

H0:μ μ εT R≥ +  versus  H1:μ μ εT R< +  

H0:μ μ εT R− ≥   versus  H1:μ μ εT R− <  

H0:δ ε≥   versus  H1:δ ε<  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of equivalence. The specified value of δ  must be greater than the specified value of ε . 
The null and alternative hypotheses are 

H0:μ μ εT R≤ +  versus  H1:μ μ εT R> +  

H0:μ μ εT R− ≤   versus  H1:μ μ εT R− >  

H0:δ ε≤   versus  H1:δ ε>  

Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of equivalence. The specified value of δ  must be less than the specified value of − ε . The null 
and alternative hypotheses are 

H0:μ μ εT R≥ −  versus  H1:μ μ εT R< −  

H0:μ μ εT R− ≥ −   versus  H1:μ μ εT R− < −  

H0:δ ε≥ −   versus  H1:δ ε< −  

Test Statistics 
The analysis for assessing equivalence (and thus non-inferiority) using higher-order cross-over 
designs is discussed in detail in Chapter 9 of Chow and Liu (2000). Unfortunately, their 
presentation is too lengthy to give here. Their method involves the computation of an analysis of 
variance to estimate the error variance. It also describes the construction of confidence limits for 
appropriate contrasts. One-sided confidence limits can be used for non-inferiority tests. Details of 
this approach are given in Chapter 3 of Chow et al. (2003). We refer you to these books for 
details. 
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Power Calculation 
The power of the non-inferiority and superiority tests for the case in which higher values are 
better is given by 

Power T
b n
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where T represents the cumulative t distribution, V and b depend on the design, σW is the square 
root of the within mean square error from the ANOVA table used to analyze the cross-over 
design, and n is the average number of subjects per sequence. Note that the constants V and b 
depend on the design as follows.  

The power of the non-inferiority and superiority tests for the case in which higher values are 
worse is given by  
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The constants V and b depend on the design as follows: 

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
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want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  

Effect Size – Mean Difference 

|E| (Equivalence Margin) 
This is the magnitude of the margin of equivalence. It is the smallest difference between the 
treatment and reference means that still results in the conclusion of non-inferiority (or 
superiority). The sign of this value is assigned depending on the selections for Higher Is and Test 
Type. 

D (True Difference) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between zero and |E|. 
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Effect Size – Standard Deviation 

Sw (Within Standard Error) 
Specify one or more values of Sw, which is SQR(WMSE) where WMSE is the within mean 
square error from the ANOVA table used to analyze the cross-over design. These values must be 
positive.  

You can press the Standard Deviation Estimator button to load the Standard Deviation Estimator 
window. 

Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
treatment mean is within the margin of equivalence of being no worse than the reference mean. 
Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are often considered 
bad. However, if the response variable is income, higher values are usually considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 
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Example 1 – Finding Power 
Researchers want to calculate the power of a non-inferiority test using data from a two-sequence, 
dual cross-over design. The margin of equivalence is either 5 or 10 at several sample sizes 
between 6 and 66. The true difference between the means under is assumed to be 0. Similar 
experiments have had a standard deviation (Sw) of 10. The significance level is 0.025.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
Higher-Order Cross-Over Design [Differences] procedure window by clicking on Means, then 
Two Means, then Higher-Order Cross-Over Designs, then Non-Inferiority & Superiority 
Tests, then Specify using Differences. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.025 
N (Total Sample Size) .............................6 to 66 by 10 
|E| (Equivalence Margin).........................5 10 
D (True Difference) .................................0 
Sw (Within Standard Error) .....................10 
Design Type ............................................2x3 (Two-Sequence Dual) 
Test Type ................................................Non-Inferiority 
Higher Is..................................................Good 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Difference 
Design: Two-Sequence Dual Cross-Over. Hypotheses: H0: D <= -|E|; H1: D > -|E|. 
 
 Total Sequences  Difference Standard  
 Sample and Equivalence for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) |E| (D) (Sw) Alpha Beta 
0.1139 6 2x3 5.00 0.00 10.00 0.0250 0.8861 
0.3405 16 2x3 5.00 0.00 10.00 0.0250 0.6595 
0.5282 26 2x3 5.00 0.00 10.00 0.0250 0.4718 
0.6744 36 2x3 5.00 0.00 10.00 0.0250 0.3256 
0.7817 46 2x3 5.00 0.00 10.00 0.0250 0.2183 
0.8571 56 2x3 5.00 0.00 10.00 0.0250 0.1429 
0.9084 66 2x3 5.00 0.00 10.00 0.0250 0.0916 
Report continues… 
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Report Definitions 
Power is the probability of rejecting H0 (concluding non-inferiority) when H0 is false. 
N is the total number of subjects. They are divided evenly among all sequences. 
S is the number of sequences. 
P is the number of periods per sequence. 
|E| is the magnitude of the margin of equivalence. It is the largest difference that is not of practical 
significance. 
D is the difference between the means at which the power is computed. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of falsely rejecting H0 (falsely concluding non-inferiority). 
Beta is the probability of not rejecting H0 when it is false. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In a non-inferiority test on data for which higher values are better drawn from a two-sequence 
dual cross-over design, a total sample size of 6 achieves 11% power at a 3% significance level 
when the true difference between the means is 0.00, the square root of the within mean square 
error is 10.00, and the equivalence margin is 5.00. 

 

This report shows the power for the indicated scenarios.  

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
Higher-Order Cross-Over Design [Differences] procedure window by clicking on Means, then 
Two Means, then Higher-Order Cross-Over Designs, then Non-Inferiority & Superiority 
Tests, then Specify using Differences. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Equal Per Sequence) 
Power ......................................................0.80 0.90 
Alpha .......................................................0.025 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|E| (Equivalence Margin).........................5 10 
D (True Difference) .................................0 
Sw (Within Standard Error) .....................10 
Design Type ............................................2x3 (Two-Sequence Dual) 
Test Type ................................................Non-Inferiority 
Higher Is..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Non-Inferiority Using the Difference 
Design: Two-Sequence Dual Cross-Over. Hypotheses: H0: D <= -|E|; H1: D > -|E|. 
 
 Total Sequences  Difference Standard  
 Sample and Equivalence for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) |E| (D) (Sw) Alpha Beta 
0.9084 66 2x3 5.00 0.00 10.00 0.0250 0.0916 
0.8153 50 2x3 5.00 0.00 10.00 0.0250 0.1847 
0.9184 18 2x3 10.00 0.00 10.00 0.0250 0.0816 
0.8343 14 2x3 10.00 0.00 10.00 0.0250 0.1657 
 

When the equivalence margin is set to 5, 66 subjects are needed to achieve 90% power and 50 
subjects are needed to achieve at least 80% power.  
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Example 3 – Validation 
We could not find a validation example for this procedure in the statistical literature, so we will 
have to generate a validated example from within PASS. To do this, we use the Higher-Order, 
Cross-Over Equivalence using Differences procedure which was validated. By setting the upper 
equivalence limit to a large value (we used 22), we obtain results for a non-inferiority test.   

Suppose the square root of the within mean square error is 0.10, the equivalence limit is 0.20, the 
difference between the means is 0.05, the power is 90%, and the significance level is 0.05 (see the 
Example4 template). PASS calculates a sample size of 16.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
Higher-Order Cross-Over Design [Differences] procedure window by clicking on Means, then 
Two Means, then Higher-Order Cross-Over Designs, then Non-Inferiority & Superiority 
Tests, then Specify using Differences. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example3 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Equal Per Sequence) 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting 
|E| (Equivalence Margin).........................0.2 
D (True Difference) .................................0.05 
Sw (Within Standard Error) .....................0.10 
Design Type ............................................4x2 (Balaam) 

Data Tab (continued) 
Test Type ................................................Non-Inferiority 
Higher Is ..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Difference 
Design: Balaam’s Cross-Over. Hypotheses: H0: D <= -|E|; H1: D > -|E|. 
 
 Total Sequences  Difference Standard  
 Sample and Equivalence for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) |E| (D) (Sw) Alpha Beta 
0.9495 16 4x2 0.20 0.05 0.10 0.0500 0.0505 

 

PASS has also obtained a sample size of 16 using the non-inferiority procedure. 



  535-1 

Chapter 535 

Non-Inferiority & 
Superiority Tests 
for Two Means in a 
Higher-Order 
Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size for non-inferiority and superiority tests which use 
the ratio of the two means of a higher-order cross-over design. Measurements are made on 
individuals that have been randomly assigned to one of several treatment sequences. Only a brief 
introduction to the subject will be given here. For a comprehensive discussion on the subject, 
refer to Chen et al. (1997) and Chow et al. (2003). -  - 

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
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between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 
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Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests. Remember 
that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-sided tests are 
defined as  

A  versus H1:φ > A  H0:φ ≤

Rejecting H0 implies that the ratio of the mean is larger than the value A. This test is called an 
upper-tailed test because H0 is rejected only in samples in which the ratio of the sample means is 
larger than A. 

Following is an example of a lower-tailed test. 

H0:φ ≥ A  versus H1:φ < A  

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  
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Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  E Margin of equivalence. This is a tolerance value that 
defines the maximum deviation from unity that the mean 
ratio can be and still not be of practical importance. This 
is the largest change in the mean ratio from the baseline 
value (usually one) that is still considered to be trivial.  

 φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of inferiority is  

H where0 1 0: .φ ε ε≤ − >  

The alternative hypothesis of non-inferiority is  

H1 1: φ ε> −  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the alternative hypothesis are as follows. 

( ) ( ) ( ){ }

1

1

1

− <

⇒ − <
⎧
⎨
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⎫
⎬
⎭

⇒ − < −

ε φ

ε μ
μ

ε μ μ

T

R

T Rln ln ln

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter is used to represent the variation in the data because of a unique relationship that it has 
in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be found to be  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

 

Thus, the hypotheses can be stated in the original (Y) scale and then power analyzed in the 
transformed (X) scale. 

Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than a small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  
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A superiority test tests that the treatment mean is better than the reference mean by more than a 
small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The null and alternative hypotheses are 

(H0 1: )μ
μ

εT

R

≤ −  versus  ( )H1 1:μ
μ

εT

R

> −  

( ) ( ) ( )H0 1:ln ln lnμ μ εT R− ≤ −  versus  ( ) ( ) ( )H1 1:ln ln lnμ μ εT R− > −  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The null and alternative hypotheses are 

(H0 1: )μ
μ

εT

R

≥ +  versus  ( )H1 1:μ
μ

εT

R

< +  

( ) ( ) ( )H0 1:ln ln lnμ μ εT R− ≥ +  versus  ( ) ( ) ( )H1 1:ln ln lnμ μ εT R− < +  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of equivalence. The null and alternative hypotheses are 

(H0 1: )μ
μ

εT

R

≤ +  versus  ( )H1 1:μ
μ

εT

R

> +  

( ) ( ) ( )H0 1:ln ln lnμ μ εT R− ≤ +  versus  ( ) ( ) ( )H1 1:ln ln lnμ μ εT R− > +  

Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of equivalence. The null and alternative hypotheses are 

(H0 1: )μ
μ

εT

R

≥ −  versus  ( )H1 1:μ
μ

εT

R

< −  

( ) ( ) ( )H0 1:ln ln lnμ μ εT R− ≥ −  versus  ( ) ( ) ( )H1 1:ln ln lnμ μ εT R− < −  



Non-Inferiority & Superiority of Two Means in a H.O. Cross-Over Design - Ratios  535-7 

Test Statistics 
The analysis for assessing non-inferiority using higher-order cross-over designs is discussed in 
detail in Chapter 9 of Chow and Liu (2000). Unfortunately, their presentation is too lengthy to 
give here. Their method involves the computation of an analysis of variance to estimate the error 
variance. It also describes the construction of confidence limits for appropriate contrasts. One-
sided confidence limits can be used for non-inferiority tests. Details of this approach are given in 
Chapter 3 of Chow et al. (2003). We refer you to these books for details. 

Power Calculation 
The power of the non-inferiority and superiority tests for the case in which higher values are 
better is given by 

( )Power T
b n
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W
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where T represents the cumulative t distribution, V and b depend on the design, n is the average 
number of subjects per sequence, and 

( )σW YCOV= +ln 2 1  

The power of the non-inferiority and superiority tests for the case in which higher values are 
worse is given by  
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The constants V and b depend on the design as follows: 

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). These values must be integers greater than one.  

Effect Size – Ratios 

E (Equivalence Margin) 
This is the magnitude of the relative margin of equivalence. It is the smallest change in the ratio 
of the two means that still results in the conclusion of non-inferiority (or superiority).  

For example, suppose the non-inferiority boundary for the mean ratio is to be 0.80. This value is 
interpreted as follows: if the mean ratio (Treatment Mean / Reference Mean) is greater than 0.80, 
the treatment group is non-inferior to the reference group. In this example, the margin of 
equivalence would be 1.00 - 0.80 = 0.20. 

This example assumed that higher values are better. If higher values are worse, an equivalence 
margin of 0.20 would be translated into a non-inferiority bound of 1.20. In this case, if the mean 
ratio is less than 1.20, the treatment group is non-inferior to the reference group. 

Note that the sign of this value is ignored. Only the magnitude is used. 

Recommended values: 

0.20 is a common value for the parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger, more conservative, sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
treatment mean is within the margin of equivalence of being no worse than the reference mean. 
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Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are often considered 
bad. However, if the response variable is income, higher values are usually considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is not 
inferior to standard drug. Balaam’s cross-over design will be used.   

Researchers have decided to set the margin of equivalence at 0.20. Past experience leads the 
researchers to set the COV to 0.40. The significance level is 0.05. The power will be computed 
assuming that the true ratio is one. Sample sizes between 50 and 550 will be included in the 
analysis. Note that several of these sample size values are not divisible by 4. This is note a 
problem here because are main goal is to get an overview of power versus sample size. When 
searching for the sample size, we can request that only designs divisible by 4 be considered. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
Higher-Order Cross-Over Design [Ratios] procedure window by clicking on Means, then Two 
Means, then Higher-Order Cross-Over Designs, then Non-Inferiority & Superiority Tests, 
then Specify using Ratios. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................50 to 550 by 100 
E (Equivalence Margin)...........................0.20 
R1 (True Ratio) .......................................1 
COV (Coefficient of Variation).................0.40 
Design Type ............................................4x2 (Balaam) 
Test Type ................................................Non-Inferiority 
Higher Is ..................................................Good 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1-E; H1: R > 1-E. 
 
 Total Sequences  Mean Coef.  
 Sample and Equivalence Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (E) (R) (COV) Alpha Beta 
0.4096 50 4x2 0.20 1.00 0.40 0.0500 0.5904 
0.8024 150 4x2 0.20 1.00 0.40 0.0500 0.1976 
0.9438 250 4x2 0.20 1.00 0.40 0.0500 0.0562 
0.9853 350 4x2 0.20 1.00 0.40 0.0500 0.0147 
0.9964 450 4x2 0.20 1.00 0.40 0.0500 0.0036 
0.9992 550 4x2 0.20 1.00 0.40 0.0500 0.0008 
 
Report Definitions 
H0 (null hypothesis) is that R <= 1-E, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is that R > 1-E. 
Power is the probability of rejecting H0 (concluding non-inferiority) when H0 is false. 
N is the total number of subjects. They are divided evenly among all sequences. 
E is the magnitude of the relative margin of equivalence. 
R is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale. 
Alpha is the probability of falsely rejecting H0 (falsely concluding non-inferiority). 
Beta is the probability of not rejecting H0 when it is false. 
Balaam's Cross-Over Design with pattern: AA; BB; AB; BA 
 
Summary Statements 
In a non-inferiority test on data for which higher values are better drawn from Balaam's 
cross-over design, a total sample size of 50 achieves 41% power at a 5% significance level when 
the true ratio of the means is 1.00, the coefficient of variation is 0.40, and the relative 
equivalence margin is 0.20. 
 

This report shows the power for the indicated scenarios.  

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
Higher-Order Cross-Over Design [Ratios] procedure window by clicking on Means, then Two 
Means, then Higher-Order Cross-Over Designs, then Non-Inferiority & Superiority Tests, 
then Specify using Ratios. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Equal Per Sequence) 
Power ......................................................0.8 0.9 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting 
E (Equivalence Margin)...........................0.20 
R1 (True Ratio) .......................................1 
COV (Coefficient of Variation).................0.40 
Design Type ............................................4x2 (Balaam) 
Test Type ................................................Non-Inferiority 
Higher Is ..................................................Good 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1-E; H1: R > 1-E. 
 
 Total Sequences  Mean Coef.  
 Sample and Equivalence Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (E) (R) (COV) Alpha Beta 
0.9027 208 4x2 0.20 1.00 0.40 0.0500 0.0973 
0.8070 152 4x2 0.20 1.00 0.40 0.0500 0.1930 
 

When the equivalence margin is set to 0.20, we note that 208 subjects are needed to achieve 90% 
power and 152 subjects are needed to achieve at least 80% power.  
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Example 3 – Validation 
We could not find a validation example for this procedure in the statistical literature, so we will 
have to generate a validated example from within PASS. To do this, we use the Higher-Order, 
Cross-Over Equivalence using Ratios procedure which was validated. By setting the upper 
equivalence limit to a large value (we used 11), we obtain results for a non-inferiority test that can 
be used to validate this procedure.   

In the other procedure, suppose the coefficient of variation is 0.40, the equivalence limits are 0.80 
and 11.0, the true ratio of the means is 1, the power is 90%, and the significance level is 0.05. 
These settings are stored as Example4 in that procedure. PASS calculates a sample size of 208.  

We will now setup this example in PASS. The only difference is that now we set E to 0.2 instead 
of RL to 0.8. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Means in a 
Higher-Order Cross-Over Design [Ratios] procedure window by clicking on Means, then Two 
Means, then Higher-Order Cross-Over Designs, then Non-Inferiority & Superiority Tests, 
then Specify using Ratios. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example3 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Equal Per Sequence) 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
E (Equivalence Margin)...........................0.2 
R1 (True Ratio) .......................................1.0 
COV (Coefficient of Variation).................0.40 
Design Type ............................................4x2 (Balaam) 
Test Type ................................................Non-Inferiority 
Higher Is..................................................Good 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1-E; H1: R > 1-E. 
 
 Total Sequences  Mean Coef.  
 Sample and Equivalence Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (E) (R) (COV) Alpha Beta 
0.9027 208 4x2 0.20 1.00 0.40 0.0500 0.0973 

 

PASS has also obtained the sample size of 208.  
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Chapter 540 

Equivalence Tests 
for Two Means in a 
Higher-Order 
Cross-Over 
Design using 
Differences 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of two means of 
higher-order cross-over designs when the analysis uses a t-test or equivalent. The parameter of 
interest is the ratio of the two means. Schuirmann’s (1987) two one-sided tests (TOST) approach 
is used to test equivalence. Only a brief introduction to the subject will be given here. For a 
comprehensive discussion on the subject, refer to Chen, Chow, and Li (1997).  

Measurements are made on individuals that have been randomly assigned to one of several 
treatment sequences. This cross-over design may be analyzed by a TOST equivalence test to show 
that the two means do not differ by more than a small amount, called the margin of equivalence.  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
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between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 
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Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialized notation for the discussion of 
these tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum difference that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value is shown to emphasize that this is a 
magnitude. The sign of the value will be determined by 
the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

The null hypothesis of non-equivalence is 

H or where0 0 0: , .δ ε δ ε ε ε≤ ≥ < >L U L U  
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The alternative hypothesis of equivalence is  

H1:ε δ εL U< <  

Test Statistics 
The analysis for assessing equivalence using higher-order cross-over designs is discussed in detail 
in Chapter 9 of Chow and Liu (2000). Unfortunately, their presentation is too lengthy to give 
here. Their method involves the computation of an analysis of variance to estimate the error 
variance. It also describes the construction of confidence limits for appropriate contrasts. These 
confidence limits can then be compared to the equivalence limits to test for equivalence. We refer 
you to their book for details. 

Power Calculation 
The power is given by 

Power T
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t T t
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W
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σ

δ ε
σα α/ /, ,1 1  

where T represents the cumulative t distribution, V and b depend on the design, σW is the square 
root of the within mean square error from the ANOVA table used to analyze the cross-over 
design, and n is the average number of subjects per sequence. Note that the constants V and b 
depend on the design as follows.  

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  

You may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Equivalence Limits 

|EU| (Upper Equivalence Limit) 
This value gives the upper limit of equivalence. Differences outside EL and EU are not 
considered equivalent, while differences between them are.  

Note that EL must be less than zero and EU must be greater than zero. Also, D, EL, and EU must 
satisfy EL<D<EU. Finally, the scale of these numbers must match the scale of Sw. 

-|EL| (Lower Equivalence Limit) 
This value gives lower limit on equivalence. Differences outside EL and EU are not considered 
equivalent, while differences between them are.  

If you want symmetric limits, enter -UPPER LIMIT for EL to force EL = -|EU|.  

Note that EL must be less than zero and EU must be greater than zero. Also, D, EL, and EU must 
satisfy EL<D<EU. Finally, the scale of these numbers must match the scale of Sw. 

Effect Size – True Mean Difference 

D (True Difference) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between the equivalence limits, EL 
and EU. 

D, EL, and EU must satisfy EL<D<EU. Finally, the scale of these numbers must match the scale 
of Sw. 

Effect Size – Standard Deviation 

Sw (Within Standard Error) 
Specify one or more values of Sw, which is SQR(WMSE) where WMSE is the within mean 
square error from the ANOVA table used to analyze the cross-over design. These values must be 
positive.  

You can press the SD button to load the Standard Deviation Estimator window. 

Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 
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Example 1 – Finding Power 
A two-sequence, dual cross-over design is to be used to compare the impact of two drugs on 
diastolic blood pressure. The average diastolic blood pressure after administration of the 
reference drug is 96 mmHg. Researchers believe this average may drop to 92 mmHg with the use 
of a new drug. The within mean square error found from similar studies is 324. Its square root is 
18.   

Following FDA guidelines, the researchers want to show that the diastolic blood pressure is 
within 20% of the diastolic blood pressure of the reference drug. Thus, the equivalence limits of 
the mean difference of the two drugs are -19.2 and 19.2. They decide to calculate the power for a 
range of sample sizes between 4 and 40. The significance level is 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Differences] procedure window by clicking on Means, then Two Means, 
then Higher-Order Cross-Over Designs, then Equivalence Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................4 6 8 10 12 14 16 18 20 30 40 
|EU| (Upper Equivalence Limit)...............19.2 
-|EL| (Lower Equivalence Limit) ..............-Upper Limit 
D (True Difference) .................................-4 
Sw (Within Standard Error) .....................18 
Design Type ............................................2x3 (Two-Sequence Dual) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the Equivalence of Two Means 
Design: Two-Sequence Dual Cross-Over 
 
 Total Sequences Lower Upper Diff. Standard  
 Sample and Equiv. Equiv. for Error   
 Size Periods Limit Limit Power of Diff.   
Power (N) (SxP) (EL) (EU) (D) (Sw) Alpha Beta 
0.0000 4 2x3 -19.20 19.20 -4.00 18.00 0.0500 1.0000 
0.1878 6 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.8122 
0.4375 8 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.5625 
0.5985 10 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.4015 
Report Continues… 
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Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects. They are divided evenly among all sequences. 
S is the number of sequences. 
P is the number of periods per sequence. 
EU & EL are the upper & lower limits of the maximum allowable difference that results in equivalence. 
D is the difference between the means at which the power is computed. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of rejecting non-equivalence when they are non-equivalent. 
Beta is the probability of accepting non-equivalence when they are equivalent. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-sequence dual 
cross-over design, a total sample size of 4 achieves 0% power at a 5% significance level when 
the true difference between the means is -4.00, the square root of the within mean square error 
is 18.00, and the equivalence limits are -19.20 and 19.20. 

 

This report shows the power for the indicated scenarios.  

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Differences] procedure window by clicking on Means, then Two Means, 
then Higher-Order Cross-Over Designs, then Equivalence Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Equal Per Sequence) 
Power ......................................................0.80 0.90 
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit)...............19.2 
-|EL| (Lower Equivalence Limit) ..............-Upper Limit 
D (True Difference) .................................-4 
Sw (Within Standard Error) .....................18 
Design Type ............................................2x3 (Two-Sequence Dual) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the Equivalence of Two Means 
Design: Two-Sequence Dual Cross-Over 
 
 Total Sequences Lower Upper Diff. Standard  
 Sample and Equiv. Equiv. for Error   
 Size Periods Limit Limit Power of Diff.   
Power (N) (SxP) (EL) (EU) (D) (Sw) Alpha Beta 
0.9119 20 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.0881 
0.8411 16 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.1589 
 

Twenty subjects are needed to achieve at least 90% power and sixteen subjects are needed to 
achieve at least 80% power.  
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Example 3 – Validation using Chen 
Chen et al. (1997) page 757 present a table of sample sizes for various parameter values. In this 
table, the treatment mean, standard deviation, and equivalence limits are all specified as 
percentages of the reference mean. We will reproduce the seventeenth line of the table in which 
the square root of the within mean square error is 10%, the equivalence limits are 20%, the 
difference between the means is 0%, 5%, 10%, and 15%, the power is 90%, and the significance 
level is 0.05. Chen reports total sample sizes of 24, 36, 72, and 276. We will now setup this 
example in PASS.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Differences] procedure window by clicking on Means, then Two Means, 
then Higher-Order Cross-Over Designs, then Equivalence Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Equal Per Sequence) 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit)...............0.2 
-|EL| (Lower Equivalence Limit) ..............-Upper Limit 
D (True Difference) .................................0 0.05 0.10 0.15 
Sw (Within Standard Error) .....................0.1 
Design Type ............................................4x2 (Balaam) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the Equivalence of Two Means 
Design: Balaam's Cross-Over 
 
 Total Sequences Lower Upper Diff. Standard  
 Sample and Equiv. Equiv. for Error   
 Size Periods Limit Limit Power of Diff.   
Power (N) (SxP) (EL) (EU) (D) (Sw) Alpha Beta 
0.9041 24 4x2 -0.20 0.20 0.00 0.10 0.0500 0.0959 
0.9266 36 4x2 -0.20 0.20 0.05 0.10 0.0500 0.0734 
0.9065 72 4x2 -0.20 0.20 0.10 0.10 0.0500 0.0935 
0.9003 276 4x2 -0.20 0.20 0.15 0.10 0.0500 0.0997 

 

PASS obtains the same samples sizes as Chen et al. (1997).  
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Chapter 545 

Equivalence Tests 
for Two Means in a 
Higher-Order 
Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of two means of 
higher-order cross-over designs when the analysis uses a t-test or equivalent. The parameter of 
interest is the ratio of the two means. Schuirmann’s (1987) two one-sided tests (TOST) approach 
is used to test equivalence. Only a brief introduction to the subject will be given here. For a 
comprehensive discussion on the subject, refer to Chen, Chow, and Li (1997).  

Measurements are made on individuals that have been randomly assigned to one of several 
treatment sequences. This cross-over design may be analyzed by a TOST equivalence test to show 
that the two means do not differ by more than a small amount, called the margin of equivalence.  

Measurements are made on individuals that have been randomly assigned to one of several 
treatment sequences. This cross-over design may be analyzed by a TOST equivalence test to show 
that the two means do not differ by more than a small amount, called the margin of equivalence.  
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Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 
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Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialized notation for the discussion of 
these tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

φ φL U,  RL, RU Margin of equivalence. These limits define an interval of 
the ratio of the means in which their difference is so 
small that it may be ignored.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 
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The null hypothesis of non-equivalence is 

H or where0 1 1: , .φ φ φ φ φ φ≤ ≥ < >L U L U  

The alternative hypothesis of equivalence is  

H1:φ φ φL U< <  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypothesis in terms of a ratio. 

2. Transform this into a hypothesis about the difference by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the alternative hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

When performing an equivalence test on the difference between means, the usual procedure is to 
set the equivalence limits symmetrically above and below zero. Thus, the equivalence limits will 
be plus or minus an appropriate amount. The common practice is to do the same when the data 
are being analyzed on the log scale. However, when symmetric limits are set on the log scale, 
they do not translate to symmetric limits on the original scale. Instead, they translate to limits that 
are the inverses of each other. 

Perhaps these concepts can best be understood by considering an example. Suppose the 
researchers have determined that the lower equivalence limit should be 80% on the original scale. 
Since they are planning to use a log scale for their analysis, they transform this limit into the log 
scale by taking the logarithm of 0.80. The result is -0.223144. Wanting symmetric limits, they set 
the upper equivalence limit to 0.223144. Exponentiating this value, they find that exp(0.223144) 
= 1.25. Note that 1/(0.80) = 1.25. Thus, the limits on the original scale are 80% and 125%, not 
80% and 120%.  

Using this procedure, appropriate equivalence limits for the ratio of two means can be easily 
determined. Here are a few sets of equivalence limits for ratios. 
 



Equivalence of Two Means in a Higher-Order Cross-Over Design using Ratios  545-5 

 Lower Upper Lower Upper 
Specified Limit Limit  Limit Limit 
Percent Original Original  Log Log 
Change Scale Scale Scale Scale 
-25% 75.0% 133.3% -0.287682 0.287682 
+25% 80.0% 125.0% -0.223144 0.223144 
-20% 80.0% 125.0% -0.223144 0.223144 
+20% 83.3% 120.0% -0.182322 0.182322 
-10% 90.0% 111.1% -0.105361 0.105361 
+10% 90.9% 110.0% -0.095310 0.095310 

Note that negative percent-change values specify the lower limit first, while positive percent-
change values specify the upper limit first. After the first limit is found, the other limit is 
calculated as its inverse. 

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be expressed as  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
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+ln 2 1
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Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Test Statistics 
The analysis for assessing equivalence using higher-order cross-over designs is discussed in detail 
in Chapter 9 of Chow and Liu (2000). Unfortunately, their presentation is too lengthy to give 
here. Their method involves the computation of an analysis of variance to estimate the error 
variance. It also describes the construction of confidence limits for appropriate contrasts. These 
confidence limits can then be compared to the equivalence limits to test for equivalence. We refer 
you to their book for details. 

Power Calculation 
The power is given by 
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where 

( )σW YCOV= +ln 2 1 , 

T represents the cumulative t distribution, V and b depend on the design, and n is the average 
number of subjects per sequence. Note that the constants V and b depend on the design as 
follows.  

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  

You may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50. 

Effect Size – Equivalence Limits 

RU (Upper Equivalence Limit) 
Enter the upper equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RL, the two means are said to be equivalent. The value must be greater 
than one. A popular choice is 1.25. Note that this value is not a percentage. 

If you enter 1/RL, then 1/RL will be calculated and used here. This choice is commonly used 
because RL and 1/RL give limits that are of equal magnitude on the log scale. 

RL (Lower Equivalence Limit) 
Enter the lower equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RU, the two means are said to be equivalent. The value must be less than 
one. A popular choice is 0.80. Note that this value is not a percentage. 

If you enter 1/RU, then 1/RU will be calculated and used here. This choice is commonly used 
because RU and 1/RU give limits that are of equal magnitude on the log scale. 

Effect Size – True Ratio 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger, more conservative, sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between two means. 
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Example 1 – Finding Power 
A company has opened a new manufacturing plant and wants to show that the drug produced in 
the new plant is equivalent to that produced in the older plant. A two-sequence, dual cross-over 
design will be used to test the equivalence of drugs produced at the two plants.   

Researchers have decided to set the equivalence limits for the ratio at 0.80 and 1.25. Past 
experience leads the researchers to set the COV to 0.40. The significance level is 0.05. The power 
will be computed assuming that the true ratio is 0.96. Sample sizes between 10 and 80 will be 
included in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Ratios] procedure window by clicking on Means, then Two Means, then 
Higher-Order Cross-Over Designs, then Equivalence Tests, then Specify using Ratios. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................10 20 30 40 60 80 
RU (Upper Equivalence Limit) ................1.25 
RL (Lower Equivalence Limit) .................1/RU 
R1 (True Ratio) .......................................0.96 
COV (Coefficient of Variation).................0.40 
Design Type ............................................2x3 (Two-Sequence Dual) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Total Sequences Lower Upper Mean Coef.  
 Sample and Equiv. Equiv. Ratio for of   
 Size Periods Limit Limit Power Variation   
Power (N) (SxP) (RL) (RU) (R1) (COV) Alpha Beta 
0.0000 10 2x3 0.80 1.25 0.96 0.40 0.0500 1.0000 
0.3051 20 2x3 0.80 1.25 0.96 0.40 0.0500 0.6949 
0.5858 30 2x3 0.80 1.25 0.96 0.40 0.0500 0.4142 
0.7483 40 2x3 0.80 1.25 0.96 0.40 0.0500 0.2517 
0.9035 60 2x3 0.80 1.25 0.96 0.40 0.0500 0.0965 
0.9627 80 2x3 0.80 1.25 0.96 0.40 0.0500 0.0373 
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Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects. They are divided evenly among all sequences. 
RU & RL are the upper and lower equivalence limits. Ratios between these limits are equivalent. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale.  
Alpha is the probability of rejecting non-equivalence when they are non-equivalent. 
Beta is the probability of accepting non-equivalence when they are equivalent. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-sequence dual 
cross-over design, a total sample size of 10 achieves 0% power at a 5% significance level when 
the true ratio of the means is 0.96, the coefficient of variation on the original (unlogged) 
scale is 0.40, and the equivalence limits are 0.80 and 1.25. 

 

This report shows the power for the indicated scenarios. Note that 60 subjects  will yield a power 
of just over 90%. 

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example 1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Ratios] procedure window by clicking on Means, then Two Means, then 
Higher-Order Cross-Over Designs, then Equivalence Tests, then Specify using Ratios. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Equal per Sequence) 
Power ......................................................0.80 0.90 
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
RU (Upper Equivalence Limit) ................1.25 
RL (Lower Equivalence Limit) .................1/RU 
R1 (True Ratio) .......................................0.96 
COV (Coefficient of Variation).................0.40 
Design Type ............................................2x3 (Two-Sequence Dual) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Total Sequences Lower Upper Mean Coef.  
 Sample and Equiv. Equiv. Ratio for of   
 Size Periods Limit Limit Power Variation   
Power (N) (SxP) (RL) (RU) (R1) (COV) Alpha Beta 
0.9035 60 2x3 0.80 1.25 0.96 0.40 0.0500 0.0965 
0.8119 46 2x3 0.80 1.25 0.96 0.40 0.0500 0.1881 
 

We note that 60 subjects are needed to achieve 90% power and 46 subjects are needed to achieve 
at least 80% power.  
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Example 3 – Validation using Chen 
Chen et al. (1997) page 761 presents a table of sample sizes for various parameter values for 
Balaam’s design. We will reproduce entries from the first and seventeenth lines of the table in 
which the COV is 10%, the equivalence limits are 0.8 and 1.25, the actual ratio of between the 
means is 1, the power values are 80% and 90%, and the significance level is 0.05. Chen reports 
total sample sizes of 16 and 20. We will now setup this example in PASS.   

The COV entered by Chen is the COV of the logged data. Since PASS requires the COV of the 
original data, we must use the relationship 

COV e

e

e

Y
w= −

= −

= −
=

σ 2

2

1

1

1
010025

0 1

0 01

.

.

.

 

to obtain the appropriate value of COV. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Ratios] procedure window by clicking on Means, then Two Means, then 
Higher-Order Cross-Over Designs, then Equivalence Tests, then Specify using Ratios. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Equal Per Sequence) 
Power ......................................................0.80 0.90 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting 
RU (Upper Equivalence Limit) ................1.25 
RL (Lower Equivalence Limit) .................1/RU 
R1 (True Ratio) .......................................1 
COV (Coefficient of Variation).................0.10025 
Design Type ............................................4x2 (Balaam) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Numeric Results for Testing the Equivalence of Two Means Using Ratios 
 Design: Balaam's Cross-Over 
 

 Total Sequences Lower Upper Mean Coef.  
 Sample and Equiv. Equiv. Ratio for of   
 Size Periods Limit Limit Power Variation   
Power (N) (SxP) (RL) (RU) (R) (COV) Alpha Beta 
0.9085 20 4x2 0.80 1.25 1.00 0.10 0.0500 0.0915 
0.8106 16 4x2 0.80 1.25 1.00 0.10 0.0500 0.1894 

 

Note that PASS has obtained the same samples sizes as Chen et al. (1997).  
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Chapter 550 

One-Way Analysis 
of Variance 
Introduction 
A common task in research is to compare the averages of two or more populations (groups). We 
might want to compare the income level of two regions, the nitrogen content of three lakes, or the 
effectiveness of four drugs. The one-way analysis of variance compares the means of two or more 
groups to determine if at least one mean is different from the others. The F test is used to 
determine statistical significance. F tests are non-directional in that the null hypothesis specifies 
that all means are equal and the alternative hypothesis simply states that at least one mean is 
different.  

The methods described here are usually applied to the one-way experimental design. This design 
is an extension of the design used for the two-sample t test. Instead of two groups, there are three 
or more groups. With careful modifications, this procedure may be used to test interaction terms 
as well. 

Planned Comparisons 
PASS performs power and sample size calculations for user-specified contrasts.  

The usual F test tests the hypothesis that all means are equal versus the alternative that at least 
one mean is different from the rest. Often, a more specific alternative is desired. For example, you 
might want to test whether the treatment means are different from the control mean, the low dose 
is different from the high dose, a linear trend exists across dose levels, and so on. These questions 
are tested using planned comparisons. 

We call the comparison planned because it was determined before the experiment was conducted. 
We planned to test the comparison.  

A comparison is a weighted average of the means, in which the weights may be negative. When 
the weights sum to zero, the comparison is called a contrast. PASS provides results for contrasts. 
To specify a contrast, we need only specify the weights. Statisticians call these weights the 
contrast coefficients.  

For example, suppose an experiment conducted to study a drug will have three dose levels: none 
(control), 20 mg., and 40 mg. The first question is whether the drug made a difference. If it did, 
the average response for the two groups receiving the drug should be different from the control. If 
we label the group means M0, M20, and M40, we are interested in comparing M0 with M20 and 
M40. This can be done in two ways. One way is to construct two tests, one comparing M0 and 
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M20 and the other comparing M0 and M40. Another method is to perform one test comparing 
M0 with the average of M20 and M40. These tests are conducted using planned comparisons. The 
coefficients are as follows: 

M0 vs. M20 

To compare M0 versus M20, use the coefficients -1,1,0. When applied to the group means, these 
coefficients result in the comparison M0(-1)+M20(1)+M40(0) which reduces to M20-M0. That 
is, this contrast results in the difference between the two group means. We can test whether this 
difference is non-zero using the t test (or F test since the square of the t test is an F test). 

M0 vs. M40 

To compare M0 versus M40, use the coefficients -1,0,1. When applied to the group means, these 
coefficients result in the comparison M0(-1)+M20(0)+M40(1) which reduces to M40-M0. That 
is, this contrast results in the difference between the two group means.  

M0 vs. Average of M20 and M40 

To compare M0 versus the average of M20 and M40, use the coefficients -2,1,1. When applied to 
the group means, these coefficients result in the comparison M0(-2)+M20(1)+M40(1) which is 
equivalent to M40+M20-2(M0).   

To see how these coefficients were obtained, consider the following manipulations. Beginning 
with the difference between the average of M20 and M40 and M0, we obtain the coefficients 
above—aside from a scale factor of one-half. 

( )

M

M M M

M M M

2
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2 2 1
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Assumptions 
Using the F test requires certain assumptions. One reason for the popularity of the F test is its 
robustness in the face of assumption violation. However, if an assumption is not even 
approximately met, the significance levels and the power of the F test are invalidated. 
Unfortunately, in practice it often happens that several assumptions are not met. This makes 
matters even worse. Hence, steps should be taken to check the assumptions before important 
decisions are made. 

The assumptions of the one-way analysis of variance are: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. Each group is normally distributed 
about the group mean. 

3. The variances of the populations are equal. 
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4. The groups are independent. There is no relationship among the individuals in one group 
as compared to another. 

5. Each group is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample. 

Technical Details for the One-Way ANOVA 
Suppose k groups each have a normal distribution and equal means ( )μ μ μ1 2= = =L k . Let 

 denote the number of subjects in each group and let N denote the total sample 
size of all groups. Let
n n nk1 2= = =L

μW denote the weighted mean of all groups. That is 

W
i=1

k
i

i =  n
N

μ μ∑⎛
⎝⎜

⎞
⎠⎟

 

Let σ  denote the common standard deviation of all groups.  

Given the above terminology, the ratio of the mean square between groups to the mean square 
within groups follows a central F distribution with two parameters matching the degrees of 
freedom of the numerator mean square and the denominator mean square. When the null 
hypothesis of mean equality is rejected, the above ratio has a noncentral F distribution which also 
depends on the noncentrality parameter, λ . This parameter is calculated as 

λ σ
σ

 =  N m
2

2  

where 

( )
m

i=1

k
i i W =  n -

Nσ
μ μ

∑
2

 

Some authors use the symbolφ for the noncentrality parameter. The relationship between the two 
noncentrality parameters is 

φ λ
=

k
. 

The process of planning an experiment should include the following steps: 

1. Determine an estimate of the within group standard deviation, σ. This may be done from 
prior studies, from experimentation with the Standard Deviation Estimation module, from 
pilot studies, or from crude estimates based on the range of the data. See the chapter on 
estimating the standard deviation for more details. 

2. Determine a set of means that represent the group differences that you want to detect. 

3. Determine the appropriate group sample sizes that will ensure desired levels of α  and 
β . Although it is tempting to set all group sample sizes equal, it is easy to show that 
putting more subjects in some groups than in others may have better power than keeping 
group sizes equal (see Example 4). 
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Power Calculations for One-Way ANOVA 
The calculation of the power of a particular test proceeds as follows: 

1. Determine the critical value,  whereFk N k− −1, ,α α is the probability of a type-I error and k 
and N are defined above. Note that this is a two-tailed test as no direction is assigned in 
the alternative hypothesis. 

2. From a hypothesized set ofμi s' , calculate the noncentrality parameterλ based on the 
values of  N, k, mσ , andσ . 

3. Compute the power as the probability of being greater than  on a noncentral-F 
distribution with noncentrality parameter 

Fk N k− −1, ,α

λ . 

Technical Details for a Planned Comparison 
The terminology of planned comparisons is identical to that of the one-way AOV, so the notation 
used above will be repeated here. 

Suppose you want to test whether the contrast C 

C =  c
i=1

k

i i∑ μ  

is significantly different from zero. Here the are the contrast coefficients.  c si '

Define 

mc
i=1

k

i i

i=1

k
i

i

 =  
c

N c
n

σ
μ∑

∑
2

 

Define the noncentrality parameterλc , as 

λ σ
σC

mc
2

2 =  N  

Power Calculations for Planned Comparisons 
The calculation of the power of a particular test proceeds as follows: 

1. Determine the critical value,  whereF N k1, ,− α α is the probability of a type-I error and k 
and N are defined above. Note that this is a two-tailed test as no direction is assigned in 
the alternative hypothesis. 

2. From a hypothesized set ofμi s' , calculate the noncentrality parameterλc based on the 
values of  N, k, mcσ , andσ . 
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3. Compute the power as the probability of being greater than  on a noncentral-F 
distribution with noncentrality parameter 

F N k1, ,− α

λc . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are SM, S, k, n, Alpha, and Power and Beta. Under most situations, you will 
select either Power and Beta for a power analysis or n for sample size determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size / Groups – Sample Size 
Multiplier 

n (Sample Size Multiplier) 
This is the base, per group, sample size. One or more values, separated by blanks or commas, 
may be entered. A separate analysis is performed for each value listed here. 

The group samples sizes are determined by multiplying this number by each of the Group Sample 
Size Pattern numbers. If the Group Sample Size Pattern numbers are represented by m1, m2, m3, 
…, mk and this value is represented by n, the group sample sizes N1, N2, N3, ..., Nk are calculated 
as follows: 

N1=[n(m1)] 

N2=[n(m2)] 

N3=[n(m3)] 

etc. 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. 

For example, suppose there are three groups and the Group Sample Size Pattern is set to 1,2,3. If 
n is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10, five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 

As a second example, suppose there are three groups and the Group Sample Size Pattern is 
0.2,0.3,0.5. When the fractional Pattern values sum to one, n can be interpreted as the total 
sample size of all groups and the Pattern values as the proportion of the total in each group.  

If n is 10, the three group sample sizes would be 2, 3, and 5. 

If n is 20, the three group sample sizes would be 4, 6, and 10. 

If n is 12, the three group sample sizes would be 

(0.2)12 = 2.4 which is rounded up to the next whole integer, 3. 

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4. 

(0.5)12 = 6.  

Note that in this case, 3+4+6 does not equal n (which is 12). This can happen because of 
rounding. 

Sample Size / Groups – Groups 

k (Number of Groups) 
This is the number of group means being compared. It must be greater than or equal to two.  

You can enter a list of values, in which case, a separate analysis will be calculated for each value. 
Commas or blanks may separate the numbers. A TO-BY list may be used. 



One-Way Analysis of Variance  550-7 

Note that the number of items used in the Hypothesized Means box and the Group Sample Size 
Pattern box is controlled by this number. 

Examples: 

2,3,4 

2 3 4 

2 to 10 by 2 

Group Sample Size Pattern 
A set of positive, numeric values, one for each group, is entered here. The sample size of group i 
is found by multiplying the ith number from this list times the value of n and rounding up to the 
next whole number. The number of values must match the number of groups, k. When too few 
numbers are entered, 1’s are added. When too many numbers are entered, the extras are ignored.  

• Equal 
If all sample sizes are to be equal, enter “Equal” here and the desired sample size in n. A set 
of k 1's will be used. This will result in N1 = N2 = N3 = n. That is, all sample sizes are equal 
to n.  

Effect Size – Means 

Hypothesized Means 
Enter a set of hypothesized means, one for each group. These means represent the group centers 
under the alternative hypothesis (the null hypothesis is that they are equal). The standard 
deviation of these means (SM) is used in the power calculations to represent the average size of 
the differences among the means. The standard deviation of the means is calculated using the 
formula: 

m
i=1

k
i

2

 =  ( - )
kσ

μ μ∑  

This quantity gives the magnitude of the differences among the group means. Note that when all 
means are equal, mσ  is zero. 

You should enter a set of means that give the pattern of differences you expect or the pattern that 
you wish to detect. For example, in a particular study involving three groups, your research might 
be “meaningful” if either of two treatment means is 50% larger than the control mean. If the 
control mean is 50, then you would enter 50,75,75 as the three means. 

It is usually more intuitive to enter a set of mean values. However, it is possible to enter the 
standard deviation of the means directly by placing an S in front of the number (see below).  

Some might wish to specify the alternative hypothesis as the effect size,  f, which is defined as  

f =  mσ
σ

 

If so, set σ = 1and . Cohen (1988) has designated values of f less than 0.1 as small, 
values around 0.25 to be medium, and values over 0.4 to be large. 

m fσ =
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Entering a List of Means 
If a set of numbers is entered without a leading S, they are assumed to be the hypothesized group 
means under the alternative hypothesis. Their standard deviation will be calculated and used in 
the calculations. Blanks or commas may separate the numbers. Note that it is not the values of the 
means themselves that is important, but only their differences. Thus, the mean values 0,1,2 
produce the same results as the values 100,101,102. 

If too few means are entered to match the number of groups, the last mean is repeated. For 
example, suppose that four means are needed and you enter 1,2 (only two means). PASS will 
treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the number of 
means needed. 

Examples: 

5 20 60 

2,5,7 

-4,0,6,9 

S Option 
If an S is entered before the list of numbers, they are assumed to be values of mσ , the standard 
deviations of the group means. A separate power calculation is made for each value. Note that 
this list can be a TO-BY phrase. 

Examples: 

S 4.7 

S 4.3 5.7 4.2 

S 10 to 20 by 2 

Effect Size – Planned Comparisons 

Contrast Coefficients 
If you want to analyze a specific planned comparison, enter a set of contrast coefficients here. 
The calculations will then refer to the hypothesis that the corresponding contrast of the means is 
zero versus the alternative that it is non-zero (two-sided test). These are often called Planned 
Comparisons. 

A contrast is a weighted average of the means in which the weights sum to zero. For example, 
suppose you are studying four groups and that the main hypothesis of interest is whether there is a 
linear trend across the groups. You would enter -3, -1, 1, 3 here. This would form the weighted 
average of the means: 

-3(Mean1)-(Mean2)+(Mean3)+3(Mean3) 

The point to realize is that these numbers (the coefficients) are used to calculate a specific 
weighted average of the means which is to be compared against zero using a standard F (or t) test. 

• NONE or blank 
When the box is left blank or the word None is entered, this option is ignored. 
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• Linear Trend 
A set of coefficients is generated appropriate for testing the alternative hypothesis that there 
is a linear (straight-line) trend across the means. These coefficients assume that the means are 
equally spaced across the trend variable. 

• Quadratic 
A set of coefficients is generated appropriate for testing the alternative hypothesis that the 
means follow a quadratic model. These coefficients assume that the means are equally spaced 
across the implicit X variable. 

• Cubic 
A set of coefficients is generated appropriate for testing the alternative hypothesis that the 
means follow a cubic model. These coefficients assume that the means are equally spaced 
across the implicit X variable. 

• First Against Others 
A set of coefficients is generated appropriate for testing the alternative hypothesis that the 
first mean is different from the average of the remaining means. For example, if there were 
four groups, the generated coefficients would be -3, 1, 1, 1. 

• List of Coefficients 
A list of coefficients, separated by commas or blanks, may be entered. If the number of items 
in the list does not match the number of groups (k), zeros are added or extra coefficients are 
truncated. 

Remember that these coefficients must sum to zero. Also, the scale of the coefficients does 
not matter. That is 0.5,0.25,0.25; -2,1,1; and -200,100,100 will yield the same results.  

To avoid rounding problems, it is better to use -3,1,1,1 than the equivalent -
1,0.333,0.333,0.333. The second set does not sum to zero. 

Effect Size – Standard Deviation 

S (Standard Deviation of Subjects) 
This isσ , the standard deviation within a group. It represents the variability from subject to 
subject that occurs when the subjects are treated identically. It is assumed to be the same for all 
groups. This value is approximated in an analysis of variance table by the square root of the mean 
square error. 

Since they are positive square roots, the numbers must be strictly greater than zero. You can press 
the SD button to obtain further help on estimating the standard deviation. 

Note that if you are using this procedure to test a factor (such as an interaction) from a more 
complex design, the value of standard deviation is estimated by the square root of the mean 
square of the term that is used as the denominator in the F test.  
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You can enter a list of values separated by blanks or commas, in which case, a separate analysis 
will be calculated for each value. 

Examples of valid entries: 

1,4,7,10 

1 4 7 10 

1 to 10 by 3 

Example 1 – Finding the Statistical Power 
An experiment is being designed to compare the means of four groups using an F test with a 
significance level of either 0.01 or 0.05. Previous studies have shown that the standard deviation 
within a group is 18. Treatment means of 40, 10, 10, and 10 represent clinically important 
treatment differences. To better understand the relationship between power and sample size, the 
researcher wants to compute the power for several group sample sizes between 2 and 14. The 
sample sizes will be equal across all groups.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then One-Way ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.01  0.05 
n (Sample Size Multiplier) .......................2 to 14 by 2 
k (Number of Groups) .............................4 
Group Sample Size Pattern ....................Equal 
Hypothesized Means...............................40 10 10 10 
Contrast Coefficients...............................None 
S (Standard Deviation of Subjects).........18 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.04238 2.00 4 8 0.01000 0.95762 12.99 18.00 0.7217 
0.17513 2.00 4 8 0.05000 0.82487 12.99 18.00 0.7217 
0.23886 4.00 4 16 0.01000 0.76114 12.99 18.00 0.7217 
0.52165 4.00 4 16 0.05000 0.47835 12.99 18.00 0.7217 
0.50581 6.00 4 24 0.01000 0.49419 12.99 18.00 0.7217 
0.77327 6.00 4 24 0.05000 0.22673 12.99 18.00 0.7217 
0.72695 8.00 4 32 0.01000 0.27305 12.99 18.00 0.7217 
0.90642 8.00 4 32 0.05000 0.09358 12.99 18.00 0.7217 
0.86702 10.00 4 40 0.01000 0.13298 12.99 18.00 0.7217 
0.96514 10.00 4 40 0.05000 0.03486 12.99 18.00 0.7217 
0.94143 12.00 4 48 0.01000 0.05857 12.99 18.00 0.7217 
0.98802 12.00 4 48 0.05000 0.01198 12.99 18.00 0.7217 
0.97623 14.00 4 56 0.01000 0.02377 12.99 18.00 0.7217 
0.99614 14.00 4 56 0.05000 0.00386 12.99 18.00 0.7217 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
n is the average group sample size. 
k is the number of groups. 
Total N is the total sample size of all groups. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Sm is the standard deviation of the group means under the alternative hypothesis. 
Standard deviation is the within group standard deviation. 
The Effect Size is the ratio of Sm to standard deviation. 
 
Summary Statements 
In a one-way ANOVA study, sample sizes of 2, 2, 2, and 2 are obtained from the 4 groups whose 
means are to be compared. The total sample of 8 subjects achieves 4% power to detect 
differences among the means versus the alternative of equal means using an F test with a 
0.01000 significance level. The size of the variation in the means is represented by their 
standard deviation which is 12.99. The common standard deviation within a group is assumed to 
be 18.00. 

 

This report shows the numeric results of this power study. Following are the definitions of the 
columns of the report. 

Power 
The probability of rejecting a false null hypothesis. 

Average n 
The average of the group sample sizes. 

k 
The number of groups. 

Total N 
The total sample size of the study. 

Alpha 
The probability of rejecting a true null hypothesis. This is often called the significance level. 
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Beta 
The probability of accepting a false null hypothesis that Sm is zero when Sm is actually equal to 
the value shown in the next column. 

Std Dev of Means (Sm) 
This is the standard deviation of the hypothesized means. It was computed from the hypothesized 
means. It is roughly equal to the average difference between the group means and the overall 
mean. 

Once you have computed this, you can enter a range of values to determine the effect of the 
hypothesized means on the power. 

Standard Deviation (S) 
This is the within-group standard deviation. It was set in the Data window. 

Effect Size 
The effect size is the ratio of SM to S. It is an index of relative difference between the means that 
can be compared from study to study. 

Detailed Results Report 
 

Details when Alpha = 0.01000, Power = 0.04238, SM = 12.99, S = 18.00 
  Percent  Deviation Ni 
  Ni of  From Times 
Group Ni Total Ni Mean Mean Deviation 
1 2 25.00 40.00 22.50 45.00 
2 2 25.00 10.00 7.50 15.00 
3 2 25.00 10.00 7.50 15.00 
4 2 25.00 10.00 7.50 15.00 
ALL 8 100.00 17.50   
 
Details when Alpha = 0.05000, Power = 0.17513, SM = 12.99, S = 18.00 
  Percent  Deviation Ni 
  Ni of  From Times 
Group Ni Total Ni Mean Mean Deviation 
1 2 25.00 40.00 22.50 45.00 
2 2 25.00 10.00 7.50 15.00 
3 2 25.00 10.00 7.50 15.00 
4 2 25.00 10.00 7.50 15.00 
ALL 8 100.00 17.50   

 

This report shows the details of each row of the previous report. 

Group 
The number of the group shown on this line. The last line, labeled ALL, gives the average or the 
total as appropriate. 

Ni 
This is the sample size of each group. This column is especially useful when the sample sizes are 
unequal. 

Percent Ni of Total Ni 
This is the percentage of the total sample that is allocated to each group. 

Mean 
The is the value of the Hypothesized Mean. The final row gives the average for all groups. 
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Deviation From Mean 
This is the absolute value of the mean minus the overall mean. Since Sm is the sum of the squared 
deviations, these values show the relative contribution to Sm. 

Ni Times Deviation 
This is the group sample size times the absolute deviation. It shows the combined influence of the 
size of the deviation and the sample size on Sm. 

Plots Section 
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This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the 
impact on the power of increasing the sample size and increase the significance level. 
When you create one of these plots, it is important to use trial and error to find an appropriate 
range for the horizontal variable so that you have results with both low and high power. 

Example 2 – Power after a Study 
This example will cover the situation in which you are calculating the power of a one-way 
analysis of variance F test on data that have already been collected and analyzed. 

An experiment included a control group and two treatment groups. Each group had seven 
individuals. A single response was measured for each individual and recorded in the following 
table. 
 

Control T1 T2 
452 646 685 
674 547 658 
554 774 786 
447 465 536 
356 759 653 
654 665 669 
558 767 557 
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When analyzed using the one-way analysis of variance procedure in NCSS, the following results 
were obtained.  
   
 Analysis of Variance Table  
   
 Source  Sum of Mean  Prob 
 Term DF Squares Square F-Ratio Level  
 A ( ... ) 2 75629.8 37814.9 3.28 0.061167 
 S(A) 18 207743.4 11541.3 
 Total (Adjusted) 20 283373.3 
 Total 21 
 
 Means Section 
    

Group Count Mean 
Control 7 527.8571 
T1 7 660.4286 
T2 7 649.1429 

 

The significance level (Prob Level) was only 0.061—not enough for statistical significance. The 
researcher had hoped to show that the treatment groups had higher response levels than the 
control group. He could see that the group means followed this pattern since the mean for T1 was 
about 25% higher than the control mean and the mean for T2 was about 23% higher than the 
control mean. He decided to calculate the power of the experiment using these values of the 
means. (We do not recommend this approach because the power should be calculated for the 
minimum difference among the means that is of interest, not at the values of the sample means.) 
The data entry for this problem is simple. The only entry that is not straight forward is finding an 
appropriate value for the standard deviation. Since the standard deviation is estimated by the 
square root of the mean square error, it is calculated as 11541.3 = 107 4304. . 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then One-Way ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................7 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
Hypothesized Means...............................527.8571 660.4286 649.1429 
Contrast Coefficients...............................None 
S (Standard Deviation of Subjects).........107.4304 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results  
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.54788 7.00 3 21 0.05000 0.45212 60.01 107.43 0.5586 

 

The power is only 0.55. That is, there was only a 55% chance of rejecting the false null 
hypothesis. It is important to understand this power statement is conditional, so we will state it in 
detail. Given that the population means are equal to the sample means (that Sm is 60.01) and the 
population standard deviation is equal to 107.43, the probability of rejecting the false null 
hypothesis is 0.55. If the population means are different from the sample means (which they must 
be), the power is different. However, the sample means provide a reasonable place to begin. 

Example 3 – Finding the Sample Size Necessary to 
Reject 
Continuing with the last example, we will determine how large the sample size would need to 
have been for alpha = 0.05 and beta = 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then One-Way ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n (Sample Size) 
Power ......................................................0.80 
Alpha .......................................................0.05 
n (Sample Size Multiplier) ....................... Ignored since this is the Find setting 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
Hypothesized Means...............................527.8571 660.4286 649.1429 
Contrast Coefficients...............................None 
S (Standard Deviation of Subjects).........107.4304 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Numeric Results for One-Way Analysis of Variance 

      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.82511 12.00 3 36 0.05000 0.17489 60.01 107.43 0.5586 

 
The required sample size is 12 per group or 36 subjects. 

Example 4 – Using Unequal Sample Sizes 
Continuing with the last example, consider the impact of allowing the group sample sizes to be 
unequal. Since the control group is being compared to two treatment groups, the mean of the 
control group is assumed to be different from those of the treatment groups. In this situation, 
experience has shown that adding extra subjects to the control group can increase the power. In a 
separate analysis, the power with 11 subjects per group was found to be 0.7851—not quite the 
required 0.80.  

We will try moving two subjects from each treatment group into the control group. This will give 
an experimental design with 15 in the control group and 9 in each of the treatment groups.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then One-Way ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Pay particular attention to how the sample size parameters were changed. The value of n is set to 
one so that it is essentially ignored. The Group Sample Size Pattern contains the three unequal 
sample sizes.  

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................1 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................15 9 9 
Hypothesized Means...............................527.8571 660.4286 649.1429 
Contrast Coefficients...............................None 
S (Standard Deviation of Subjects).........107.4304 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results  
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.82967 11.00 3 33 0.05000 0.17033 63.34 107.43 0.5896 
 

The power of 0.82967 achieved with the 33 subjects in this design is slightly higher than the 
power of 0.82511 that was achieved with the 36 subjects in the equal group size design. 
Apparently, unequal sample allocation can achieve better power! 

We suggest that you try several different sample allocations. You will find that the optimum 
sample allocation depends on the values of the hypothesized means.  

You should keep in mind that power may not be the only goal of the experiment. Other goals may 
include finding confidence intervals for each of the group means. And the narrowness of the 
width of the confidence interval is directly related to the sample size.  

Example 5 – Minimum Detectable Difference 
It may be useful to determine the minimum detectable difference among the means that can be 
found at the experimental conditions. This amounts to finding mσ (which we call Sm on the 
windows and printouts). 

Continuing with the previous example, find Sm for a wide range of sample sizes when alpha is 
0.05 and beta is 0.10 or 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then One-Way ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Sm (Std Dev of Means) 
Power ......................................................0.80 0.90 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................2 3 5 8 10 15 20 40 60 80 100 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
Hypothesized Means............................... Ignored since this is the Find setting 
Contrast Coefficients...............................None 
S (Standard Deviation of Subjects).........107.4304 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results  
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.90000 2.00 3 6 0.05000 0.10000 287.18 107.43 2.6732 
0.80000 2.00 3 6 0.05000 0.20000 244.31 107.43 2.2741 
0.90000 3.00 3 9 0.05000 0.10000 168.33 107.43 1.5669 
0.80000 3.00 3 9 0.05000 0.20000 145.82 107.43 1.3573 
0.90000 5.00 3 15 0.05000 0.10000 112.62 107.43 1.0483 
0.80000 5.00 3 15 0.05000 0.20000 98.08 107.43 0.9130 
0.90000 8.00 3 24 0.05000 0.10000 83.98 107.43 0.7817 
0.80000 8.00 3 24 0.05000 0.20000 73.23 107.43 0.6817 
0.90000 10.00 3 30 0.05000 0.10000 73.86 107.43 0.6875 
0.80000 10.00 3 30 0.05000 0.20000 64.42 107.43 0.5997 
0.90000 15.00 3 45 0.05000 0.10000 59.07 107.43 0.5499 
0.80000 15.00 3 45 0.05000 0.20000 51.54 107.43 0.4797 
0.90000 20.00 3 60 0.05000 0.10000 50.67 107.43 0.4716 
0.80000 20.00 3 60 0.05000 0.20000 44.21 107.43 0.4115 
0.90000 40.00 3 120 0.05000 0.10000 35.34 107.43 0.3289 
0.80000 40.00 3 120 0.05000 0.20000 30.83 107.43 0.2870 
0.90000 60.00 3 180 0.05000 0.10000 28.73 107.43 0.2674 
0.80000 60.00 3 180 0.05000 0.20000 25.07 107.43 0.2333 
0.90000 80.00 3 240 0.05000 0.10000 24.82 107.43 0.2311 
0.80000 80.00 3 240 0.05000 0.20000 21.66 107.43 0.2016 
0.90000 100.00 3 300 0.05000 0.10000 22.18 107.43 0.2064 
0.80000 100.00 3 300 0.05000 0.20000 19.35 107.43 0.1801 
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This plot shows the relationships between power, sample size, and detectable difference. Several 
conclusions are possible, but the most impressive is the sharp elbow in the curve that occurs near 
n = 10 when Sm is about 64. 

How do you interpret an Sm of 64? The easiest way is to generate a set of means that have a 
standard deviation of 64. To do this, press the SD button in the lower right corner of the One Way 
ANOVA panel to load the Standard Deviation Estimator module. Set N = 3, Mean = 0, and 
Standard Deviation = 64. Press the Two Unique Values button. This results in three means equal 
to -91, 45, and 45. The differences among these means are the minimum detectable differences 
that can be detecting with a sample size of 9 when the power is 80%. 
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Example 6 – Validation using Fleiss 
Fleiss (1986) page 374 presents an example of determining a sample size in an experiment with 4 
groups; means of 9.775, 12, 12, and 14.225; standard deviation of 3; alpha of 0.05, and beta of 
0.20. He finds a sample size of 11 per group.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then One-Way ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n (Sample Size) 
Power ......................................................0.80 
Alpha .......................................................0.05 
n (Sample Size Multiplier) ....................... Ignored since this is the Find setting 
k (Number of Groups) .............................4 
Group Sample Size Pattern ....................Equal 
Hypothesized Means...............................9.775 12 12 14.225 
Contrast Coefficients...............................None 
S (Standard Deviation of Subjects).........3 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.80273 11.00 4 44 0.05000 0.19727 1.57 3.00 0.5244 
 
 
Details when Alpha = 0.05000, Power = 0.80273, SM = 1.57, S = 3.00 
  Percent  Deviation Ni 
  Ni of  From Times 
Group Ni Total Ni Mean Mean Deviation 
1 11 25.00 9.78 2.23 24.48 
2 11 25.00 12.00 0.00 0.00 
3 11 25.00 12.00 0.00 0.00 
4 11 25.00 14.23 2.23 24.48 
ALL 44 100.00 12.00   

 
PASS also found n = 11. Note that Fleiss used calculations based on a normal approximation, but 
PASS uses exact calculations based on the non-central F distribution. 
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Example 7 – Validation using Desu 
Desu (1990) page 48 presents an example of determining a sample size in an experiment with 3 
groups; means of 0, -0.2553, and 0.2553; standard deviation of 1; alpha of 0.05, and beta of 0.10. 
He finds a sample size of 99 per group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then One-Way ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example7 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n (Sample Size) 
Power ......................................................0.90 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................Ignored since this is the Find setting 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
Hypothesized Means...............................0  -0.2553  0.2553 
Contrast Coefficients...............................None 
S (Standard Deviation of Subjects).........1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.90285 99.00 3 297 0.05000 0.09715 0.21 1.00 0.2085 
 
  
Details when Alpha = 0.05000, Power = 0.90285, SM = 0.21, S = 1.00 
  Percent  Deviation Ni 
  Ni of  From Times 
Group Ni Total Ni Mean Mean Deviation 
1 99 33.33 0.00 0.00 0.00 
2 99 33.33 -0.26 0.26 25.27 
3 99 33.33 0.26 0.26 25.27 
ALL 297 100.00 0.00   

 
PASS also found n = 99. 
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Example 8 – Validation using Kirk 
Kirk (1982) pages 140-144 presents an example of determining a sample size in an experiment 
with 4 groups; means of 2.75, 3.50, 6.25, and 9.0; standard deviation of 1.20995; alpha of 0.05, 
and beta of 0.05. He finds a sample size of 3 per group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then One-Way ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example8 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n (Sample Size) 
Power ......................................................0.95 
Alpha .......................................................0.05 
n (Sample Size Multiplier) ....................... Ignored since this is the Find setting 
k (Number of Groups) .............................4 
Group Sample Size Pattern ....................Equal 
Hypothesized Means...............................2.75 3.5 6.25 9 
Contrast Coefficients...............................None 
S (Standard Deviation of Subjects).........1.20995 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.99767 3.00 4 12 0.05000 0.00233 2.47 1.21 2.0376 

 
PASS also found n = 3. 
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Example 9 – Power of a Planned Comparison 
An experiment is being designed to study the response to different doses of a drug. Three groups, 
receiving a dose of 0, 10, and 20 milligrams of the drug, are anticipated. An F test will be used to 
test the hypothesis that the means exhibit a linear trend across the doses. The significance level is 
0.05. Previous studies have shown the within group standard deviation to be 18. Treatment means 
of 5, 16, and 30 represent clinically important treatment differences. To better understand the 
relationship between power and sample size, the researcher wants to compute the power for 
several group sample sizes between 2 and 18. The sample sizes will be equal across all groups.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then One-Way ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example9 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................2 to 18 by 2 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
Hypothesized Means...............................5 16 30 
Contrast Coefficients...............................Linear Trend 
S (Standard Deviation of Subjects).........18 

Axes/Legend/Grid Tab 
Vertical Range.........................................User (Given Below) 
Minimum..................................................0 
Maximum.................................................1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results Report 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.16781 2.00 3 6 0.05000 0.83219 10.21 18.00 0.5670 
0.41889 4.00 3 12 0.05000 0.58111 10.21 18.00 0.5670 
0.61410 6.00 3 18 0.05000 0.38590 10.21 18.00 0.5670 
0.75458 8.00 3 24 0.05000 0.24542 10.21 18.00 0.5670 
0.84932 10.00 3 30 0.05000 0.15068 10.21 18.00 0.5670 
0.91013 12.00 3 36 0.05000 0.08987 10.21 18.00 0.5670 
0.94768 14.00 3 42 0.05000 0.05232 10.21 18.00 0.5670 
0.97017 16.00 3 48 0.05000 0.02983 10.21 18.00 0.5670 
0.98329 18.00 3 54 0.05000 0.01671 10.21 18.00 0.5670 
 
Summary Statements 
In a one-way ANOVA study, sample sizes of 2, 2, and 2 are obtained from the 3 groups whose 
means are to be compared using a planned comparison (contrast). The total sample of 6 subjects 
achieves 17% power to detect a non-zero contrast of the means versus the alternative that the 
contrast is zero using an F test with a 0.05000 significance level. The value of the contrast 
of the means is 25.00. The common standard deviation within a group is assumed to be 18.00. 
 

This report shows the numeric results of this power study. Most of the definitions are the same as 
with the one-way ANOVA test. Following are the definitions that are different. 

Std Dev of Means (Sm) 
When displaying results for planned comparisons, this is not the standard deviation of the 
hypothesized means. Instead, it is a special function of the coefficients and the hypothesized 
means given by the equation 
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Effect Size 
The effect size is the ratio of SM to S. It is an index of relative difference between the means that 
can be compared from study to study. 
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Details Report 
 

Details when Alpha = 0.05000, Power = 0.16781, SM = 10.21, S = 18.00 
  Percent   Mean 
  Ni of  Contrast Times 
Group Ni Total N Mean Coefficient Contrast 
1 2 33.33 5.00 -1.000 -5.00 
2 2 33.33 16.00 0.000 0.00 
3 2 33.33 30.00 1.000 30.00 
ALL 6 100.00 17.00 0.00 25.00 
 

This report shows the details of each row of the previous report. It is especially useful because it 
shows the values of the contrast coefficients and the contrast (which is the value in the lower right 
corner of the table). 

Plots Section 
 

Power vs n with Sm=10.21 S=18.00 k=3 Alpha=0.05
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This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the 
impact on the power of increasing the sample size. 
When you create one of these plots, it is important to use trial and error to find an appropriate 
range for the horizontal variable so that you have results with both low and high power. 
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Chapter 555 

One-Way Analysis 
of Variance 
(Simulation) 
Introduction 
This procedure analyzes the power and significance level of the parametric F-Test and the 
nonparametric Kruskal-Wallis test which are used to test statistical hypotheses in a one-way 
experimental design. For each scenario that is set up, two simulations are run. One simulation 
estimates the significance level and the other estimates the power.  

Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify how the test is carried out. This includes indicating how the test statistic is 
calculated and how the significance level is specified. 

2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s 
power.  

3. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. Tabulate the number of rejections and use this to calculate the test’s significance 
level.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 
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Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draw the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Test Statistics 
Suppose g groups each have a normal distribution and meansμ μ μ1 2, , ,L g  and common 
standard deviation σ . Let  denote the number of subjects in each group and let N 
denote the total sample size of all groups. The tests that follow assume that the data are obtained 
by taking simple random samples from the g populations. 

n n ng1 2, , ,L

F-Test 
The formula for the calculation of the F-test is 
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If the assumptions are met, the distribution of this test statistic follows the F distribution with 
degrees of freedom g-1 and N-g. 

Kruskal-Wallis Test 
The Kruskal-Wallis test corrected for ties is calculated using the formula 
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Rk  is the sum of the ranks of the kth group, and t is the count of a particular tie. The distribution 
of W is approximately Chi-square with g-1 degrees of freedom. 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data1, Data 2, Reports, and Options tabs. To find out more about using 
the other tabs such as Axes/Legend/Grid, Plot Text, or Template, go to the chapter entitled 
Procedure Window. 

Data 1 Tab 
The Data 1 tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated using the values of the other parameters. 
Under most conditions, you would select either Power or n. 

Select Power when you want to estimate the power of a certain scenario.  

Select n when you want to determine the sample size needed to achieve a given power and alpha 
error level. This option is very computationally intensive, so it may take a long time to complete. 
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

n (Sample Size Multiplier) 
This is the base, per group, sample size. One or more values, separated by blanks or commas, 
may be entered. A separate analysis is performed for each value listed here. 

The group samples sizes are determined by multiplying this number by each of the Group Sample 
Size Pattern numbers. If the Group Sample Size Pattern numbers are represented by m1, m2, m3, 
…, mk and this value is represented by n, the group sample sizes N1, N2, N3, ..., Nk are calculated 
as follows: 

n1=[n(m1)] 

n2=[n(m2)] 

n3=[n(m3)] 

etc. 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. This is required since sample 
sizes must be whole numbers. 



One-Way Analysis of Variance (Simulation)  555-5 

For example, suppose there are three groups and the Group Sample Size Pattern is set to 1,2,3. If 
n is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10; five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 

As a second example, suppose there are three groups and the Group Sample Size Pattern is 
0.2,0.3,0.5. When the fractional Pattern values sum to one, n can be interpreted as the total 
sample size N of all groups and the Pattern values as the proportion of the total in each group.  

If n is 10, the three group sample sizes would be 2, 3, and 5. 

If n is 20, the three group sample sizes would be 4, 6, and 10. 

If n is 12, the three group sample sizes would be 

(0.2)12 = 2.4 which is rounded up to the next whole integer, 3. 

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4. 

(0.5)12 = 6.  

Note that in this case, 3+4+6 does not equal n (which is 12). This can happen because of 
rounding. 

Group Sample Size Pattern 
A set of positive, numeric values, one for each row of distributions, is entered here. Each item 
specified in this list applies to the whole row of distributions. For example, suppose the entry is 1 
2 1 and Grps 1 = 3, Grps 2 = 1, Grps 3 = 2. The sample size pattern used would be 1 1 1 2 1 1. 

The sample size of group i is found by multiplying the ith number from this list by the value of n 
and rounding up to the next whole number. The number of values must match the number of 
groups, g. When too few numbers are entered, 1’s are added. When too many numbers are 
entered, the extras are ignored. 

• Equal 
If all sample sizes are to be equal, enter Equal here and the desired sample size in n. A set of 
g 1's will be used. This will result in n1 = n2 = … = ng = n. That is, all sample sizes are equal 
to n.  

Test 

Test Statistic 
Specify which test is to be simulated. Although the F-test is the most commonly used test, it is 
based on assumptions that may not be viable in some situations. For your data, you may find that 
the Kruskal-Wallis test is more accurate (actual alpha = target alpha) and more precise (better 
power). 
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Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. The larger the number 
of iterations, the longer the running time, and, the more accurate the results. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Effect Size 
These options specify the distributions to be used in the two simulations, one set per row. The 
first option specifies the number of groups represented by the two distributions that follow. The 
second option specifies the distribution to be used in simulating the null hypothesis to determine 
the significance level (alpha). The third option specifies the distribution to be used in simulating 
the alternative hypothesis to determine the power.  

Grps [1 – 3] (Grps 4 – 9 are found on the Data 2 tab) 
This value specifies the number of groups specified by the H0 and H1 distribution statements to 
the right. Usually, you will enter ‘1’ to specify a single H0 and a single H1 distribution, or you 
will enter ‘0’ to indicate that the distributions specified on this line are to be ignored. This option 
lets you easily specify many identical distributions with a single phrase. 

The total number of groups g is equal to the sum of the values for the three rows of distributions 
shown under the Data1 tab and the six rows of distributions shown under the Data2 tab. 

Note that each item specified in the ‘Group Sample Size Pattern’ option applies to the whole row 
of entries here. For example, suppose the ‘Group Sample Size Pattern’ was ‘1 2 1’ and ‘Grps 1’ = 
3, ‘Grps 2’ = 1, and ‘Grps 3’ = 2. The sample size pattern would be ‘1 1 1 2 1 1’.  

Group Distribution(s)|H0 
This entry specifies the distribution of one or more groups under the null hypothesis, H0. The 
magnitude of the differences of the means of these distributions, which is often summarized as 
the standard deviation of the means, represents the magnitude of the mean differences specified 
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under H0. Usually, the means are assumed to be equal under H0, so their standard deviation 
should be zero except for rounding.  

These distributions are used in the simulations that estimate the actual significance level. They 
also specify the value of the mean under the null hypothesis, H0. Usually, these distributions will 
be identical. The parameters of each distribution are specified using numbers or letters. If letters 
are used, their values are specified in the boxes below. The value M0 is reserved for the value of 
the mean under the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 

Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Group Distribution(s)|H1 
Specify the distribution of this group under the alternative hypothesis, H1. This distribution is 
used in the simulation that determines the power. A fundamental quantity in a power analysis is 
the amount of variation among the group means. In fact, classical power analysis formulas, this 
variation is summarized as the standard deviation of the means.  

The important point to realize is that you must pay particular attention to the values you give to 
the means of these distributions because they are fundamental to the interpretation of the 
simulation. 

For convenience in specifying a range of values, the parameters of the distribution can be 
specified using numbers or letters. If letters are used, their values are specified in the boxes 
below. The value M1 is reserved for the value of the mean under the alternative hypothesis.  
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Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B, C) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values for each letter using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 
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Reports Tab 
The Reports tab contains settings about the format of the output. 

Select Output – Numeric Reports 

Show Numeric Reports & Plots 
These options let you specify whether you want to generate the standard reports and plots. 

Show Inc’s & 95% C.I. 
Checking this option causes an additional line to be printed showing a 95% confidence interval 
for both the power and actual alpha and half the width of the confidence interval (the increment). 

Select Output – Plots 

Show Comparative Reports & Plots 
These options let you specify whether you want to generate reports and plots that compare the test 
statistics that are available. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size is aborted. When 
the maximum number of iterations is reached without convergence, the sample size is left blank. 
We recommend a value of at least 500. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of values from which the random samples will be drawn. Pools should 
be at least the maximum of 10,000 and twice the number of simulations. You can enter Automatic 
and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 
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Example 1 – Power at Various Sample Sizes 
For this first example we repeat Example 1 of the regular One-Way ANOVA procedure. This will 
allow you to compare the values obtained by simulation with the actual values obtained from the 
theoretical results.   

An experiment is being designed to compare the means of four groups using an F test with a 
significance level of 0.05. Previous studies have shown that the standard deviation within a group 
is 18. Treatment means of 40, 10, 10, and 10 represent clinically important treatment differences. 
To better understand the relationship between power and sample size, the researcher wants to 
compute the power for group sample sizes of 4, 8, and 12. The group sample sizes are equal.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by clicking on Means, then Many Means (ANOVA), then One-Way ANOVA 
(Simulation). You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................4 8 12 
Group Sample Size Pattern ....................Equal 
Test Type ................................................F-Test 
Simulations..............................................2000 
Grps 1......................................................1 
Group 1 Distribution(s) | H0 ....................N(M0 S) 
Group 1 Distribution(s) | H1 ....................N(M1 S) 
Grps 2......................................................3 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M0 S) 
Grps 3......................................................0 
M0 (Mean|H0) .........................................10 
M1 (Mean|H1) .........................................40 
S ..............................................................18 

Options Tab 
Random Number Pool Size.....................Automatic 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results Report 
 

Numeric Results for Testing the g = 4 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 M1 S 
0.536 4.0 16 0.050 0.047 0.465 13.0 18.0 10.0 40.0 18.0    
(0.022) [0.514 0.557]  (0.009) [0.038 0.056]        
 
0.896 8.0 32 0.050 0.053 0.105 13.0 18.1 10.0 40.0 18.0    
(0.013) [0.882 0.909]  (0.010) [0.043 0.063]        
 
0.982 12.0 48 0.050 0.051 0.019 13.0 18.1 10.0 40.0 18.0    
(0.006) [0.976 0.987]  (0.010) [0.041 0.061]        
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 12.84 seconds. 
H0 Distributions: Normal(M0 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
H1 Distributions: Normal(M1 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
 
Report Definitions 
H0 represents the null hypothesis. 
H1 represents the alternative hypothesis. 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
'n' is the average of the group sample sizes. 
Total N is the total sample size of all groups combined. 
Target Alpha is the desired probability of rejecting a true null hypothesis.  
Actual Alpha is the alpha achieved by this simulation.  
Beta is the probability of accepting a false null hypothesis. 
Sm|H1 is the standard deviation of the group means under the alternative hypothesis. 
SD|H1 is the within group standard deviation under the alternative hypothesis. 
Second Row: (Power Prec.) [95% LCL and UCL Power]    (Alpha Prec.) [95% LCL and UCL Alpha] 
 
Summary Statements 
A one-way design with 4 groups has sample sizes of 4, 4, 4, and 4. The null hypothesis is that 
the standard deviation of the group means is 0.1 and the alternative standard deviation of the 
group means is 13.0. The total sample of 16 subjects achieves a power of 0.536 using the F-Test 
with a target significance level of 0.050 and an actual significance level of 0.047. The 
average within group standard deviation assuming the alternative distribution is 18.0. These 
results are based on 2000 Monte Carlo samples from the null distributions: Normal(M0 S); 
Normal(M0 S); Normal(M0 S); and Normal(M0 S) and the alternative distributions: Normal(M1 S); 
Normal(M0 S); Normal(M0 S); and Normal(M0 S). Other parameters used in the simulation were: M0 
= 10.0, M1 = 40.0, and S = 18.0. 

 

This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  
The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 

Power 
This is the probability of rejecting a false null hypothesis. This value is estimated by the 
simulation using the H1 distributions. 
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Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values are provided to help you understand the precision 
of the estimated power. 

Average Group Size n 
This is the average of the group sample sizes. 

Total Sample Size N 
This is the total sample size of the study. 

Target Alpha 
The target value of alpha: the probability of rejecting a true null hypothesis. This is often called 
the significance level.  

Actual Alpha 
This is the value of alpha estimated by the simulation using the H0 distributions. It should be 
compared with the Target Alpha to determine if the test statistic is accurate in this scenario.  

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values are provided to help you understand the precision 
of the Actual Alpha. 

Beta 
Beta is the probability of accepting a false null hypothesis. This is the value of beta estimated by 
the simulation using the H1 distributions.  

S.D. of Means Sm|H1 
This is the standard deviation of the hypothesized means of the alternative distributions. Under 
the null hypothesis, this value is zero. So this value represents the magnitude of the difference 
among the means that is being tested. It is roughly equal to the average difference between the 
group means and the overall mean.  

Note that the effect size is the ratio of Sm|H1 and SD|H1. 

S.D. of Data SD|H1 
This is the within-group standard deviation calculated from samples from the alternative 
distributions.  

M0 
This is the value entered for M0, the group means under H0. 

M1 
This is the value entered for M1, the group means under H1. 

S 
This is the value entered for S, the standard deviation. 
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Detailed Results Report 
 

Details when Target Alpha = 0.050, M0 = 10.0, M1 = 40.0, S = 18.0 
Test Statistic: F-Test 
  Percent H0 H1 H0 H1 H0 H1 Actual  
Group Ni Ni of N Mean Mean S.D. S.D. Sm Sm Alpha Power 
All 16 100.00 10.0 17.5 18.1 18.0 0.0 13.0 0.051 0.536 
1 4 25.00 10.0 40.0 17.7 17.9 
2 4 25.00 10.0 10.0 18.4 18.2 
3 4 25.00 10.0 10.0 18.2 17.8 
4 4 25.00 10.0 10.0 18.0 18.1 
 
Details when Target Alpha = 0.050, M0 = 10.0, M1 = 40.0, S = 18.0 
Test Statistic: F-Test 
  Percent H0 H1 H0 H1 H0 H1 Actual  
Group Ni Ni of N Mean Mean S.D. S.D. Sm Sm Alpha Power 
All 32 100.00 10.0 17.5 18.0 18.1 0.0 13.0 0.051 0.896 
1 8 25.00 10.0 40.0 17.9 18.1 
2 8 25.00 10.0 10.0 18.1 18.4 
3 8 25.00 10.0 10.0 18.1 18.1 
4 8 25.00 10.0 10.0 18.0 18.0 
 
Details when Target Alpha = 0.050, M0 = 10.0, M1 = 40.0, S = 18.0 
Test Statistic: F-Test 
  Percent H0 H1 H0 H1 H0 H1 Actual  
Group Ni Ni of N Mean Mean S.D. S.D. Sm Sm Alpha Power 
All 48 100.00 10.0 17.5 18.1 18.1 0.0 13.0 0.051 0.982 
1 12 25.00 10.0 40.0 18.3 18.0 
2 12 25.00 10.0 10.0 18.1 18.4 
3 12 25.00 10.0 10.0 18.2 18.0 
4 12 25.00 10.0 10.0 17.9 17.9 
 

This report shows the details of each row of the previous report. 

Group 
This is the number of the group shown on this line. The first line, labeled All, gives the average or 
the total as appropriate. 

Ni 
This is the sample size of each group. This column is especially useful when the sample sizes are 
unequal. 

Percent Ni of N 
This is the percentage of the total sample that is allocated to each group. 

H0 and H1 Means 
These are the means that were used in the simulations for H0 and H1, respectively.  

H0 and H1 S.D.’s 
These are the standard deviations that were obtained by the simulations for H0 and H1, 
respectively. Note that they often are not exactly equal to what was specified because of 
simulation error.  

H0 and H1 Sm’s 
These are the standard deviations of the means that were obtained by the simulations for H0 and 
H1, respectively. Under H0, the value of Sm should be near zero. It lets you determine if your 
simulation of H0 was correctly specified. 
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Plots Section 
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This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the 
impact on the power of increasing the sample size. 

Example 2 – Comparative Results 
Continuing with Example 1, the researchers want to study the characteristics of alternative test 
statistics. They want to compare the results of the F-test and the Kruskal-Wallis test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by clicking on Means, then Many Means (ANOVA), then One-Way ANOVA 
(Simulation). You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................4 8 12 
Group Sample Size Pattern ....................Equal 
Test Type ................................................F-Test 
Simulations..............................................2000 
Grps 1......................................................1 
Group 1 Distribution(s) | H0 ....................N(M0 S) 
Group 1 Distribution(s) | H1 ....................N(M1 S) 
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Data Tab (continued) 
Grps 2......................................................3 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M0 S) 
Grps 3......................................................0 
M0 (Mean|H0) .........................................10 
M1 (Mean|H1) .........................................40 
S ..............................................................18 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Testing the g = 4 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 M1 S    
0.510 4.0 16 0.050 0.051 0.490 13.0 17.8 10.0 40.0 18.0    
0.901 8.0 32 0.050 0.047 0.100 13.0 18.0 10.0 40.0 18.0    
0.986 12.0 48 0.050 0.046 0.015 13.0 18.1 10.0 40.0 18.0    
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 21.02 seconds. 
H0 Distributions: Normal(M0 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
H1 Distributions: Normal(M1 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
 
Power Comparison for Testing the g = 4 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Power Power M0 M1 S     
16 13.0 17.8 0.050 0.510 0.366 10.0 40.0 18.0     
32 13.0 18.0 0.050 0.901 0.860 10.0 40.0 18.0     
48 13.0 18.1 0.050 0.986 0.979 10.0 40.0 18.0     
 
Alpha Comparison for Testing the g = 4 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Alpha Alpha M0 M1 S     
16 13.0 16.5 0.050 0.042 0.026 10.0 40.0 18.0     
16 13.0 17.8 0.050 0.051 0.041 10.0 40.0 18.0     
32 13.0 18.0 0.050 0.047 0.042 10.0 40.0 18.0     
48 13.0 18.1 0.050 0.046 0.039 10.0 40.0 18.0     
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We notice that the power of the F-test is much greater than the Kruskal-Wallis test for n = 4. 
However, when n = 12, the powers of the two tests are almost equal. Note that the alpha value of 
the Kruskal-Wallis test is almost half that of the F-test for n = 4. This is probably why the power 
is also low.  

Example 3 – Validation using Fleiss 
Fleiss (1986) page 374 presents an example of determining an appropriate sample size when 
using an F-test in an experiment with 4 groups; means of 9.775, 12, 12, and 14.225; standard 
deviation of 3; alpha of 0.05, and beta of 0.20. He finds a sample size of 11 per group.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by clicking on Means, then Many Means (ANOVA), then One-Way ANOVA 
(Simulation). You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................0.80 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................Ignored since this is the Find setting 
Group Sample Size Pattern ....................Equal 
Test Type ................................................F-Test 
Simulations..............................................2000 
Grps 1......................................................1 
Group 1 Distribution(s) | H0 ....................N(M0 S) 
Group 1 Distribution(s) | H1 ....................N(9.775 S) 
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Data Tab (continued) 
Grps 2......................................................2 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M0 S) 
Grps 3......................................................1 
Group 3 Distribution(s) | H0 ....................N(M0 S) 
Group 3 Distribution(s) | H1 ....................N(14.225 S) 
M0 (Mean|H0) .........................................12 
M1 (Mean|H1) .........................................0 
S ..............................................................3 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the g = 4 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 S 
0.822 11.0 44 0.050 0.052 0.179 1.6 3.0 12.0 3.0     
(0.017) [0.805 0.838]  (0.010) [0.042 0.061]        
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 18.88 seconds. 
H0 Distributions: Normal(M0 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
H1 Distributions: Normal(9.775 S); Normal(M0 S); Normal(M0 S); and Normal(14.225 S) 
 
Details when Target Alpha = 0.050, M0 = 12.0, S = 3.0 
Test Statistic: F-Test 
  Percent H0 H1 H0 H1 H0 H1 Actual  
Group Ni Ni of N Mean Mean S.D. S.D. Sm Sm Alpha Power 
All 44 100.00 12.0 12.0 3.0 3.0 0.0 1.6 0.052 0.822 
1 11 25.00 12.0 9.8 3.0 3.0 
2 11 25.00 12.0 12.0 3.0 3.0 
3 11 25.00 12.0 12.0 3.0 3.0 
4 11 25.00 12.0 14.2 3.0 3.0 
 

Note that PASS has also found the group sample size to be 11. 
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Example 4 – Selecting a Test Statistic when the Data 
Contain Outliers 
The F-test is known to be robust to the violation of some assumptions, but it is susceptible to 
inaccuracy when the data contain outliers. This example will investigate the impact of outliers on 
the power and precision of the F-test and the Kruskal-Wallis test.  

A mixture of two normal distributions will be used to randomly generate outliers. The mixture 
will draw 95% of the data from a normal distribution with mean zero and variance one. The other 
5% of the data will come from a normal distribution with mean zero and variance that ranges 
from one to ten. In the alternative distributions, two will have a mean of zero and one will have a 
mean of one. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by clicking on Means, then Many Means (ANOVA), then One-Way ANOVA 
(Simulation). You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................10 20 
Group Sample Size Pattern ....................Equal 
Test Type ................................................F-Test 
Simulations..............................................2000 
Grps 1......................................................2 
Group 1 Distribution(s) | H0 ....................N(M0 S)[95];N(M0 A)[5] 
Group 1 Distribution(s) | H1 ....................N(M0 S)[95];N(M0 A)[5] 
Grps 2......................................................1 
Group 2 Distribution(s) | H0 ....................N(M0 S)[95];N(M0 A)[5] 
Group 2 Distribution(s) | H1 ....................N(M1 S)[95];N(M1 A)[5] 
Grps 3......................................................0 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................1 
S ..............................................................1 
A ..............................................................1 5 10 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing the g = 3 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 M1 S A 
0.588 10.0 30 0.050 0.054 0.413 0.5 1.0 0.0 1.0 1.0 1.0   
0.381 10.0 30 0.050 0.035 0.619 0.5 1.4 0.0 1.0 1.0 5.0   
0.321 10.0 30 0.050 0.026 0.680 0.5 2.4 0.0 1.0 1.0 10.0   
0.897 20.0 60 0.050 0.049 0.104 0.5 1.0 0.0 1.0 1.0 1.0   
0.618 20.0 60 0.050 0.047 0.383 0.5 1.5 0.0 1.0 1.0 5.0   
0.408 20.0 60 0.050 0.026 0.592 0.5 2.4 0.0 1.0 1.0 10.0   
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 40.30 seconds. 
H0 Distributions: Normal(M0 S)[95];Normal(M0 A)[5]; Normal(M0 S)[95];Normal(M0 A)[5]; and Normal(M0 
S)[95];Normal(M0 A)[5] 
H1 Distributions: Normal(M1 S)[95];Normal(M1 A)[5]; Normal(M0 S)[95];Normal(M0 A)[5]; and Normal(M0 
S)[95];Normal(M0 A)[5] 
 
Power Comparison for Testing the g = 3 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Power Power M0 M1 S A    
30 0.5 1.0 0.050 0.588 0.544 0.0 1.0 1.0 1.0    
30 0.5 1.4 0.050 0.381 0.458 0.0 1.0 1.0 5.0    
30 0.5 2.4 0.050 0.321 0.473 0.0 1.0 1.0 10.0    
60 0.5 1.0 0.050 0.897 0.880 0.0 1.0 1.0 1.0    
60 0.5 1.5 0.050 0.618 0.813 0.0 1.0 1.0 5.0    
60 0.5 2.4 0.050 0.408 0.801 0.0 1.0 1.0 10.0    
 
Alpha Comparison for Testing the g = 3 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Alpha Alpha M0 M1 S A    
30 0.5 1.0 0.050 0.054 0.055 0.0 1.0 1.0 1.0    
30 0.5 1.4 0.050 0.035 0.041 0.0 1.0 1.0 5.0    
30 0.5 2.4 0.050 0.026 0.041 0.0 1.0 1.0 10.0    
60 0.5 1.0 0.050 0.049 0.050 0.0 1.0 1.0 1.0    
60 0.5 1.5 0.050 0.047 0.054 0.0 1.0 1.0 5.0    
60 0.5 2.4 0.050 0.026 0.048 0.0 1.0 1.0 10.0    
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We note that when the variances are equal (A = 1), the F-Test is slightly better than the Kruskal-
Wallis test. However, as the number of outliers is increased, the F-test does increasingly worse 
both in terms of power and significance, but the Kruskal-Wallis test is considerably less affected. 

Example 5 – Selecting a Test Statistic when the Data are 
Skewed 
The F-test is known to be robust to the violation of some assumptions, but it is susceptible to 
inaccuracy when the underlying distributions are skewed. This example will investigate the 
impact of skewness on the power and precision of the F-test and the Kruskal-Wallis test. 

Tukey’s lambda distribution will be used because it allows the amount of skewness to be 
gradually increased.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by clicking on Means, then Many Means (ANOVA), then One-Way ANOVA 
(Simulation). You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................10 20 
Group Sample Size Pattern ....................Equal 
Test Type ................................................F-Test 
Simulations..............................................2000 
Grps 1......................................................2 
Group 1 Distribution(s) | H0 ....................L(M0 S G 0) 
Group 1 Distribution(s) | H1 ....................L(M0 S G 0) 
Grps 2......................................................1 
Group 2 Distribution(s) | H0 ....................L(M0 S G 0) 
Group 2 Distribution(s) | H1 ....................L(M1 S G 0) 
Grps 3......................................................0 
M0 (Mean|H0) .........................................0 
M1 (Mean|H0) .........................................1 
S ..............................................................1 
G..............................................................0 0.5 0.9 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results for Testing the g = 3 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 M1 S G 
0.596 10.0 30 0.050 0.050 0.405 0.5 1.0 0.0 1.0 1.0 0.0   
0.615 10.0 30 0.050 0.034 0.386 0.5 1.0 0.0 1.0 1.0 0.5   
0.719 10.0 30 0.050 0.036 0.281 0.5 1.0 0.0 1.0 1.0 0.9   
0.899 20.0 60 0.050 0.046 0.101 0.5 1.0 0.0 1.0 1.0 0.0   
0.902 20.0 60 0.050 0.050 0.098 0.5 1.0 0.0 1.0 1.0 0.5   
0.895 20.0 60 0.050 0.034 0.105 0.5 1.0 0.0 1.0 1.0 0.9   
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 40.30 seconds. 
H0 Distributions: Tukey(M0 S G 0); Tukey(M0 S G 0); and Tukey(M0 S G 0) 
H1 Distributions: Tukey(M0 S G 0); Tukey(M0 S G 0); and Tukey(M1 S G 0) 

 
Power Comparison for Testing the g = 3 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Power Power M0 M1 S G    
30 0.5 1.0 0.050 0.596 0.554 0.0 1.0 1.0 0.0    
30 0.5 1.0 0.050 0.615 0.735 0.0 1.0 1.0 0.5    
30 0.5 1.0 0.050 0.719 0.932 0.0 1.0 1.0 0.9    
60 0.5 1.0 0.050 0.899 0.871 0.0 1.0 1.0 0.0    
60 0.5 1.0 0.050 0.902 0.978 0.0 1.0 1.0 0.5    
60 0.5 1.0 0.050 0.895 1.000 0.0 1.0 1.0 0.9    
 
Alpha Comparison for Testing the g = 3 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Alpha Alpha M0 M1 S G    
30 0.5 1.0 0.050 0.050 0.045 0.0 1.0 1.0 0.0    
30 0.5 1.0 0.050 0.034 0.039 0.0 1.0 1.0 0.5    
30 0.5 1.0 0.050 0.036 0.047 0.0 1.0 1.0 0.9    
60 0.5 1.0 0.050 0.046 0.041 0.0 1.0 1.0 0.0    
60 0.5 1.0 0.050 0.050 0.046 0.0 1.0 1.0 0.5    
60 0.5 1.0 0.050 0.034 0.055 0.0 1.0 1.0 0.9    
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We note that as the skewness increases, the power of the Kruskal-Wallis test increases 
substantially as compared to the F-test.  
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Chapter 560 

Fixed Effects 
Analysis of 
Variance 
Introduction 
A common task in research is to compare the average response across levels of one or more factor 
variables. Examples of factor variables are income level of two regions, nitrogen content of three 
lakes, or drug dosage. The fixed-effects analysis of variance compares the means of two or more 
factors. F tests are used to determine statistical significance of the factors and their interactions. 
The tests are nondirectional in that the null hypothesis specifies that all means are equal and the 
alternative hypothesis simply states that at least one mean is different. This PASS module 
performs power analysis and sample size estimation for an analysis of variance design with up to 
three factors.  

In the following example, the responses of a weight loss experiment are arranged in a two-factor, 
fixed-effect, design. The first factor is diet (D1 and D2) and the second factor is dose level of a 
dietary drug (low, medium, and high). The twelve individuals available for this study were 
assigned at random to one of the six treatment groups (cells) so that there were two per group. 
The response variable was an individual’s weight loss after four months. 
 

Table of  Individual Weight Losses 
 Dietary Drug Dose Level 
Diet Low Medium High 

D1 14, 16 15, 18 23, 28 

D2 18, 21 18, 22 38, 39 

 

Important features to note are that each table entry represents a different individual and that the 
response variable (weight loss) is continuous, while the factors (Diet and Dose) are discrete.  
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Means can be calculated for each cell of the table. These means are shown in the table below. 
Note that we have added an additional row and column for the row, column, and overall means. 
The six means in the interior of this table are called the cell means. 
 

Table of Means   
 Dietary Drug Dose Level   
Diet Low Medium High Total 
D1 15.00 16.50 25.50 19.00 

D2 19.50 20.00 38.50 26.00 

Total 17.25 18.25 32.00 22.50 

The Linear Model 
A mathematical model may be formulated that underlies this experimental design. This model 
expresses each cell mean, μij ,  as the sum of parameters called effects. A common linear model 
for a two-factor experiment is 

μij i j ijm a b ab= + + + ( )  

where i = 1, 2, ..., I and j = 1, 2, ..., J. This model expresses the value of a cell mean as the sum of 
four components:  

m  the grand mean. 

ai  the effect of the ith level of factor A. Note that ai =∑ 0.  

bj  the effect of the jth level of factor B. Note that bj =∑ 0.  

abij  the combined effect of the ith level of factor A and the jth level of factor B. Note that 

 ( )ab ij =∑ 0.

Another way of stating this model for the two factor case is 

Cell Mean = Overall Effect + Row Effect + Column Effect + Interaction Effect. 

Since this model is the sum of various constants, it is called a linear model. 

Calculating the Effects 
We will now calculate the effects for our example. We will let Drug Dose correspond to factor A 
and Diet correspond to factor B.  
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Step 1 – Remove the Grand Mean 
Remove the grand mean from the table of means by subtracting 22.50 from each entry. The 
values in the margins are the effects of the corresponding factors. 

Table of  Mean Weight Losses 
After Subtracting the Grand Mean 

  

 Dietary Drug Dose Level   
Diet Low Medium High Overall 
D1 -7.50 -6.00 3.00 -3.50 

D2 -3.00 -2.50 16.00 3.50 

Overall -5.25 -4.25 9.50 22.50 

Step 2 – Remove the Effects of Factor B (Diet) 
Subtract the Diet effects (-3.50 and 3.50) from the entries in those rows. 

Table of  Mean Weight Losses 
After Subtracting the Diet Effects 

  

 Dietary Drug Dose Level   
Diet Low Medium High Overall 
D1 -4.00 -2.50 6.50 -3.50 

D2 -6.50 -6.00 12.50 3.50 

Overall -5.25 -4.25 9.50 22.50 

Step 3 – Remove the Effects of Factor A (Drug Dose) 
Subtract the Drug Dose effects (-5.25, -4.25, and 9.50) from the rest of the entries in those 
columns. This will result in a table of effects. 

Table of  Effects   
 Dietary Drug Dose Level   
Diet Low Medium High Overall 
D1 1.25 1.75 -3.00 -3.50 

D2 -1.25 -1.75 3.00 3.50 

Overall -5.25 -4.25 9.50 22.50 
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We have calculated a table of effects for the two-way linear model. Each cell mean can calculated 
by summing the appropriate entries from this table. 
The estimated linear effects are: 

m = 22.50 

a1 = -5.25 a2 = -4.25 a3 = 9.50 

b1 = -3.50 b2 = 3.50 

ab11 = 1.25 ab21 = 1.75 ab31 = -3.00 

ab12 = -1.25 ab22 = -1.75 ab32 = 3.00. 

The six cell means are calculated from these effects as follows: 

15.00 = 22.50 - 5.25 - 3.50 + 1.25 

19.50 = 22.50 - 5.25 + 3.50 - 1.25 

16.50 = 22.50 - 4.25 - 3.50 + 1.75 

20.00 = 22.50 - 4.25 + 3.50 - 1.75 

25.50 = 22.50 + 9.50 - 3.50 - 3.00 

38.50 = 22.50 + 9.50 + 3.50 + 3.00 

Analysis of Variance Hypotheses 
The hypotheses that are tested in an analysis of variance table concern the effects, so in order to 
conduct a power analysis you must have a firm grasp of their meaning. For example, we would 
usually test the following hypotheses: 

1. Are there differences in weight loss among the three drug doses? That is, are the drug 
dose effects all zero? This hypothesis is tested by the F test for factor A, which tests 
whether the standard deviation of the a is zero. i

2. Is there a difference in weight loss between the two diets? That is, are the diet effects all 
zero? This hypothesis is tested by the F test for factor B, which tests whether the standard 
deviation of the is zero. bj

3.  Are there any diet-dose combinations that exhibit a weight loss that cannot be explained 
by diet and/or drug dose singly? This hypothesis is tested by the F test for the AB 
interaction, which tests whether the standard deviation of the ( )ab ij is zero. 

Each of these hypotheses can be tested at a different alpha level and different precision. Hence 
each can have a different power. One of the tasks in planning such an experiment is to determine 
a sample size that yields necessary power values for each of these hypothesis tests. This is 
accomplished using this program module. 
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Definition of Terms 
Factorial designs evaluate the effect of two or more categorical variables (called factors) on a 
response variable by testing hypotheses about various averages. These designs are popular 
because they allow experimentation across a wide variety of conditions and because they evaluate 
the interaction of two or more factors. Interaction is the effect that may be attributed to a 
combination of two or more factors, but not to one factor singly. 

A factor is a variable that relates to the response. Either the factor is discrete by nature (as in 
location or gender) or has been made discrete by collapsing a continuous variable (as in income 
level or age group). The term factorial implies that all possible combinations of the factors being 
studied are included in the design. 

A fixed factor is one in which all possible levels (categories) are considered. Examples of fixed 
factors are gender, dose level, and country of origin. They are different from random factors 
which represent a random selection of individuals from the population described by the factor. 
Examples of random factors are people living within a region, a sample of schools in a state, or a 
selection of labs. Again, a fixed factor includes the range of interest while a random factor 
includes only a sample of all possible levels.  

A factorial design is analyzed using the analysis of variance. When only fixed factors are used in 
the design, the analysis is said to be a fixed-effects analysis of variance. Other types of designs 
will be discussed in later chapters.  

Suppose a group of individuals have agreed to be in a study involving six treatments. In a 
completely randomized factorial design, each individual is assigned at random to one of the six 
groups and then the treatments are applied. In some situations, the randomization occurs by 
randomly selecting individuals from the populations defined by the treatment groups. The designs 
analyzed by this module are completely randomized factorial designs.  

Power Calculations 
The calculation of the power of a particular test proceeds as follows 

1. Determine the critical value,  where df1 is the numerator degrees of freedom, 
df2 is the denominator degrees of freedom, and 

Fdf df1 2, ,α

α is the probability of a type-I error 
(significance level). Note that the F test is a two-tailed test as no logical direction is 
assigned in the alternative hypothesis. 

2.  Calculate the standard deviation of the hypothesized effects, using the formula: 

( )
σm

i
i

k

e e

k
=

−
=
∑ 2

1  

where the e are effect values and k is the number of effects. Note that the average effect 
will be zero by construction, so this formula reduces to 

i

( )
σm

i
i

k

e

k
= =
∑ 2

1  
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3.  Compute the noncentrality parameter λ  using the relationship: 

λ σ
σ

 =  N m
2

2  

where N is the total number of subjects. 

4.  Compute the power as the probability of being greater than Fdf df1 2, ,α on a noncentral-F 
distribution with noncentrality parameter λ . 

Example 
In the example discussed earlier, the standard deviation of the dose effects is  

( ) ( )σm A( )
. .

.

=
− + − +

=

5 25 4 25 9 50
3

6 729908

2 2 2.
 

the standard deviation of the diet effects is  

( )σm B( )
. .

.

=
− +

=

35 35
2

35

2 2

 

and the standard deviation of the interaction effects is  

( ) ( ) ( )σm AB( )
. . . . . .

.

=
+ − + + − + − +

=

125 125 175 175 300 300
6

2131119

2 2 2 2 2 2

 

Change in Calculation from PASS 6.0 
In PASS 6.0, we used the approach of Cohen (1988) to calculate λ . However, we have found 
that Cohen’s method is less accurate in some situations. Here’s why. Cohen produced a set of 
tables for the one-way AOV which he extended to the two-way and three-way cases by adjusting 
the per group sample size (his ) so that the denominator degrees of freedom were accurate. 
However, his adjustment also causes a change in 

′n
λ  which can cause a substantial difference in 

the calculated power. By using the formula 

λ σ
σ

 =  N m
2

2  

we now calculate the correct power. This is why our calculations differ from that of Cohen (1988) 
for fixed factorial models. 
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Standard Deviation of Effects (of Means) 
In the two-sample t-test case, the alternative hypothesis was represented as the difference between 
two group means. Unfortunately, for three or more groups, there is no simple extension of the two 
group difference. Instead, you must hypothesize a set of effects and calculate the value of σm .  

Some might wish to specify the alternative hypothesis as the effect size, f, which is defined as  

f =  mσ
σ

 

where σ is the standard deviation of values within a cell (see Sigma below). If you want to use f, 
setσ = 1and then f  is always equal to σm  so that the values you enter for σm  will be the values 
of f. Cohen (1988) has designated values of f less than 0.1 as small, values around 0.25 to be 
medium, and values over 0.4 to be large. You should come up with your own cutoff values for 
low, medium, and high. 

When you are analyzing the power of an existing analysis of variance table, you can compute the 
values ofσm  for each term from its mean square or F ratio using the following formulas: 

m
numerator numerator =  df MS

Nσ  

or 

( )( )
m

numerator =  
df F MSE

N
σ  

where N is the total number of observations, MSE is the mean square error, df is the numerator 
degrees of freedom, MS is the mean square of the term, and F is the F ratio of the term. If you do 
this, you are setting the sample effects equal to the population effects for the purpose of 
computing the power. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as the Template tab, go to the 
Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Sample Size 

N per Cell 
This is the sample size within a cell. Fractional values are allowed. When you have an unequal 
number of observations per cell, enter the average cell sample size.  

If you enter more than one value, a separate analysis will be generated for each value. 
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Effect Size – Main Effects & 
Interactions 

Factors (A, B, C) & Interactions (AB, …, ABC) 
These check boxes specify which terms are included in the analysis of variance model. Check a 
term to signify that it must be included in the analysis.  

The three factors are assigned the labels A, B, and C. The interaction between factors A and B is 
labeled AB. The three-way interaction is labeled ABC.  

You cannot include an interaction term without including all shorter terms that make up that 
interaction. For example, if you include the interaction AC, you must also include the terms A and 
C. Similarly, if you include the term ABC, you must also include the terms A, B, C, AB, AC, and 
BC. 

Effect Size – Main Effects 

Categories (A, B, and C) 
These options specify the number of categories (levels) contained in each factor. Since the total 
sample size is equal to the product of the number of levels in each factor and the number of 
observations per cell (N Per Cell), increasing the number of levels of a factor increases the total 
sample size of the experiment. 

Hypothesized Means (A, B, C) 
Enter a set of hypothesized means (or effects), one for each factor level. The standard deviation of 
these means is used in the power calculations. The standard deviation is calculated using the 
formula: 

( )σ
μ μ

m
i=1

k
i =  

k∑
− 2

 

where k is the number of effects. Note that the standard deviation will be the same whether you 
enter means or effects since the average of the effects is zero by definition. 

Enter a set of means that give the pattern of differences you expect or the pattern that you wish to 
detect. For example, in a particular study involving a factor with three categories, your research 
might be meaningful if either of two treatment means is 50% larger than the control mean. If the 
control mean is 50, then you would enter 50,75,75 as the three means. 

It is usually more intuitive to enter a set of mean values. However, it is possible to enter the 
standard deviation of the means directly by placing an S in front of the number.  

Entering a List of Means 
If numbers are entered without a leading S, they are assumed to be the hypothesized group means 
under the alternative hypothesis. Their standard deviation will be calculated and used in the 
calculations. Blanks or commas may separate the numbers. Note that it is not the values of the 
means themselves that is important, but only their differences. Thus, the mean values 0,1,2 
produce the same results as the values 100,101,102. 
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If not enough means are entered to match the number of groups, the last mean is repeated. For 
example, suppose that four means are needed and you enter 1,2 (only two means). PASS will 
treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the number of 
means needed. 

Examples: 

5 20 60 

2,5,7 

-4,0,6,9 

S Option 
If an S is entered before a number, the number is assumed to be the value of mσ , the standard 
deviation of the means.  

Examples: 

S 4.7 

S 5.7 

Effect Size – Interactions 

Hypothesized Effects 
Specify the standard deviation of the interaction effects using one of the following methods: 

1.  Enter a set of effects and let the program calculate their standard deviation (see below). 

2.  Enter the standard deviation directly. 

3.  Instruct the program to make the standard deviation proportional to one of the main effect 
terms.  

The standard deviation of the effects is calculated using the formula: 

( )σm
i=1

k
i

i=1

k
i

 =  
e e

k

e
k

∑

∑

−

=

2

2
 

where k is the number of effects and are the effect values. The value of e e ek1 2, , ,L e  may be 
ignored because it is zero by definition.  

Entering a List of Effects 
If numbers are entered without a leading letter, they are assumed to be the hypothesized effects 
under the alternative hypothesis (they are all assumed to be zero under the null hypothesis). Their 
standard deviation will be calculated and used in the calculations.  Blanks or commas may 
separate the numbers.  

If not enough effects are entered to match the number of levels in the term, the last effect is 
repeated. For example, suppose that four effects are needed and you enter 1,2 (only two effects). 
PASS will treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the 
number of effects needed. 
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For interactions, the number of effects is equal to the product of the number of levels of each 
factor in the interaction. For example, suppose a two-factor design has one factor with three 
levels and another factor with five levels. The number of effects in the two-factor interaction is 
(3)(5) = 15. 

Examples (note that they sum to zero): 

-1 1 -3 3 

2 2 0 -1 -1 -2 

-4,0,1,3 

S Option 
If an S is followed by a number, the number is assumed to be the value of σm , the standard 
deviation of the effects. 

When a set of effects are equal to either e or -e, the formula for the standard deviation may be 
simplified as follows: 

( )σm
i=1

k
i

i=1

k

 =  
e

k

e
k

e

∑

∑

−

=

=

0 2

2

 

Hence, another interpretation of σm  is the absolute value of a set of effects that are equal, except 
for the sign. 

Example: 

S 4.7 

Enter a Term Followed by a Percentage 
You can enter the name of a previous term followed by a percentage. This instructs the program 
to set this standard deviation to x% of the term you specify, where x is a positive integer. This 
allows you to set the magnitude of the interaction standard deviation as a percentage of another 
term without specifying the interaction in detail.  

Note that the term you are taking a percentage of must appear above the term you are specifying. 
That is, you cannot specify AB 50 for factor C (since only A and B occur above C on the screen).  

For example, if the standard deviation of factor A is 16, the command 

A 75 

will set the standard deviation of the current term to (16)(75)/(100) = 12.0. 

Other examples of this syntax are: 

A 50 

B 25 

AB 125 

AC 150 
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Discussion 
The general formula for the calculation of the standard deviation is 

( )
σm

i
i

k

e

k
= =
∑ 2

1  

where k is the number of effects. In the case of a two-way interaction, the standard deviation is 
calculated using the formula: 

( )
( )

σ
μ μ μ μ

m

ij i j
j

J

i

I

AB
IJ

=
− − +• •

==
∑∑

2

11  

where i is the factor A index (from 1 to I), j is the factor B index (from 1 to J), μij is the mean in 

the ijth cell, μi• is the mean of factor A across all levels of other factors, ith μ• j is the mean 
when factor B across all levels of other factors, and 

jth

μ is the overall mean of the means. 

To see how this works, consider the following table of means from an experiment with I = 2 and 
J = 3: 
 

   i 

   1 2 

  1 2.0 4.0 | 3.0 

j 2 4.0 6.0 | 5.0 

  3 6.0 11.0 | 8.5 

  --- --- --- | --- 

  Total 4.0 7.0 | 5.5 
 

Now, if we subtract the factor A means, subtract the factor B means, and add the overall mean, we 
get the interaction effects: 
 

0.5 -0.5 

0.5 -0.5 

-1.0 1.0 
 

Next, we sum the squares of these six values: 

( ) ( ) ( ) ( ) ( ) ( )05 05 05 05 10 10 32 2 2 2 2 2. . . . . .+ − + + − + − + =  

Next we divide this value by (2)(3) = 6: 

3 6 0 5/ .=  
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Finally, we take the square root of this value: 

05 0 7071. .=  

Hence, for this configuration of means, 

( )σm AB = 0 7071. . 

Notice that the average of the absolute values of the interaction effects is: 

[0.5 + 0.5 + 0.5 + 0.5 + 1.0 + 1.0]/6 = 0.6667  

We see that SD(interaction) is close to the average absolute interaction effect. That is, 0.7071 is 
close to 0.6667. This will usually be the case. Hence, one way to interpret the interaction standard 
deviation is as a number a little larger than the average absolute interaction effect. 

Alpha  
These options specify the significance levels (the probability of a type-I error) of each term. A 
type-I error occurs when you reject the null hypothesis of that all effects are zero when in fact 
they are. 

Since they are probabilities, alpha values must be between zero and one. Historically, the value of 
0.05 has been used for alpha. This value may be interpreted as meaning that about one F test in 
twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents 
the risk of a type-I error you are willing to take in your experimental situation.  

You can select different alpha values for different terms. For example, although you have three 
factors in an experiment, you might be mainly interested in only one of them. Hence, you could 
increase the alpha level of the tests from, for example, 0.05 to 0.10 and thereby increase their 
power. Also, you may want to increase the alpha level of the interaction terms, since these will 
often have poor power otherwise. 

Effect Size – Standard Deviation 

S (Standard Deviation of Subjects) 
This option specifies the value of the standard deviation (σ ) within a cell (the analysis of 
variance assumes that σ  is constant across all cells). Since they are positive square roots, the 
numbers must be strictly greater than zero. You can press the SD button to obtain further help on 
estimating the standard deviation. 

This value may be estimated from a previous analysis of variance table by the square root of the 
mean square error. 

If you want to use the effect size, f, as the measure of the variability of the effects, you can use 
1.0 for σ . 
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Example 1 – Power after a Study 
This example will explain how to calculate the power of F tests from data that have already been 
collected and analyzed.   

Analyze the power of the experiment that was given at the beginning of this chapter. These data 
were analyzed using the analysis of variance procedure in NCSS and the following results were 
obtained. 
   
 Analysis of Variance Table 

Source  Sum of Mean  Prob Power 
Term DF Squares Square F-Ratio Level (Alpha=0.05) 
A (Dose) 2 543.5 271.75 50.95 0.000172* 1.000000 
B (Diet) 1 147 147 27.56 0.001920* 0.990499 
AB 2 54.5 27.25 5.11 0.050629 0.588884 
S 6 32 5.333333 
Total (Adjusted) 11 777 
Total 12 
* Term significant at alpha = 0.05 

 
Means and Effects Section 
   Standard  
Term Count Mean Error Effect 
All 12 22.50  22.50 
A: Dose 
High 4 32.00 1.154701 9.50 
Medium 4 18.25 1.154701 -4.25 
Low 4 17.25 1.154701 -5.25 
 
B: Diet 
D1 6 19.00 0.942809 -3.50 
D2 6 26.00 0.942809 3.50 
 
AB: Dose,Diet 
High,D1 2 25.50 1.632993 -3.00 
High,D2 2 38.50 1.632993 3.00 
Low,D1 2 15.00 1.632993 1.25 
Low,D2 2 19.50 1.632993 -1.25 
Medium,D1 2 16.50 1.632993 1.75 
Medium,D2 2 20.00 1.632993 -1.75 

 

Setup 
To analyze these data, we can enter the means for factors A and B as well as the AB interaction 
effects.  

Alternatively, we could have calculated the standard deviation of the interaction. This can be 
done in either of two ways. 

Using mean square for AB (27.25), the degrees of freedom for AB (2), and the total sample size 
(12), the standard deviation of the AB-interaction effects is calculated as follows 

( ) ( )σm AB = =
2 27 25

12
21311

.
.   

Using the formula based on the effects, the standard deviation of the AB-interaction effects is 
calculated as follows 
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( )σm AB =
+ + + + +

=
3 3 125 125 175 175

6
21311

2 2 2 2 2 2. . . . .  

The value ofσ is estimated from the square root of the mean square error: 

σ = =5333333 2 3094. .  

This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then Fixed Effects ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
N Per Cell ................................................2 
Factors (A, B, AB) ...................................Checked 
Factors (C, AC, BC, ABC).......................Not checked 
Categories (A) .........................................3 
Categories (B) .........................................2 
Hypothesized Means (A).........................17.25 18.25 32 
Hypothesized Means (B).........................19  26 
Hypothesized Effects (AB) ......................-3 3 1.25 -1.25 1.75 -1.75 
Alpha .......................................................All are set to 0.05 
S (Std Dev of Subjects)...........................2.3094 
Report Tab 
Report Prob Decimals .............................6 
Std Dev Decimals....................................4 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 1.000000 2.00 12 2 6 6.7299 2.914 0.050000 0.000000 
B 0.990499 2.00 12 1 6 3.5000 1.516 0.050000 0.009501 
AB 0.588914 2.00 12 2 6 2.1311 0.923 0.050000 0.411086 
Standard Deviation Within Subjects = 2.3094 
 
Summary Statements 
A factorial design with two factors at 3 and 2 levels has 6.0 cells (treatment combinations). A 
total of 12.0 subjects are required to provide 2.0 subjects per cell. The within-cell standard 
deviation is 2.3094. This design achieves 100% power when an F test is used to test factor A at 
a 5% significance level and the actual standard deviation among the appropriate means is 6.7299 
(an effect size of 2.914), achieves 99% power when an F test is used to test factor B at a 5% 
significance level and the actual standard deviation among the appropriate means is 3.5000 (an 
effect size of 1.516), and achieves 59% power when an F test is used to test the AB interaction 
at a 5% significance level and the actual standard deviation among the appropriate means is 
2.1312 (an effect size of 0.923). 
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This report shows the power for each of the three factors. Note that these power values match 
those given by the NCSS program in the analysis of variance report. 

It is important to emphasize that these power values are for the case when the effects associated 
with the alternative hypotheses are equal to those given by the data. It will often be informative to 
calculate the power for other values as well. 

Term 
This is the term (main effect or interaction) from the analysis of variance model being displayed 
on this line. 

Power 
This is the power of the F test for this term. Note that since adding and removing terms changes 
the denominator degrees of freedom (df2), the power depends on which other terms are included 
in the model. 

n 
This is the sample size per cell (treatment combination). Fractional values indicate an unequal 
allocation among the cells. 

Total N 
This is the total sample size for the complete design. 

df1 
This is the numerator degrees of freedom of the F test. 

df2 
This is the denominator degrees of freedom of the F test. This value depends on which terms are 
included in the AOV model. 

Std Dev of Means (Sm) 
This is the standard deviation of the means (or effects). It represents the size of the differences 
among the effects that is to be detected by the analysis. If you have entered hypothesized means, 
only their standard deviation is displayed here. 

Effect Size 
This is the standard deviation of the means divided by the standard deviation of subjects. It 
provides an index of the magnitude of the difference among the means that can be detected by 
this design. 

Alpha 
This is the significance level of the F test. This is the probability of a type-I error given the null 
hypothesis of equal means and zero effects. 

Beta 
This is the probability of the type-II error for this test given the sample size, significance level, 
and effect size. 
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Example 2 – Finding the Sample Size 
In this example, we will investigate the impact of increasing the sample size on the power of each 
of the seven tests in the analysis of variance table of a three factor experiment. The first factor (A) 
has two levels, the second factor (B) has three levels, and the third factor (C) has four levels. This 
creates a design with 2 x 3 x 4 = 24 treatment combinations. 

All values of σm  will be set equal to 0.2, σ is set equal to 1.0, and alpha is set to 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then Fixed Effects ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
N Per Cell ................................................2  8  16  22 
Factors and Interactions..........................All Checked 
Categories (A) .........................................2 
Categories (B) .........................................3 
Categories (C).........................................4 
Hypothesized Means (A, B, & C) ............S 0.2 
Hypothesized Effects (AB to ABC)..........A 100 (so they will equal that of factor A) 
Alpha .......................................................All are set to 0.05 
S (Std Dev of Subjects)...........................1.0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.26502 2.00 48 1 24 0.2 0.200 0.05000 0.73498 
B 0.19674 2.00 48 2 24 0.2 0.200 0.05000 0.80326 
C 0.16369 2.00 48 3 24 0.2 0.200 0.05000 0.83631 
AB 0.19674 2.00 48 2 24 0.2 0.200 0.05000 0.80326 
AC 0.16369 2.00 48 3 24 0.2 0.200 0.05000 0.83631 
BC 0.11945 2.00 48 6 24 0.2 0.200 0.05000 0.88055 
ABC 0.11945 2.00 48 6 24 0.2 0.200 0.05000 0.88055 
 
A 0.78682 8.00 192 1 168 0.2 0.200 0.05000 0.21318 
B 0.69038 8.00 192 2 168 0.2 0.200 0.05000 0.30962 
C 0.62299 8.00 192 3 168 0.2 0.200 0.05000 0.37701 
AB 0.69038 8.00 192 2 168 0.2 0.200 0.05000 0.30962 
AC 0.62299 8.00 192 3 168 0.2 0.200 0.05000 0.37701 
BC 0.49353 8.00 192 6 168 0.2 0.200 0.05000 0.50647 
ABC 0.49353 8.00 192 6 168 0.2 0.200 0.05000 0.50647 
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A 0.97434 16.00 384 1 360 0.2 0.200 0.05000 0.02566 
B 0.94723 16.00 384 2 360 0.2 0.200 0.05000 0.05277 
C 0.92061 16.00 384 3 360 0.2 0.200 0.05000 0.07939 
AB 0.94723 16.00 384 2 360 0.2 0.200 0.05000 0.05277 
AC 0.92061 16.00 384 3 360 0.2 0.200 0.05000 0.07939 
BC 0.84559 16.00 384 6 360 0.2 0.200 0.05000 0.15441 
ABC 0.84559 16.00 384 6 360 0.2 0.200 0.05000 0.15441 
 
A 0.99569 22.00 528 1 504 0.2 0.200 0.05000 0.00431 
B 0.98880 22.00 528 2 504 0.2 0.200 0.05000 0.01120 
C 0.98045 22.00 528 3 504 0.2 0.200 0.05000 0.01955 
AB 0.98880 22.00 528 2 504 0.2 0.200 0.05000 0.01120 
AC 0.98045 22.00 528 3 504 0.2 0.200 0.05000 0.01955 
BC 0.95001 22.00 528 6 504 0.2 0.200 0.05000 0.04999 
ABC 0.95001 22.00 528 6 504 0.2 0.200 0.05000 0.04999 
 
Standard Deviation of Subjects = 1.0 

 

A few interesting features of this report stand out. First note the range of power values across the 
range of sample size values tested. Reasonable power is not reached until n is 16. Also note that 
as the number of numerator degrees of freedom (df1) increases, the power decreases, other things 
being equal. We must use this knowledge when planning for appropriate power in tests of 
important interaction terms. 
There are a lot of additional runs that you might try. For example, you might look at the impact of 
setting the alpha level of interaction terms 0.08. You might look at varying σm  across the 
different terms. You might try varying the number of levels of a factor. All of these will impact 
the power of the F tests and will thus be important to consider during the planning stage of an 
experiment. 

Example 3 – Latin Square Design 
This example shows how to study the power of a complicated experimental design like a Latin 
square. Suppose you want to run a Five-Level Latin square design. Recall that a Five-Level Latin 
square design consists of three factors each at five levels. One factor is associated with the 
columns of the square, a second factor is associated with the rows of the square, and a third factor 
is associated with the letters of the square. In all there are only 5 x 5 = 25 observations used 
instead of the 5 x 5 x 5 = 125 that would normally be required. The Latin square design has 
reduced the number of observations by 80%. 

The 80% decrease in observations comes at a price—the interaction terms must be ignored. If you 
can legitimately assume that the interactions are zero, the Latin square (or some other design 
which reduces the number of observations) is an efficient design to use. We will now show you 
how to analyze the power of the F tests from such a design. 

The key is to enter 0.2 (which is 25/125) for n and set all the interaction indicators off.  

Since all three factors have five levels, the power of the three F tests will be the same if σm  is the 
same. Hence, we can try three different sets of hypothesized means. The first set will be five 
means 0.1 units apart. The second set will be five means 0.5 units apart. The third set will be five 
means 1.0 unit apart. The standard deviation will be set to 1.0. All alpha levels will be set at 0.05. 

The sample size per cell is set at 0.2 and 0.4. This will result in total sample sizes of 25 (one 
replication) and 50 (two replications). 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then Fixed Effects ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
N Per Cell ................................................0.2 0.4 
Factors (A, B, C) .....................................Checked 
Interactions (AB, AC, BC, ABC)..............Not checked 
Categories (A, B, C) ................................5 
Hypothesized Means (A).........................1.0 1.1 1.2 1.3 1.4 
Hypothesized Means (B).........................1.0 1.5 2.0 2.5 3.0 
Hypothesized Means (C).........................1.0 2.0 3.0 4.0 5.0 
Alpha .......................................................All are set to 0.05 
S (Std Dev of Subjects)...........................1.0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.06807 0.20 25 4 12 0.141 0.141 0.05000 0.93193 
B 0.63675 0.20 25 4 12 0.707 0.707 0.05000 0.36325 
C 0.99867 0.20 25 4 12 1.414 1.414 0.05000 0.00133 
 
A 0.09842 0.40 50 4 37 0.141 0.141 0.05000 0.90158 
B 0.97743 0.40 50 4 37 0.707 0.707 0.05000 0.02257 
C 1.00000 0.40 50 4 37 1.414 1.414 0.05000 0.00000 
 
Standard Deviation of Subjects = 1.000 
 

In the first design in which N = 25, only the power of the test for C is greater than 0.8. Of course, 
this power value also depends on the value of the standard deviation of subjects within a cell. 

It is interesting to note that doubling the sample size did not double the power! 
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Example 4 – Validation using Winer 
Winer (1991) pages 428-429 presents the power calculations for a two-way design in which 
factor A has two levels and factor B has three levels. Winer provides estimates of the sum of 
squared A effects (1.0189), sum of squared B effects (5.06), and sum of squared interaction 
effects (42.11). The mean square error is 8.83 and the per cell sample size is 3. All alpha levels 
are set to 0.05.   

Winer’s results are approximate because he has to interpolate in the tables that he is using. He 
finds the power of the F test for factor A to be between 0.10 and 0.26. He estimates it as 0.17. The 
exact power of the F test for factor B is not given. Instead, the range is found to be between 0.26 
and 0.36. The power of the F test for the AB interaction is “approximately” 0.86. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then Fixed Effects ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
N Per Cell ................................................3 
Factors (A and B) ....................................Checked 
Factor (C) ................................................Not checked 
Interaction (AB) .......................................Checked 
Interactions (AC, BC, ABC).....................Not checked 
Categories (A) .........................................2 
Categories (B) .........................................3 
Hypothesized Means (A).........................S 0.714 
Hypothesized Means (B).........................S 1.3 
Hypothesized Effects (AB) ......................S 2.65 
Alpha .......................................................All are set to 0.05 
S (Std Dev of Subjects)...........................2.97 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.15576 3.00 18 1 12 0.714 0.240 0.05000 0.84424 
B 0.29178 3.00 18 2 12 1.300 0.438 0.05000 0.70822 
AB 0.85338 3.00 18 2 12 2.650 0.892 0.05000 0.14662 
 
Standard Deviation of Subjects = 2.970 
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The power of the test for factor A is 0.16 which is between 0.10 and 0.26. It is close to the 
interpolated 0.17 that Winer obtained from his tables. 

The power of the test for factor B is 0.29 which is between 0.26 and 0.36.  

The power of the test for the AB interaction is 0.85 which is close to the interpolated 0.86 that 
Winer obtained from his tables. 

Example 5 – Validation using Prihoda 
Prihoda (1983) pages 7-8 presents the power calculations for a two-way design with the following 
pattern of means: 

    Factor B 
  1 2 3 4 All 
Factor A 1 41 34 30 27 33 

 2 33 24 22 29 27 

All  37 29 26 28 30 

 

The means may be manipulated to show the overall mean, the main effects, and the interaction 
effects: 

    Factor B 
  1 2 3 4 All 
Factor A 1 1 2 1 -4 3 

 2 -1 -2 -1 4 -3 

All  7 -1 -4 -2 30 

 

Based on the above effects, Prihoda calculates the power of the interaction test when the sample 
size per cell is 6, 8, 10, 12, and 14 to be 0.34, 0.45, 0.56, 0.65, and 0.73. The mean square error is 
64 and the alpha level is 0.05.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then Fixed Effects ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example5 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
N Per Cell ................................................6 8 10 12 14 
Factors (A and B) ....................................Checked 
Factor (C) ................................................Not checked 
Interaction (AB) .......................................Checked 
Interactions (AC, BC, ABC).....................Not checked 
Categories (A) .........................................2 
Categories (B) .........................................4 
Hypothesized Means (A).........................33 27 
Hypothesized Means (B).........................37 29 26 28 
Hypothesized Effects (AB) ......................1 -2 2 -2 1 -1 -4 4 
Alpha .......................................................All are set to 0.05 
S (Std Dev of Subjects)...........................8 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.71746 6.00 48 1 40 3.000 0.375 0.05000 0.28254 
B 0.83676 6.00 48 3 40 4.183 0.523 0.05000 0.16324 
AB 0.33722 6.00 48 3 40 2.345 0.293 0.05000 0.66278 
 
A 0.83848 8.00 64 1 56 3.000 0.375 0.05000 0.16152 
B 0.93871 8.00 64 3 56 4.183 0.523 0.05000 0.06129 
AB 0.45099 8.00 64 3 56 2.345 0.293 0.05000 0.54901 
 
A 0.91134 10.00 80 1 72 3.000 0.375 0.05000 0.08866 
B 0.97917 10.00 80 3 72 4.183 0.523 0.05000 0.02083 
AB 0.55558 10.00 80 3 72 2.345 0.293 0.05000 0.44442 
 
A 0.95292 12.00 96 1 88 3.000 0.375 0.05000 0.04708 
B 0.99346 12.00 96 3 88 4.183 0.523 0.05000 0.00654 
AB 0.64749 12.00 96 3 88 2.345 0.293 0.05000 0.35251 
 
A 0.97568 14.00 112 1 104 3.000 0.375 0.05000 0.02432 
B 0.99807 14.00 112 3 104 4.183 0.523 0.05000 0.00193 
AB 0.72541 14.00 112 3 104 2.345 0.293 0.05000 0.27459 
 
Standard Deviation of Subjects = 8.000 
 

Prihoda only presents the power for the interaction test at each sample size. You can check to see 
that the results match Prihoda’s exactly. 
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Example 6 – Validation using Neter, Kutner, Nachtsheim, 
and Wasserman 
Neter, Kutner, Nachtsheim, and Wasserman (1996) page 1057 presents a power analysis of a two-
factor experiment in which factor A has three levels and factor B has two levels. The significance 
level is 0.05, the standard deviation is 3.0, and N is 2. They calculate a power of about 0.89 for 
the test of factor A when the three means are 50, 55, and 45. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then Fixed Effects ANOVA. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
N Per Cell ................................................2 
Factors (A and B) ....................................Checked 
Factor (C) ................................................Not checked 
Interaction (AB) .......................................Checked 
Interactions (AC, BC, ABC).....................Not checked 
Categories (A) .........................................3 
Categories (B) .........................................2 
Hypothesized Means (A).........................50 55 45 
Hypothesized Means (B).........................S 1 
Hypothesized Effects (AB) ......................S 1 
Alpha .......................................................All are set to 0.05 
S (Std Dev of Subjects)...........................3.0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.90162 2.00 12 2 6 4.082 1.361 0.05000 0.09838 
B 0.16479 2.00 12 1 6 1.000 0.333 0.05000 0.83521 
AB 0.11783 2.00 12 2 6 1.000 0.333 0.05000 0.88217 
 
Standard Deviation of Subjects = 3.000 
 

Note that the power of 0.90 that PASS has calculated is within rounding of the 0.89 that Neter et 
al. calculated. 
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Chapter 565 

Randomized Block 
Analysis of 
Variance 
Introduction 
This module analyzes a randomized block analysis of variance with up to two treatment factors 
and their interaction. It provides tables of power values for various configurations of the 
randomized block design.  

The Randomized Block Design 
The randomized block design (RBD) may be used when a researcher wants to reduce the 
experimental error among observations of the same treatment by accounting for the differences 
among blocks.  If three treatments are arranged in two blocks, the RBD might appear as follows: 
 

Block A  Block B 

Treatment 1  Treatment 2 

Treatment 3  Treatment 1 

Treatment 2  Treatment 3 

 
This diagram shows the main features of a RBD: 

1. Each block is divided into k sub-blocks, where k is the number of treatments. 

2. Each block receives all the treatments. 

3. The treatments are assigned to the sub-blocks in random order. 

4.  There is some reason to believe that the blocks are the same internally, but different from 
each other. 
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RBD Reduces Random Error 
The random error component of a completely randomized design (such as a one-way or a fixed-
effects factorial design) represents the influence of all possible variables in the universe on the 
response except for the controlled (treatment) variables. This random error component is called 
the standard deviation or σ (sigma).  
As we have discussed, the sample size required to meet alpha and beta error requirements 
depends directly on the standard deviation. As the standard deviation increases, the sample size 
increases. Hence, researchers are always looking for ways to reduce the standard deviation. Since 
the random error component contains the variation due to all possible variables other than 
treatment variables, one of the most obvious ways to reduce the standard deviation is to remove 
one or more of these nuisance variables from the random error component. One of the simplest 
ways of doing this is by blocking on them.  

For example, an agricultural experiment is often blocked on fields so that differences among 
fields are explicitly accounted for and removed from the error component. Since these field 
differences are caused by variations in variables such as soil type, sunlight, temperature, and 
water, blocking on fields removes the influence of several variables. 

Blocks are constructed so that the response is as alike (homogeneous) as possible within a block, 
but as different as possible between blocks. In many situations, there are obvious natural blocking 
factors such as schools, seasons, individual farms, families, times of day, etc. In other situations, 
the blocks may be somewhat artificially constructed.  

Once the blocks are defined, they are divided into k smaller sections called subblocks, where k is 
the number of treatment levels. The k treatments are randomly assigned to the subblocks, one 
block at a time. Hence the order of treatment application will be different from block to block. 

Measurement of Random Error 
The measurement of the random error component (σ) is based on the assumption that there is no 
fundamental relationship between the treatment variable and the blocking variable. When this is 
true, the interaction component between blocks and treatment is zero. If the interaction 
component is zero, then the amount measured by the interaction is actually random error and can 
be used as an estimate of σ.  

Hence, the randomized block design makes the assumption that there is no interaction between 
treatments and blocks. The block by treatment mean square is still calculated, but it is used as the 
estimated standard deviation. This means that the degrees of freedom associated with the block-
treatment interaction are the degrees of freedom of the error estimate. If the experimental design 
has k treatments and b blocks, the interaction degrees of freedom are equal to (k-1)(b-1). Hence 
the sample size of this type of experiment is measured in terms of the number of blocks. 

Treatment Effects 
Either one or two treatment variables may be specified. If two are used, their interaction may also 
be measured. The null hypothesis in the F test states that the effects of the treatment variable are 
zero. The magnitude of the alternative hypothesis is represented as the size of the standard 
deviation (σm) of these effects. The larger the size of the effects, the larger their standard 
deviation. 
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When there are two factors, the block-treatment interaction may be partitioned just as the 
treatment may be partitioned. For example, if we let C and D represent two treatments, an 
analysis of variance will include the terms C, D, and CD. If we represent the blocking factor as B, 
there will be three interactions with blocks: BC, BD, and BCD. Since all three of these terms are 
assumed to measure the random error, the overall estimate of random error is found by averaging 
(or pooling) these three interactions. The pooling of these interactions increases the power of the 
experiment by effectively increasing the sample size on which the estimate of σ  is based. 
However, it is based on the assumption that σ σ σ σ= = =BC BD BCD , which may or may not be 
true. 

An Example 
Following is an example of data from a randomized block design. The block factor has four 
blocks (B1, B2, B3, B4) while the treatment factor has three levels (low, medium, and high). The 
response is shown within the table. 

Randomized Block Example    
 Treatments 

Blocks Low  Medium High 

B1 16 19 20 

B2 18 20 21 

B3 15 17 22 

B4 14 17 19 

Analysis of Variance Hypotheses 
The F test for treatments in a randomized block design tests the hypothesis that the treatment 
effects are zero. (See the beginning of the Fixed-Effects Analysis of Variance chapter for a 
discussion of the meaning of effects.) 

Single-Factor Repeated Measures Designs 
The randomized block design is often confused with a single-factor repeated measures design 
because the analysis of each is similar. However, the randomization pattern is different. In a 
randomized block design, the treatments are applied in random order within each block. In a 
repeated measures design, however, the treatments are usually applied in the same order through 
time. You should not mix the two. If you are analyzing a repeated measures design, we suggest 
that you use that module of PASS to do the sample size and power calculations. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as the Template tab, go to the 
Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Sample Size 

Number of Blocks 
This specifies one or more values for the number of blocks. If a list of values is entered, a 
separate calculation will be made for each value.  

Effect Size – Main Effects & 
Interactions 

Factors (A, B, and AB) 
These check boxes specify which terms are included in the analysis of variance model. Check a 
term to indicate that it is included.  

The two factors are assigned the labels A and B. The interaction between factors A and B is 
labeled AB. You cannot include the interaction term without including both A and B. 

Effect Size – Main Effects 

Categories (A and B) 
This option specifies the number of categories (levels) contained in each factor. Since the 
effective sample size is equal to the product of the number of levels in each factor and the number 
of blocks, increasing the number of levels of a factor increases the sample size of the experiment. 

Hypothesized Means (A and B) 
Enter a set of hypothesized means (or effects), one for each factor level. The standard deviation of 
these means is used in the power calculations. The standard deviation is calculated using the 
formula: 

m
i=1

k
i

2

 =  (e e )
kσ ∑ −

 

where k is the number of levels. Note that the standard deviation will be the same whether you 
enter means or effects since the average of the effects is zero by definition. 

Enter a set of means that give the pattern of differences you expect or the pattern that you wish to 
detect. For example, in a particular study involving a factor with three categories, your research 
might be meaningful if either of two treatment means is 50% larger than the control mean. If the 
control mean is 50, then you would enter 50,75,75 as the three means. 
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It is usually more intuitive to enter a set of mean values. However, it is possible to enter the 
standard deviation of the means directly by placing an S in front of the number.  

Entering a List of Means 
If numbers are entered without a leading S, they are assumed to be the hypothesized group means 
under the alternative hypothesis. Their standard deviation will be calculated and used in the 
calculations. Blanks or commas may separate the numbers. Note that it is not the values of the 
means themselves that is important, but only their differences. Thus, the mean values 0,1,2 
produce the same results as the values 100,101,102. 

If not enough means are entered to match the number of groups, the last mean is repeated. For 
example, suppose that four means are needed and you enter 1,2 (only two means). PASS will 
treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the number of 
means needed. 

Examples: 

5 20 60 

2,5,7 

-4,0,6,9 

S Option 
If an S is entered before a number, the number is assumed to be the value of mσ , the standard 
deviation of the means.  

Examples: 

S 4.6 

S 5.8 

Effect Size – Interactions 

Hypothesized Effects 
Specify the standard deviation of the interaction effects using one of the following methods: 

1.  Enter a set of effects and let the program calculate their standard deviation. 

2.  Enter the standard deviation directly. 

3.  Instruct the program to make the standard deviation proportional to one of the main effect 
terms.  

The standard deviation of the effects is calculated using the formula: 

m
i=1

k
i

2

 =  (e e )
kσ ∑ −

 

where k is the number of effects and are the effect values. The value of e e ek1 2, , ,L e  may be 
ignored because it is zero by definition.  
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Entering a List of Effects 
If numbers are entered without a leading letter, they are assumed to be the hypothesized effects 
under the alternative hypothesis (they are all assumed to be zero under the null hypothesis). Their 
standard deviation will be calculated and used in the calculations.  Blanks or commas may 
separate the numbers.  

If not enough effects are entered to match the number of levels in the term, the last effect is 
repeated. For example, suppose that four effects are needed and you enter 1,2 (only two effects). 
PASS will treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the 
number of effects needed. 

For interactions, the number of effects is equal to the product of the number of levels of each 
factor in the interaction. For example, suppose a two-factor design has one factor with three 
levels and another factor with five levels. The number of effects in the two-factor interaction is 
(3)(5) = 15. 

Examples (note that they sum to zero): 

-1 1 -3 3 

2 2 0 -1 -1 -2 

-4,0,1,3 

S Option 
If an S is followed by a number, the number is assumed to be the value of mσ , the standard 
deviation of the effects. 

When a set of effects are equal to either e or -e, the formula for the standard deviation may be 
simplified as follows: 

m
i=1

k
i

2

 =  (e e )
k

σ ∑ −
 

Hence, another interpretation of mσ  is the absolute value of a set of effects that are equal, except 
for the sign. 

Example: 

S 4.7 

Enter a Term Followed by a Percentage 
You can enter the name of a previous term followed by a percentage. This instructs the program 
to set this standard deviation to x% of the term you specify, where x is a positive integer. This 
allows you to set the magnitude of the interaction standard deviation as a percentage of the 
standard deviation of one of the factors without specifying the interaction in detail.  

For example, if the standard deviation of factor A is 16, the command 

A 75 

will set the standard deviation of the current term to (16)(75)/(100) = 12.0. 

Other examples of this syntax are: 

A 50 

B 25 
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Discussion 
The general formula for the calculation of the standard deviation is 

( )
σm

i
i

k

e

k
= =
∑ 2

1  

where k is the number of effects. In the case of a two-way interaction, the standard deviation is 
calculated using the formula:  

( )
( )

σ
μ μ μ μ

m

ij i j
j

J

i

I

AB
IJ

=
− − +• •

==
∑∑

2

11  

where i is the factor A index (from 1 to I), j is the factor B index (from 1 to J), μij  is the mean in 

the ijth cell, μi•  is the mean of factor A across all levels of other factors, ith μ• j  is the mean 
when factor B across all levels of other factors, and 

jth

μ  is the overall mean of the means. 

To see how this works, consider the following table of means from an experiment with I = 2 and 
J = 3: 
 

   i 

   1 2 

  1 2.0 4.0 | 3.0 

j 2 4.0 6.0 | 5.0 

  3 6.0 11.0 | 8.5 

  --- --- --- | --- 

  Total 4.0 7.0 | 5.5 
 

Now, if we subtract the factor A means, subtract the factor B means, and add the overall mean, we 
get the interaction effects: 
 

0.5 -0.5 

0.5 -0.5 

-1.0 1.0 
 

Next, we sum the squares of these six values: 

( ) ( ) ( ) ( ) ( ) ( )05 05 05 05 10 10 32 2 2 2 2 2. . . . . .+ − + + − + − + =  

Next we divide this value by (2)(3) = 6: 

3 6 0 5/ .=  
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Finally, we take the square root of this value: 

0 5 0 7071. .=  

Hence, for this configuration of means,  

( )σm AB = 0 7071. . 

Notice that the average of the absolute values of the interaction effects is: 

[0.5 + 0.5 + 0.5 + 0.5 + 1.0 + 1.0]/6 = 0.6667.  
We see that SD(interaction) is close to the average absolute interaction effect. That is, 0.7071 is 
close to 0.6667. This will usually be the case. Hence, one way to interpret the interaction standard 
deviation is as a number a little larger than the average absolute interaction effect. 

Alpha 
This option specifies the probability of a type-I error (alpha) for each term. A type-I error occurs 
when you reject the null hypothesis that the effects are zero when in fact they are.  

Since they are probabilities, alpha values must be between zero and one. Historically, the value of 
0.05 has been used for alpha. This value may be interpreted as meaning that about one F test in 
twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents 
the risk of a type-I error you are willing to take in your experimental situation.  

You can select different alpha values for different terms. For example, although you have three 
factors in an experiment, you might be mainly interested in only one of them. Hence, you could 
increase the alpha level of the tests from, for example, 0.05 to 0.10 and thereby increase their 
power. Also, you may want to increase the alpha level of the interaction terms, since these will 
often have poor power otherwise. 

S (Standard Deviation) 
This option specifies the value of the standard deviation. In a randomized block design, this value 
is estimated by the square root of the mean square error (which may be listed as the mean square 
of the block-by-treatment interaction). This value will usually have to be determined from a 
previous study. 

Assuming that each block is divided into several subblocks, this is an estimate of the standard 
deviation that would result when the subblocks within the same block received the same 
treatment. 

If you want to use the effect size, f, as the measure of the variability of the effects, you can use 
1.0 for σ. 

Estimation of the standard deviation is discussed in detail in the Standard Deviation Estimator 
chapter. 
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Example 1 – Power after a Study 
This example will explain how to calculate the power of F tests from data that have already been 
collected and analyzed.   

We will analyze the power of the experiment that was given at the beginning of this chapter. 

These data were analyzed using the analysis of variance procedure in NCSS and the following 
results were obtained. 
   
 Analysis of Variance Table 

Source  Sum of Mean  Prob Power 
Term DF Squares Square F-Ratio Level (Alpha=0.05) 
A (Blocks) 3 13.66667 4.555555    
B (Treatment) 2 45.16667 22.58333 19.83 0.002269* 0.991442 
AB 6 6.833333 1.138889    
S 0 0  
Total (Adjusted) 11 65.66666 
Total 12 
* Term significant at alpha = 0.05 

 
Means and Effects Section 
   Standard  
Term Count Mean Error Effect 
B: Treatment 
High 4 20.5 0.5335937 2.333333 
Low 4 15.75 0.5335937 -2.416667 
Medium 4 18.25 0.5335937 8.333334E-02 

 

We will now calculate the power of the F test. Note that factor B in this printout becomes factor A 
on the PASS template. 

Setup 
To analyze these data, we enter the means for factor A. The value of σ  is estimated as the square 
root of the mean square error: 

σ = =1.138889 1.0672  

This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Randomized Block Analysis of Variance procedure window 
by clicking on Means, then Many Means (ANOVA), then Randomized Block ANOVA. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Number of Blocks....................................2 3 4 5 
Factor (A) ................................................Checked 
Factors (B, AB)........................................Not checked 
Categories (A) .........................................3 
Hypothesized Means...............................15.75 18.25 20.50 
Alpha .......................................................All are set to 0.05 
S (Standard Deviation)............................1.0672 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
     of Means Effect 
Term Power Blocks Units df1 df2 (Sm) Size Alpha Beta 
A 0.42132 2 6 2 2 1.940 1.8179 0.05000 0.57868 
A 0.89376 3 9 2 4 1.940 1.8179 0.05000 0.10624 
A 0.99144 4 12 2 6 1.940 1.8179 0.05000 0.00856 
A 0.99956 5 15 2 8 1.940 1.8179 0.05000 0.00044 
Standard Deviation Within Blocks (block-treatment interaction) = 1.067 
 
 
Summary Statements 
A randomized-block design with one treatment factor at 3 levels has 2.0 blocks each with 3.0 
treatment combinations. The square root of the block-treatment interaction is 1.067. This 
design achieves 42% power when an F test is used to test factor A at a 5% significance level 
and the actual standard deviation among the appropriate means is 1.940 (an effect size of 
1.8179). 

 

This report shows the power for each of the five block counts. We see that adequate power of 
about 0.9 would have been achieved by three blocks. 
It is important to emphasize that these power values are for the case when the effects associated 
with the alternative hypotheses are equal to those given by the data. It will often be informative to 
calculate the power for other values as well. 

Term 
This is the term (main effect or interaction) from the analysis of variance model being displayed 
on this line. 

Power 
This is the power of the F test for this term. Note that since adding and removing terms changes 
the denominator degrees of freedom (df2), the power depends on which other terms are included 
in the model. 

Blocks 
This is the number of blocks in the design. 

Units 
This is the number of subblocks (plots) in the design. It is the product of the number of treatment 
levels and the number of blocks. 

df1 
This is the numerator degrees of freedom of the F test. 

df2 
This is the denominator degrees of freedom of the F test. This value depends on which terms are 
included in the AOV model. 
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Std Dev of Means (Sm) 
This is the standard deviation of the means (or effects). It represents the size of the differences 
among the effects that is to be detected by the analysis. If you have entered hypothesized means, 
only their standard deviation is displayed here. 

Effect Size 
This is the standard deviation of the means divided by the standard deviation of subjects. It 
provides an index of the magnitude of the difference among the means that can be detected by 
this design. 

Alpha 
This is the significance level of the F test. This is the probability of a type-I error given the null 
hypothesis of equal means and zero effects. 

Beta 
This is the probability of the type-II error for this test given the sample size, significance level, 
and effect size. 

Example 2 – Validation using Prihoda 
Prihoda (1983) presents details of an example that is given in Odeh and Fox (1991). In this 
example, Alpha is 0.025, Sm of A is 0.577, the number of treatments in factor A is 6, the number 
of treatments in factor B is 3, S is 1.0, and the Number of Blocks is 2, 3, 4, 5, 6, 7, and 8. Prihoda 
gives the power values for the F test on factor A as 0.477, 0.797, 0.935, 0.982, 0.995, 0.999, and 
1.000.   

This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Randomized Block Analysis of Variance procedure window 
by clicking on Means, then Many Means (ANOVA), then Randomized Block ANOVA. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Number of Blocks....................................2 3 4 5 6 7 8 
Terms (A, B, AB) .....................................Checked 
Categories (A) .........................................6 
Categories (B) .........................................3 
Hypothesized Means (A).........................S 0.577 
Hypothesized Means (B).........................S 1 
Hypothesized Effects (AB) ......................S 1 
Alpha .......................................................All are set to 0.025 
S (Standard Deviation)............................1.0 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
     of Means Effect 
Term Power Blocks Units df1 df2 (Sm) Size Alpha Beta 
A 0.47622 2 36 5 17 0.577 0.5770 0.02500 0.52378 
B 0.99697 2 36 2 17 1.000 1.0000 0.02500 0.00303 
AB 0.85337 2 36 10 17 1.000 1.0000 0.02500 0.14663 
 
A 0.79521 3 54 5 34 0.577 0.5770 0.02500 0.20479 
B 0.99999 3 54 2 34 1.000 1.0000 0.02500 0.00001 
AB 0.99615 3 54 10 34 1.000 1.0000 0.02500 0.00385 
 
A 0.93479 4 72 5 51 0.577 0.5770 0.02500 0.06521 
B 1.00000 4 72 2 51 1.000 1.0000 0.02500 0.00000 
AB 0.99995 4 72 10 51 1.000 1.0000 0.02500 0.00005 
 
A 0.98226 5 90 5 68 0.577 0.5770 0.02500 0.01774 
B 1.00000 5 90 2 68 1.000 1.0000 0.02500 0.00000 
AB 1.00000 5 90 10 68 1.000 1.0000 0.02500 0.00000 
 
A 0.99573 6 108 5 85 0.577 0.5770 0.02500 0.00427 
B 1.00000 6 108 2 85 1.000 1.0000 0.02500 0.00000 
AB 1.00000 6 108 10 85 1.000 1.0000 0.02500 0.00000 
 
A 0.99907 7 126 5 102 0.577 0.5770 0.02500 0.00093 
B 1.00000 7 126 2 102 1.000 1.0000 0.02500 0.00000 
AB 1.00000 7 126 10 102 1.000 1.0000 0.02500 0.00000 
 
A 0.99981 8 144 5 119 0.577 0.5770 0.02500 0.00019 
B 1.00000 8 144 2 119 1.000 1.0000 0.02500 0.00000 
AB 1.00000 8 144 10 119 1.000 1.0000 0.02500 0.00000 
 
Standard Deviation Within Blocks (block-treatment interaction) = 1.000 

 

We have bolded the power values on this report that should match Prihoda’s results. You see that 
they do match. 
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Chapter 570 

Repeated 
Measures Analysis 
of Variance 
Introduction 
This module calculates the power for repeated measures designs having up to three within factors 
and up to three between factors. It computes power for various test statistics including the F test 
with the Geisser-Greenhouse correction, Wilks’ lambda, Pillai-Bartlett trace, and Hotelling-
Lawley trace. It can be used to calculate the power of crossover designs. . 

Repeated measures designs are popular because they allow a subject to serve as their own control. 
This usually improves the precision of the experiment. However, when the analysis of the data 
uses the traditional F tests, additional assumptions concerning the structure of the error variance 
must be made. When these assumptions do not hold, the Geisser-Greenhouse correction provides 
reasonable adjustments so that significance levels are accurate.  

An alternative to using the F test with repeated measures designs is to use one of the multivariate 
tests: Wilks’ lambda, Pillai-Bartlett trace, or Hotelling-Lawley trace. These alternatives are 
appealing because they do not make the strict, often unrealistic, assumptions about the structure 
of the error variance. Unfortunately, they may have less power than the F test and they cannot be 
used in all situations.  

An example of a two-factor repeated measures design that can be analyzed by this procedure is 
shown by the following diagram. 

 

Group 1  Group 2 

Subject 1 Subject 2 Month Subject 3 Subject 4 

Treatment L Treatment L 1 Treatment L Treatment L 

Treatment M Treatment M 2 Treatment M Treatment M 

Treatment H Treatment H 3 Treatment H Treatment H 

 

Groups 1 and 2 form the between factor. The within factor has three levels: L, M, and H (low, 
medium, and high). There are four subjects in this experiment. The three treatments are applied to 
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each subject, one treatment per month. Note that the three treatments are applied to each subject 
in the same order. Although the order of treatment application should be randomized, it is often 
the same for all subjects.  

This diagram shows the main features of a repeated measures design, which are 

1. Each subject receives all treatments. 

2. The treatments are applied through time. When the treatments are applied in the same 
order across all subjects, it is impossible to separate the treatment effects from the 
sequence effects. Some processes that can cause sequence effects are learning, practice, 
or fatigue—any pattern in the responses across time that occurs without the treatment. If 
you think the possibility for sequence effects exists, you must make sure that the effects 
of prior treatments have been washed out before applying the next treatment. 

3.  Unlike other designs, the repeated measures design has two experimental units: between 
and within. In this example, the first (between) experimental unit is a subject. Subject-to-
subject variability is used to test the between factor (groups). The second (within) 
experimental unit is the time period. In the above example, the month to month 
variability within a subject is used to test the treatment. The important point to realize is 
that the repeated measures design has two error components, the between and the within.  

Assumptions 
The following assumptions are made when using the F test to analyze a factorial experimental 
design. 

1.  The response variable is continuous. 

2.  The residuals follow the normal probability distribution with mean equal to zero and 
constant variance. 

3.  The subjects are independent. 

Since in a within-subject design responses coming from the same subject are not independent, 
assumption 3 must be modified for responses within a subject. Independence between subjects is 
still assumed. 

4.  The within-subject covariance matrices are equal for all between-subject groups. In this 
type of experiment, the repeated measurements on a subject may be thought of as a 
multivariate response vector having a certain covariance structure. This assumption states 
that these covariance matrices are constant from group to group.  

5.  When using an F test, the within-subject covariance matrices are assumed to be circular. 
One way of defining circularity is that the variances of differences between any two 
measurements within a subject are constant for all measurements. Since responses that 
are close together in time often have a higher correlation than those that are far apart, it is 
common for this assumption to be violated. This assumption is not necessary for the 
validity of the three multivariate tests: Wilks’ lambda, Pillai-Bartlett trace, or Hotelling-
Lawley trace. 
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Advantages of Within-Subjects Designs 
Because the response to stimuli usually varies less within an individual than between individuals, 
the within-subject variability is usually less than (or at most equal to) the between-subject 
variability. By reducing the underlying variability, the same power can be achieved with a smaller 
number of subjects.  

Disadvantages of Within-Subjects Designs 
1.  Practice effect. In some experiments, subjects systematically improve as they practice the 

task being studies. In other cases, subjects may systematically get worse as the get 
fatigued or bored with the experimental task. Note that only the treatment administered 
first is immune to practice effects. Hence, experimenters should make an effort to balance 
the number of subjects receiving each treatment first. 

2.  Carryover effect. In many drug studies, it is important to wash out the influence of one 
drug completely before the next drug is administered. Otherwise, the influence of the first 
drug carries over into the response to the second drug.  

3.  Statistical analysis. The statistical model is more restrictive than in a regular factorial 
design since the individual responses must have certain mathematical properties. 

Even in the face of all these disadvantages, repeated measures (within-subject) designs are 
popular in many areas of research. It is important that you recognize these problems going in so 
you can make sure that the design is appropriate, rather than learning of them later after the 
research has been conducted. 

Technical Details 

General Linear Multivariate Model 
This section provides the technical details of the repeated measures designs that can be analyzed 
by PASS. The approximate power calculations outlined in Muller, LaVange, Ramey, and Ramey 
(1992) are used. Using their notation, for N subjects, the usual general linear multivariate model 
is 

( ) ( ) ( )
Y XM R

N p N q p N p× × × ×
= +  

where each row of the residual matrix R is distributed as a multivariate normal 

( ) ( )row R Nk p~ ,0 Σ  

Note that p is the product of the number of levels of each of the within-subject factors, q is the 
number of design variables, Y is the matrix of responses, X is the design matrix, M is the matrix of 
regression parameters (means), and R is the matrix of residuals. 

Hypotheses about various sets of regression parameters are tested using  

H
a b0 0: Θ Θ
×
=  

CMD
a q p b× × ×

= Θ  
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where C and D are orthonormal contrast matrices and Θ0  is a matrix of hypothesized values, 
usually zeros. Note that C defines contrasts among the between-subject factor levels and D 
defines contrast among the within-subject factor levels. 

Tests of the various main effects and interactions may be constructed with suitable choices for C 
and D. These tests are based on  

( )$ ' 'M X X X= − Y  

$ $Θ = CMD  

( ) ( )[ ] ( )H C X X C
b b×

− −
= −

′
−$ ' ' $Θ Θ Θ Θ0

1

0  

( )E D D N r
b b×

= ⋅ −' $Σ  

T H E
b b×

= +  

where r is the rank of X.  

Geisser-Greenhouse F Test 
Upon the assumption that  has compound symmetry, a size Σ α  test of  H0: 0Θ Θ=  is given by 
the F ratio 

( )
( ) ( )[ ]F

H ab
E b N r

=
−

tr
tr

/
/

 

with degrees of freedom given by 

df ab1=  

( )df b N r2 = −  

and noncentrality parameter 

( )λ = df F1  

The assumption that  has compound symmetry is usually not viable. Box (1954a,b) suggested 
that adjusting the degrees of freedom of the above F-ratio could compensate for the lack of 
compound symmetry in . His adjustment has become known as the Geisser-Greenhouse 
adjustment. Under this adjustment, the modified degrees of freedom and noncentrality parameter 
are given by 

Σ

Σ

df ab1= ε  

( )df b N r2 = − ε  

( )λ ε= df F1  

where 

( )
( )ε =
tr

tr

D D

b D DD D

' $

' $ ' $
Σ

Σ Σ

2
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The range of ε  is 1
1b−

 to 1.  When ε = 1, the matrix is spherical. When ε =
−
1

1b
, the matrix 

differs maximally from sphericity. 

Note that the Geisser-Greenhouse adjustment is only needed for testing main effects and 
interactions involving within-subject factors. Main effects and interactions that involve only 
between-subject factors need no such adjustment. 

The critical value  is computed using the expected value of FCrit ε  to adjust the degrees of 
freedom. That is, the degrees of freedom of are given by FCrit

( )df ab1= E ε  

( ) ( )df b N r2 = − E ε  

where 

( )E
g

N r
g

N r$

/
ε

ε ε

ε
=

+
−

>
−

⎧
⎨
⎪

⎩⎪

1 1

2

if

otherwise
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f
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i
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i ji j
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1
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−= ≠
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where the ξ j 's  are the ordered eigenvalues of D D'Σ . 

Wilks’ Lambda Approximate F Test 
The hypothesis  may be tested using Wilks’ likelihood ratio statistic W. This statistic 
is computed using 

H0:Θ Θ= 0

W ET= −1  

An F approximation to the distribution of W is given by 

( )
F df

dfdf df1 2

1

21,
/

/
=

−
η
η

 

where 

λ = df Fdf df1 1 2,  

η = −1 1W g/  

df ab1=  

( ) ( )[ ] ( )df g N r b a ab2 1 2= − − − + − −/ /2 2  

g a b
a b

=
−

+ −
⎛
⎝
⎜

⎞
⎠
⎟

2 2

2 2

1
24

5
 

Pillai-Bartlett Trace Approximate F Test 
The hypothesis  may be tested using the Pillai-Bartlett Trace. This statistic is 
computed using 

H0:Θ Θ= 0

( )T tr HTPB =
−1  

A non-central F approximation to the distribution of  is given by TPB

( )
F df

dfdf df1 2

1

21,
/

/
=

−
η
η

 

where 

λ = df Fdf df1 1 2,  

η =
T
s
PB  

( )s a= min ,b  

df ab1=  

( )[ ]df s N r b s2 = − − +  
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Hotelling-Lawley Trace Approximate F Test 
The hypothesis  may be tested using the Hotelling-Lawley Trace. This statistic is 
computed using 

H0:Θ Θ= 0

( )T tr HEHL =
−1  

An F approximation to the distribution of T  is given by HL

( )
F df

dfdf df1 2

1

21,
/

/
=

−
η
η

 

where 

λ = df Fdf df1 1 2,  

η =
+

T
s
T

s

HL

HL1
 

( )s a= min ,b  

df ab1=  

( )[ ]df s N r b s2 = − − +  

The M (Mean) Matrix 
In the general linear multivariate model presented above, M represents a matrix of regression 
coefficients. Since you must provide the elements of M, we will discuss its meaning in more 
detail. Although other structures and interpretations of M are possible, in this module we assume 
that the elements of M are the cell means. The rows of M represent the between-subject categories 
and the columns of M represent the within-group categories.  

The q rows of M represent the q groups into which the subjects can be classified. For example, if 
a design includes three between-subject factors with 2, 3, and 4 categories, the matrix M would 
have 2 x 3 x 4 = 24 rows. That is, q = 24. Similarly, if a design has three within-subject factors 
with 3, 3, and 3 categories, the matrix M would have 3 x 3 x 3 = 27 columns. That is, p = 27. 

Consider now an example in which q = 3 and p = 4. That is, there are three groups into which 
subjects can be placed. Each subject is measured four times. The matrix M would appear as 
follows.  

M =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

μ μ μ μ
μ μ μ μ
μ μ μ μ

11 12 13 14

21 22 23 24

31 32 33 34

 

For example, the element μ12  is the mean of the second measurement of subjects in the first 
group. To calculate the power of this design, you would need to specify appropriate values of all 
twelve means. 
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As a second example, consider a design with three between-subject factors and three within-
subject factors, all of which have two categories. The M matrix for this design would be as 
follows.  

M

W
W
W

B B B

=

1 1 1 1 1 2 2 2 2
2 1 1 2 2 1 1 2 2
3 1 2 1 2 1 2 1 2

1 2 3
1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2

111111 111112 111121 111122 111211 111212 111221 111222

112111 112112 112121 112122 112211 112212 112221 112222

121111 121112 121121 121122 121211 121212 121221 121222

122111 122112 122121 122122 122211 122212 122221 122222

211111 211112 211121 211122 211211 211212 211221 211222

212111

μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ

212112 212121 212122 212211 212212 212221 212222

221111 221112 221121 221122 221211 221212 221221 221222

222111 222112 222121 222122 222211 222212 222221 222222

2 2 1
2 2 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

The subscripts for each mean follow the pattern μB B B W W W1 2 3 1 2 3 . The first three subscripts 
indicate the between-subject categories and the second three subscripts indicate the within-subject 
categories. Notice that the first three subscripts are constant in each row and the second three 
subscripts are constant in each column.  

Specifying the M Matrix 
When computing the power in a repeated measures analysis of variance, the specification of the 
M matrix is one of your main tasks. The program cannot do this for you. The calculated power is 
directly related to your choice. So your choice for the elements of M must be selected carefully 
and thoughtfully. When authorization and approval from a government organization is sought, 
you should be prepared to defend your choice of M. In this section, we will explain how you can 
specify M. 

Before we begin, it is important that you have in mind exactly what M is. M is a table of means 
that represent the size of the differences among the means that you want the study or experiment 
to detect. That is, M gives the means under the alternative hypothesis. Under the null hypothesis, 
these means are assumed to be equal. Because of the complexity of the repeated measures design, 
it is often difficult to choose reasonable values, so PASS will help you. But it is important to 
remember that you are responsible for these values and that the sample sizes calculated are based 
on them. 

One way to specify the M matrix is to do so directly into the spreadsheet. You might do this if 
you are calculating the ‘retrospective’ power of a study that has already been completed, or if it is 
simply easier to write the matrix directly. Usually, however, you will specify the M matrix in 
portions. 

We will begin our discussion of specifying the M matrix with an example. Consider a study of 
two groups of subjects. Each subject was tested, then a treatment was administered, then the 
subject was tested again at the ten minute mark, and then tested a third time after sixty minutes. 
The researchers wanted the sample size to be large enough to detect the following pattern in the 
means. 
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Table of Hypothesized Means   
 Time Period   
Group T0 T10 T60 Average 
A 100 130 100 110 

B 120 180 120 140 

Average 110 155 110 125 

 
To understand how they derived this table, we will perform some basic arithmetic on it. 

Step 1 – Remove the Overall Mean 
Subtract 125, the overall mean, from each of the individual means. 

Table of Hypothesized Means 
Adjusted for Overall Mean 

  

 Time Period   
Group T0 T10 T60 Average 
A -25 5 -25 -15 

B -5 55 -5 15 

Average -15 30 -15 125 

 

Step 2 – Remove the Group Effect 
Subtract -15 from the first row and 15 from the second row. 

Table of Hypothesized Means 
Adjusted for Group 

  

 Time Period   
Group T0 T10 T60 Total 
A -10 20 -10 -15 

B -20 40 -20 15 

Total -15 30 -15 125 
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Step 3 – Remove the Time Effect 
Subtract -15 from the first column, 30 from the second column, and -15 from the third column. 

Table of Hypothesized Means 
Adjusted for Group and Time 

   

 Time Period    
Group T0 T10 T60 Effect Effect + Overall 
A 5 -10 5 -15 110 

B -5 10 -5 15 140 

Effect -15 30 -15   

Effect + Overall 110 155 110  125 

 
This table, called an effects table, lets us see the individual effect of each component of the 
model. For example, we can see that the hypothesized pattern across time is that T10 is 45 units 
higher than either endpoint. Similarly, we note that the hypothesized pattern for the two groups is 
that Group B is 30 units larger than Group A. 

Understanding the interaction is more difficult. One interpretation focuses on T10. We note that 
in Group A the response for T10 is 10 less than expected while in Group B the response for T10 
is 10 more than expected. 

Entering This Information into PASS 
Rather than enter the individual values into PASS, you can enter the group, time, and interaction 
effects directly. For this example, you could enter ‘110  140’ or ‘-15 15’ for the hypothesized 
means of the between factor and ‘110  155  110’ or ‘-15 30 -15’ for the hypothesized means of 
the within factor. For the interaction, you would enter the six interaction values ‘5 -10 5 -5 10 -5’.  

Another way to enter the interaction information would be to indicate that the size of the 
interaction to be detected is about half that of the group factor or about a third of the time factor. 
For a complete discussion of the interpretation of various interactions, we suggest that you look at 
Kirk (1982). 

The C Matrix for Between-Subject Contrasts 
The C matrix is comprised of contrasts that are applied to the rows of M. That is, these are 
between-group contrasts. You do not have to specify these contrasts. They are generated for you. 
You should understand that a different C matrix is generated for each between-subject term in the 
model. For example, in the six factor example above, the C matrix that will be generated for 
testing the between-subject factor B1 is 

CB1
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

=
− − − −⎡

⎣⎢
⎤

⎦⎥
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Note that the divisor 8  is used so that the total of the squared elements is one. This is required 
so that the contrast matrix is orthonormal. 

When creating a test for B1, the matrix D is created to average across all within-subject 
categories. 

DB1

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

Generating the C Matrix when There are Multiple Between Factors 
Generating the C matrix when there is more than one between factor is more difficult. We like the 
method of O’Brien and Kaiser (1985) which we briefly summarize here. 

Step 1. Write a complete set of contrasts suitable for testing each factor separately. For example, 
if you have three factors with 2, 3, and 4 categories, you might use 

&&CB1
1
2

1
2

=
−⎡

⎣⎢
⎤

⎦⎥
, &&CB2

2
6

1
6

1
6

0 1
2

1
2

=

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, and &&CB3

3
12

1
12

1
12

1
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0 2
6

1
6

1
6

0 0 1
2

1
2

=

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

. 

Step 2. Define appropriate  matrices corresponding to each factor. These matrices comprised 
of one row and k columns whose equal element is chosen so that the sum of its elements squared 
is one. In this example, we use 

Jk

J2
1
2

1
2

= ⎡

⎣⎢
⎤

⎦⎥
, J3

1
3

1
3

1
3

= ⎡

⎣⎢
⎤

⎦⎥
, J4

1
4

1
4

1
4

1
4

= ⎡

⎣⎢
⎤

⎦⎥
 

Step 3. Create the appropriate contrast matrix using a direct (Kronecker) product of either the  
matrix if the factor is included in the term or the  matrix when the factor is not in the term. 
Remember that the direct product is formed by multiplying each element of the second matrix by 
all members of the first matrix. Here is an example 

&&CBi

Ji
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1 2
3 4

1 0 1
0 2 0
1 0 3

1 2 0 0 1 2
3 4 0 0 3 4
0 0 2 4 0 0
0 0 6 8 0 0
1 2 0 0 3 6
3 4 0 0 9 12

⎡
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As an example, we will compute the C matrix suitable for testing factor B2 

C J C JB B2 2 2= ⊗ ⊗&&
4  

Expanding the direct product results in 
C J C JB B2 2 2 4

1
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⎥

 

Similarly, the C matrix suitable for testing interaction B2B3 is 

C J C CB B B B2 3 2 2 3= ⊗ ⊗&& &&  

We leave the expansion of this matrix PASS, but we think you have the idea. 

The D Matrix for Within-Subject Contrasts 
The D matrix is comprised of contrasts that are applied to the columns of M. That is, these are 
within-group contrasts. You do not have to specify these contrasts either. They will be generated 
for you. Specification of the D matrix is similar to the specification of the C matrix, except that 
now the matrices are all transposed.  

Interactions of Between-Subject and Within-Subject Factors 
Interactions that include both between-subject factors and within-subject factors require that 
between-subject portion be specified by the C matrix and the within-subject portion be specified 
with the D matrix. 
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Power Calculations 
To calculate statistical power, we must determine distribution of the test statistic under the 
alternative hypothesis which specifies a different value for the regression parameter matrix B. The 
distribution theory in this case has not been worked out, so approximations must be used. We use 
the approximations given by Mueller and Barton (1989) and Muller, LaVange, Ramey, and 
Ramey (1992). These approximations state that under the alternative hypothesis,  is distributed 
as a noncentral F random variable with degrees of freedom and noncentrality shown above. The 
calculation of the power of a particular test may be summarized as follows 

FU

1.  Specify values of X M C D, , , , ,Σ Θand 0 . 

2.  Determine the critical value using ( )F FINV df dfcrit = −1 1 2α , , , where FINV( ) is the 
inverse of the central F distribution and α is the significance level.  

3.  Compute the noncentrality parameter λ . 

4.  Compute the power as  

( )Power NCFPROB F df dfcrit= −1 1, , ,2 λ  

where NCFPROB( ) is the noncentral F distribution.  

Covariance Matrix Assumptions 
The following assumptions are made when using the F test. These assumptions are not needed 
when using one of the three multivariate tests.   

In order to use the F ratio to test hypotheses, certain assumptions are made about the distribution 
of the residuals .  Specifically, it is assumed that the residuals for each subject, 

, are distributed as a multivariate normal with means equal to zero and covariance 
matrix . Two additional assumptions are made about these covariance matrices. First, they are 

assumed to be equal for all subjects. That is, it is assumed that 

eijk

e e eij ij ijT1 2, , ,L

Σ ij

Σ Σ Σ Σ11 12= = = =L Gn . 
Second, the covariance matrix is assumed to have a particular form called circularity. A 
covariance matrix is circular if there exists a matrix A such that 

Σ = + +A A IT' λ  

where  is the identity matrix of order T and IT λ  is a constant.  

This property may also be defined as 

σ σ σ λii jj ij+ − =2 2  

One type of matrix that is circular is one that has compound symmetry. A matrix with this 
property has all elements on the main diagonal equal and all elements off the main diagonal 
equal. An example of a covariance matrix with compound symmetry is 
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Σ =

⎡
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⎢
⎢
⎢
⎢
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or, with actual numbers, 
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2 2 2 9
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An example of a matrix which does not have compound symmetry  but is still circular is 

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

4 3 4 5
3 6 5 6
4 5 8 7
5 6 7 10
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⎥
⎥
⎥

+
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⎤
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⎥
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⎥

 

Needless to say, the need to have the covariance matrix circular is a very restrictive assumption. 

Between-Subject Standard Deviation 
The subject-to-subject variability is represented by . In the repeated measures AOV table, 
this quantity is estimated by the between subjects mean square (MSB). This quantity is calculated 
from  using the formula 

σBetween
2

Σ

σ
σ

σ σ ρ

Between

ij
j

T

i

T

ii jj ij
j

T

i

T
T

T

2 11

11

=

=

==

==

∑∑

∑∑
 

When  has compound symmetry, which requires all Σ σ σii =  and all ρ ρij = , the above 
formula reduces to 

( )( )σ σBetween T2 2 1 1= + − ρ  

Note that F tests of between factors and their interactions do not require the circularity 
assumption so the Geisser-Greenhouse correction is not applied to these tests. 
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Within-Subject Standard Deviation 
The within-subject variability is represented by . In the repeated measures AOV table, this 
quantity is estimated by the within-subjects mean square (MSW). This quantity is calculated from 

 using the formula 

σWithin
2

Σ

( )

( )

σ
σ σ

σ ρ σ σ
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ii
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ij
j i
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T T T

T T T
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When  has compound symmetry, which requires all Σ σ σii =  and all ρ ρij = , the above 
formula reduces to 

( )σ σWithin
2 2 1= − ρ  

Estimating Sigma and Rho from Existing Data 
Using the above results for existing data, approximate values for σ  and ρ  may be estimated 
from a previous analysis of variance table that provides estimates of MSB and MSW. Solving the 
above equations for σ  and ρ   yields 

( )
ρ σ σ

σ σ
=

−
+ −

Between Within

Between WithinT

2 2

2 21
 

σ σ
ρ

2
2

1
=

−
Within  

Substituting MSB for  and MSW for  yields the estimates σ Between
2 σWithin

2

( )
$ρ =

−
+ −

MSB MSW
MSB T MSW1

 

$
$

σ
ρ

2

1
=

−
MSW

 

Note that these estimators assume that the design meets the circularity assumption, which is 
usually not the case. However, they provide crude estimates that can be used in planning. 
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Procedure Options 
This section describes the options that are unique to this procedure. To find out more about using 
the other tabs, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for. If you choose to solve for n (sample size), 
you must also specify which test statistic you want to use. 

When you choose to solve for n, the program searches for the lowest sample size that meets the 
alpha and power criterion you have specified for each of the terms. If you do not want a term to 
be used in the search, set its levels to empty or 0. 

Also, when the ‘= n’s’ box is not checked, the search is made using unequal group sample sizes. 
The relative proportion of the sample in each group is set by the values of n given in the Subjects 
Per Group box. For example, if your design has three groups and you entered ‘1 1 2’ in the 
Subjects Per Group box, the search will only consider designs in which the size of the last group 
is twice the rest. That is, it will consider ‘2 2 4’, ‘3 3 6’, ‘4 4 8’, etc. 

Note: no plots are generated when you solve for n. 

Sample Size 

n (Subjects Per Group) 
Specify one or more values for the number of subjects per group. The total sample size is the sum 
of the individual group sizes across all groups. 

You can specify a list like ‘2 4 6’. The items in the list may be separated with commas or blanks. 
The interpretation of the list depends on the =n's check box. When the =n's box is checked, a 
separate analysis is calculated for each value of n. When the =n's box is not checked, PASS uses 
the n’s as the actual group sizes. In this case, the number of items entered must match the number 
of groups in the design. 

When you choose to solve for n and the ‘= n’s’ box is not checked, the search is made using 
unequal group sample sizes. The relative proportion of the sample in each group is set by the 
values of n given in this box. For example, if your design has three groups and you enter ‘1 1 2’ 
here, the search will only consider designs in which the size of the last group is twice the rest. 
That is, it will consider ‘2 2 4’, ‘3 3 6’, ‘4 4 8’, etc. 

= n’s 
This option controls whether the number of subjects per group is to be equal for all groups or not. 
When checked, the number of subjects per group is equal for all groups. A list of values such as 
‘5 10 15’ represents three designs: one with five per group, one with ten per group, and one with 
fifteen per group.  
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When this option is not checked, the n’s are assumed to be unequal. A list of values represents the 
size of the individual groups. For example, ‘5 10 15’ represents a single, three-group design with 
five in the first group, ten in the second group, and fifteen in the third group. 

Effect Size – Means 

Means Matrix 
Use this option to the specify spreadsheet columns containing a hypothesized means matrix that 
will be used to compute the Sm values. All individual Sm values are ignored. You can obtain the 
spreadsheet by selecting ‘Window’, then ‘Data’, from the menus. 

The between factors are represented across the columns of the spreadsheet and the within factors 
are represented down the rows. The number of columns specified must equal the number of 
groups. The number of rows with data in these columns must equal the number of times. For 
example, suppose you are designing an experiment that is to have two between factors (A & B) 
and two within factors (D & E). Suppose each of the four factors has two levels. The columns of 
the spreadsheet would be 

A1B1 A1B2 A2B1 A2B2. 

The rows of the spreadsheet would represent 

D1E1 

D1E2 

D2E1 

D2E2 

Example 
To see how this option works, consider the following table of hypothesized means for an 
experiment with one between factor (A) having two groups and one within factor (B) having 
three time periods. The values in columns C1 and C2 of the spreadsheet are 

C1 C2 
2.0 4.0 
4.0 6.0 
6.0 11.0 

By subtracting the appropriate means, the following table of effects results 
C1 C2 | Means | Effects 

Row1 0.5 -0.5 | 3.0 | -2.5 
Row2 0.5 -0.5 | 5.0 | -0.5 
Row3 -1.0 1.0 | 8.5 |  3.0 

--- --- | --- 
Means 4.0 7.0 | 5.5 
Effects -1.5 1.5 
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The standard deviation of the A effects is calculated as  

( ) ( )σ A =
− +

=
=

15 15
2

2 25
15

2 2. .

.
.

 

The standard deviation of the B effects is calculated as 

( ) ( ) ( )σ B =
− + − +

=

=

2 5 0 5 30
3
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3
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2 2. . .

.

.

2

 

The standard deviation of the interaction effects is found to be 

( ) ( ) ( ) ( ) ( ) ( )σ AB =
+ + − + − + − +

=

=

0 5 0 5 10 0 5 0 5 10
6

30
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0 71

2 2 2 2 2. . . . . .

.

.

2

 

These three standard deviations are used to represent the effect sizes of the corresponding terms. 

Discussion 
When using this option, it is less confusing to concentrate on a single term at a time. For example, 
consider a 2-by-4 design in which your primary interest is in testing the AB interaction. Instead of 
trying to determine a means matrix the will represent factor A, factor B, and the AB interaction, 
ignore factor A and factor B and just consider the interaction. You might want to consider the 
following pattern  

C1 C2 
0.0 0.0 
0.0 1.0 
0.0 2.0 
0.0 3.0 

That is, the first group remains constant while the second group increases for 0.0 to 3.0. 

By specifying various values for K (the means multiplier), you can study to impact of increasing 
the values. For example, when K is set to 2, the above means matrix becomes 

C1 C2 
0.0 0.0 
0.0 2.0 
0.0 4.0 
0.0 6.0 

Thus, by simply changing K, several scenarios may be studied. (We wish to thank Keith Muller 
for suggesting this method of specifying the Sm values.) 
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K (Means Multipliers) 
These values are multiplied times the means matrix to give you various effect sizes. A separate 
power calculation is generated for each value of K. These values become the horizontal axis in 
the second power chart. For example, if an Sm value is 80, setting this option to ‘50 100 150’ 
would result in three Sm values: 40, 80, and 120. If you want to ignore this setting, enter ‘1’. 

Note that when you enter Sm values directly, PASS generates an appropriate means matrix and 
then multiplies this matrix by each of these K values. 

Effect Size – Between- and Within-
Subject Factors 

Label 
Specify a label for this factor. Although we suggest that only a single letter be used, the label can 
consist of several letters. When several letters are used, the labels for the interactions may be 
extra long and confusing. Of course, you must be careful not to use the same label for two factors. 

One of the easiest sets of labels is to use A, B, and C for the between factors and D, E, and F for 
the within factors. A useful alternative is to use B1, B2, and B3 for the between factors and W1, 
W2, and W3 for the within factors. 

Levels 
Specify the number of levels (categories) in this factor. Typical values are from 2 to 8. Set this to 
a blank (or 0) to ignore the factor in the design. 

Alpha 
These options specify the probability of a type-I error (alpha) for each factor and interaction. A 
type-I error occurs when you reject the null hypothesis of zero effects when in fact they are zero. 
Since they are probabilities, alpha values must be between zero and one. Historically, the value of 
0.05 has been used for alpha. This value may be interpreted as meaning that about one F-test in 
twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents 
the risk of a type-I error you are willing to take in your experimental situation.  

You can specify different alpha values for different terms. For example, although you have three 
terms in an experiment, you might be mainly interested in only one of them. Hence, you could 
increase the alpha level of the tests of the other terms and thereby increase their power. Also, you 
may want to increase the alpha level of the interaction terms, as these will often have poor power 
otherwise. 

Power or Beta 
These options specify the power or beta (depending on the chosen setting) for each factor and 
interaction. Power is the probability of rejecting a false null hypothesis, and is equal to one minus 
Beta. Beta is the probability of a type-II error, which occurs when you fail to reject the null 
hypothesis of equal effects when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

Sm (Standard Deviation of Effects) 
Enter the standard deviation of the effects ( effectsσ ) for this factor or interaction. This value 
represents the magnitude of the differences among the means (effects) that is to be detected.  
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The value of Sm may be entered in several ways: directly, as a list of numbers, or as a percentage 
of another term. 

• Directly 
You can enter the value of Sm directly by specifying a single number. If only a single number 
is entered, it becomes the value of Sm.  

You can use the Standard Deviation Estimator window to calculate the value of Sm for 
various sets of means. This window is obtained by selecting PASS, then Other, and then 
Standard Deviation Estimator from the menus. 

• List of Numbers 
When a list of numbers is entered, the standard deviation of those numbers is computed and 
used as the value of Sm. The numbers in the list may represent means or effects. The list may 
be a simple list, the STEP command, or the RANGE command. 

Simple List 

A Simple List is a set of numbers separated by blanks or commas. Examples a simple list are 

5 20 60 

2,5,7 

-4,0,6,9 

STEP Command 

The syntax of the STEP command is STEP Start Inc. The list begins at Start and increases by 
Inc. The number of values generated is determined by the number of levels in the term. 
Examples of the STEP command for a term with four levels are 

‘STEP 0 2’ results in ‘0 2 4 6’. 

‘STEP 1 -1’ results in ‘1 0 -1 -2’. 

‘STEP 1 0.5’ results in ‘1 1.5 2 2.5’.  

RANGE Command 

The syntax of the RANGE command is RANGE Minimum Maximum. The list of numbers 
generated increase steadily from Minimum to Maximum. The RANGE command is handy 
when you want to vary the number of levels while keeping the values in a known range. 
Examples of the RANGE command for a term with four levels are 

‘RANGE 10 70’ results in ‘10 30 50 70’. 

‘RANGE 0 1’ results in ‘0 0.33 0.67 1’. 

‘RANGE 1 4’ results in ‘1 2 3 4’.  
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Percentage of another Term 

You can specify the value as a percentage of another term. The syntax of this command is 
TERM PCT where TERM is any other main effect or interaction in the model and PCT is a 
percentage. This method is often used to specify interaction Sm’s. Examples of the 
PERCENTAGE command are 

‘A 100’ results in an Sm equal to the Sm of factor A. 

‘B 50’ results in an Sm equal to one-half of the Sm of factor B. 

Interactions Tab 
The values of Alpha, Power, and Sm are entered for various groups of 2-way and higher-order 
interactions.  

Covariance Tab 
This tab specifies the covariance matrix. 

Covariance Matrix Specification 

Specify Which Covariance Matrix Input Method to Use 
This option specifies which method will be used to define the covariance matrix. 

• Standard Deviations and Autocorrelations 
This option generates a covariance matrix based on the settings for the standard deviations 
(SD’s) and the pattern of autocorrelations as specified in the options on this screen down to 
and including ‘R2’. More about this option is given below. 

• Covariance Matrix Variables 
When this option is selected, the covariance matrix is read in from the columns of the 
spreadsheet. This is the most flexible method, but specifying a covariance matrix is tedious. 
You will usually only use this method when a specific covariance is given to you. More about 
this option is given below. 

Note that the spreadsheet is shown by selecting the menus: ‘Window’ and then ‘Data’. 

Time Metric 
This option is used when the ‘Specify How the Standard Deviations Change Across Time’ option 
is set to ‘Range from SD1 to SD2 using the Time Metric’ to help define the covariance matrix. It 
specifies a sequential list of time points at which measurements of the subjects are made. Often, 
measurements are made at equally-spaced points through time. This is not always the case. It is 
important to define a time metric that corresponds to the study. For example, measurements might 
be planned at the beginning, after one day, after one week, and after one month.  

The number of time points is the product of the number of levels of all within factors.  

The time metric influences the values of the SD’s as well as the correlations between two 
measurements on the same individual. 
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Entering a List of Times 
A list of times can be entered in which the time values are separated by blanks or commas. The 
time metric can be defined in any time scale desired. For example, you could enter 0, 0.143, 1, 2, 
3 if times were 0 weeks, 1/7 week (day 1), 1 week, 2 weeks, 3 weeks. The same values in days 
would be 0, 1, 7, 14, 21. 

Using the RANGE Command 
The RANGE command can be used to specify a list of times. The syntax of the RANGE 
command is 

RANGE Minimum Maximum 

A set of equal-spaced time points is generated between Minimum and Maximum. The number of 
time points depends on the number of within-factor levels. 

This setting is very useful when you want to study the impact of increasing/decreasing the 
number of measurements per subject during the same period of time. That is, if the study will last 
five weeks, will the power of the statistical tests increase if you take ten measurements rather than 
five? 

For example, suppose there are six times. Entering  

RANGE 0 10  

will generate the time metric: 0, 2, 4, 6, 8, 10. If the number of times is changed to eleven, the 
time metric will become: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 

Using the STEP Command 
The STEP command can be used to specify a list of times. The syntax of the STEP command is 

STEP Start, Inc 

This command generates time points beginning at Start and incrementing by Inc. For example,  

STEP 0 2  

would generate the values 0, 2, 4, 6, 8, … 

Covariance Matrix Specification – 
Within-Subject Standard Deviation 
Pattern 
The parameters in this section provide a flexible way to specifyΣ , the covariance matrix. 
Because the covariance matrix is symmetric, it can be represented as 
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where T is the product of the number of levels of all of the within factors. 

Thus, the covariance matrix can be represented with complete generality by specifying the 
standard deviations σ σ σ1 2, , ,L T  and the correlation matrix 
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Specify How the Standard Deviations Change Across Time 
This option specifies the method used to specify the standard deviations σ σ σ1 2, , ,L T . Based on 
the method selected, the actual values are specified using SD1 and, in some cases, SD2.  

Each σ  is an estimate of the standard deviation that occurs when the same individual is 
measured at the same point in time under identical treatment conditions. It is a measure of the 
within-subject variability. 

The available options are 

• Constant (Use SD1. Ignore SD2) 
When this option is selected, the standard deviations are assumed to be equal. That is, it is 
assumed that σ σ1 = =L T . The value of σ i  is specified in the SD1 field. The value in the 
SD2 field is ignored. 

• List of Standard Deviations (Use list in SD1. Ignore SD2.) 
When this option is selected, a list of standard deviations can be entered in SD1. The items in 
the list can be separated by commas or blanks. The first value in the list becomes σ1 , the 
second value becomes σ2 , and so on. If the number of values in the list is less than the 
number of standard deviations required, the last value in the list is repeated. Note that all 
standard deviations in the list must be positive numbers. 
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• Range from SD1 to SD2 using the Time Metric 
When this option is selected, the standard deviations are spread between σ1  and σT  
according to the spread in the Time Metric. The value in SD1 becomes σ1  and the value in 
SD2 becomes σT . 

For example, suppose SD1 = 100, SD2 = 200, and the Time Metric values are 0, 2, 4, 10. The 
standard deviations would be  

σ1 100 0= .  σ2 120 0= .  σ3 140 0= .  σ4 200 0= .  

SD1 (Standard Deviation 1) 
This option is used to generate the covariance matrix. Its interpretation depends on the ‘How the 
SD’s Change Across Time’ option’s setting. Fundamentally, this is the standard deviation that 
occurs when the same individual is measured at the same point in time under identical treatment 
conditions. It is a measure of the within-subject variability. 

You may want to use the special window that has been prepared to estimate SD1 from the mean 
square between (MSB) and the mean square within (MSW) of an existing table. To display this 
special window, from the menus select ‘PASS’, then ‘Other’, and then ‘Standard Deviation 
Estimator’. Click on the ‘Covariance Matrix’ tab. Enter the values from the ANOVA table. The 
resulting value of ‘Sigma’ should be placed here. 

Specify How the Standard Deviations Change Across Time = Constant  
The value entered here is used as the standard deviation for all time points.  

Specify How the Standard Deviations Change Across Time = List of Standard Deviations  
The values in the list entered here become the values of the standard deviations. If the number in 
the list is less than the number required, the last value in the list is repeated. 

Specify How the Standard Deviations Change Across Time = Range from SD1 to SD2 using 
the Time Metric 
The value entered here is used as a beginning standard deviation, the value in SD2  is used as an 
ending standard deviation, and the intermediate standard deviations are spaced between SD1 and 
SD2 proportional to the values of the Time Metric.  

For example, suppose SD1 = 100, SD2 = 200, and the Time Metric values are 0,2,4,10. The 
standard deviation values would be: 

S(1)=100 

S(2)=120 

S(3)=140 

S(4)=200 

SD2 (Standard Deviation 2) 
This parameter is used when ‘How the SD’s Change Across Time’ option is set to ‘Range…’. In 
that case, this option specifies the value of Tσ . 
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Covariance Matrix Specification – 
Autocorrelation Pattern 

Specify How the Autocorrelations Change Across Time 
This option specifies the pattern of the autocorrelations in the variance-covariance matrix. Three 
options are possible: 

• Constant 
The value of R1 is used as the constant autocorrelation until the maximum time difference is 
reached, then the value of R2 is used. For example, if the maximum time difference is 3, R1 = 
0.6, R2 = 0.1, and T = 6, the correlation matrix would appear as 

R =
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⎢
⎢
⎢
⎢
⎢
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⎥
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1 0 600 0 600 0 600 0100 0100
0 600 1 0 600 0 600 0 600 0100
0 600 0 600 1 0 600 0 600 0 600
0 600 0 600 0 600 1 0 600 0 600
0100 0 600 0 600 0 600 1 0 600
0100 0100 0 600 0 600 0 600 1

. . . . .
. . . .
. . . . .
. . . . .
. . . . .
. . . . .

.

.

 

Note that when all correlations are equal, this is the correlation pattern that is assumed by the 
repeated measure ANOVA F-test. It may be a good first approximation, but many researchers 
believe the next option (first-order autocorrelation) is more realistic. 

• 1st Order Autocorrelation 
The value of R1 is used as the base autocorrelation in a first-order, serial correlation pattern. 
For example, if the maximum time difference is 3, R1 = 0.6, R2 = 0.1, and T = 6, the 
correlation matrix would appear as 

R =
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This pattern is often chosen as the most realistic when little is known about the correlation 
pattern. 

• Custom 
The values of R1, R2, A, V, and Max Time Diff are used to generate a custom autocorrelation 
pattern. This relationship is modeled using the equation 
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where R1 is the base correlation,  and  are two time points, and A and V are specified 

constants. The variable d is one if  ||
it jt

jtit − is less than Max Time Diff and zero otherwise.  

Machin, Campbell, Fayers, and Pinol (1997) state that values of R1 between 0.60 and 0.75 
are common. 

We will present some examples to show you how this formula may be interpreted. For the 
moment, assume that the time metric is four, equally space time points of 1, 2, 3, and 4. Also, 
assume that Max Time Diff is set to 20. 

Example 1 

Let A = 0, V = 1, and ρ ρ1 = . The correlation matrix becomes 

R =
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Example 2 

Let A = 1, V = 1, and ρ ρ1 = . The correlation matrix becomes 

R =
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which is the first-order autoregression model, a popular model in time series analysis.  

Example 3 

Let A = 1, V = 2, and ρ ρ1 = . The correlation matrix becomes 

R =
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which is similar to Example 2 except that the correlations die out much more quickly.  
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Example 4 

Let A = 0.5, V = 1, and ρ ρ1 = . The correlation matrix becomes 

R =
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which is similar to Example 2 except that the correlations die out much more slowly.  

Example 5 

Let A = 1 and V = 1. For this example, set the Max Time Diff option to 2. The correlation 
matrix becomes 

R =
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Notice that this scenario lets you create a banded correlation matrix with two unique 
correlations.  

Example 6 

This example shows how this formula works when the Max Time Diff is set to 7 and the time 
metric is 1, 2, 7, 15. Let A = 1 and V = 1. The correlation matrix becomes 

R =
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R1 (Autocorrelation) 
This is the autocorrelation, r1, between two measurements made on a subject at two time points 
that differ by one time unit. This value is combined with the other parameters in this section to 
form the covariance matrix.  

Since this is a type of correlation, possible values range from -1 to 1. However, in this situation, a 
positive value is usually assumed, so the range is 0 to 1. A value near 0 indicates low 
autocorrelation. A value near 1 indicates high autocorrelation. 

The value of this parameter depends on the Time Metric that is defined. Normally, you would 
expect a larger autocorrelation if the time metric units were in hours rather than days. In their 
book on sample size, Machin and Campbell comment the values between 0.60 and 0.75 are 
typical. 
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It is reasonable to assume that there is a correlation between two measurements made on the same 
subject at two points in time. It is often reasonable to assume that the size of this correlation 
diminishes as the two time points are further and further apart. That is, you would expect a much 
larger autocorrelation between two measurements taken one minute apart than between two 
measurements taken one week apart. 

You may want to use the special window that has been prepared to estimate R1 from the mean 
square between (MSB) and the mean square within (MSW) of an existing table. To display this 
special window, from the menus select ‘PASS’, then ‘Other’, and then ‘Standard Deviation 
Estimator’. Click on the ‘Covariance Matrix’ tab. Enter the values from the ANOVA table. The 
resulting value of ‘Rho should be placed here. 

R2 (Second AC) 
This is the value of the secondary autocorrelation, R2. This value is used when the difference 
between two time points (see Time Metric) is greater than the value of Max Time Diff. Hence, if 
you set Max Time Diff to zero, this value will be used to calculate all correlations in the 
covariance matrix. When used, think of R2 as the correlation between measurements made on the 
same subject, regardless Of how far apart in time they are. Since we are assuming a positive 
autocorrelation, this value ranges between 0 and 1. 

Max Time Diff 
This is the maximum time difference (MTD) between two measurement points before the 
autocorrelation is set to the constant correlation value, R2. 

In the autocorrelation formula: 

2)1(1
V||

, RddR ji tt
ji −+= −ρ  

The parameter d is equal to 1 when || < MTD and 0 otherwise. Hence, this value controls 
when the autocorrelation is set to R2. 

ji tt −

If you think of R2 as the correlation between measurements made on the same subject, regardless 
of how far apart in time they are, then this value should be set to that time difference at which the 
measurements times are no longer a factor.  

For example, you might postulate that the autocorrelations are 0.9, 0.5, 0.2, 0.2, 0.2, and so on. 
That is, the autocorrelation is 0.9 for measurements taken one day apart, 0.5 for measurements 
taken two days apart, and 0.2 for all others. In this case, you would set Max Time Diff to 3. 

A, V 
These parameters are used when a 'Custom' autocorrelation pattern across time is specified. The 
formula used to calculate the autocorrelation is: 

2)1(1
V||1

, RddR ji ttAA
ji −+= −+−ρ  

where d is 1 if the time difference is <= Max Time Diff and 0 otherwise. 

A = 0, V = 1 gives constant autocorrelation. 

A = 1, V = 1 gives first-order autocorrelation. 

Usually, V is set to 1. V should only be set to 1 or 2. The value of 1 is recommended. Set V at 2 
when you want the autocorrelations to taper off rapidly as time occurs between measurements. 
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Covariance Matrix Specification – 
Covariance Matrix Variables 
This option instructs the program to read the covariance matrix from the spreadsheet. 

Spreadsheet Columns Containing the Covariance Matrix 
This option designates the columns on the current spreadsheet holding the covariance matrix. It is 
used when the ‘Specify Which Covariance Matrix Input Method to Use’ option is set to 
Covariance Matrix Variables. 

The number of columns and number of rows must match the number of time periods at which the 
subjects are measured. 

Reports Tab 
This tab specifies which reports and graphs are displayed as well as their format. 

Select Output – Numeric Reports 

Test in Summary Statement(s) 
Indicate the test that is to be reported on in the Summary Statements. 

Select Output – Report Options 

Maximum Term-Order Reported 
Indicate the maximum order of terms to be reported on. Occasionally, higher-order interactions 
are of little interest and so they may be omitted. For example, enter a ‘2’ to limit output to 
individual factors and two-way interactions. 

Skip Line After 
The names of the terms can be too long to fit in the space provided. If the name contains more 
characters than this, the rest of the output is placed on a separate line. Enter ‘1’ when you want 
every term’s results printed on two lines. Enter ‘100’ when you want every variable’s results 
printed on one line. 

Example 1 – Determining Sample Size 
Researchers are planning a study of the impact of a drug on heart rate. They want to evaluate the 
differences in heart rate among three age groups: 20-40, 41-60, and over 60. Their experimental 
protocol calls for a baseline heart rate measurement, followed by administration of a certain level 
of the drug, followed by three additional measurements 30 minutes apart. They want to be able to 
detect a 10% difference in heart rate among the age groups. They want to detect 5% difference in 
heart rate within an individual across time. They decide the experiment should detect interaction 
effects of the same magnitude as the time factor. They plan to analyze the data using a Geisser-
Greenhouse corrected F test.   

Similar studies have found an average heart rate of 93, a standard deviation of 4, and an 
autocorrelation between adjacent measurements on the same individual of 0.7. The researchers 
assume that first-order autocorrelation adequately represents the autocorrelation pattern.  
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From a heart rate of 93, a 10% reduction gives 84. They decide on the age-group means of 93, 87, 
and 84. Similarly, a 5% reduction within a subject would result in a heart rate of 88. They decide 
on time means of 93, 89, 88, and 91. 

How many subjects per age group are needed to achieve 95% power and a 0.05 significance 
level? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by clicking on Means, then Many Means (ANOVA), then Repeated Measures ANOVA. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................2 to 8 by 1 
=n’s..........................................................checked  
Means Matrix...........................................blank  
K (Means Multipliers) ..............................1.0 

For First Between-Subject Factor 
Label........................................................B 
Levels ......................................................3 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........93 87 84 

For First Within-Subject Factor 
Label........................................................W 
Levels ......................................................4 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........93 89 88 91 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........W 100 

Covariance Tab 
Specify Covariance Method ....................1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time..............Constant 
SD1 (Standard Deviation 1) ....................4 
Time Metric..............................................Ignored 
Specify How Autocorr’s Change .............1st Order Autocorr  
R1 (Autocorrelation) ................................0.7 
Max Time Diff. .........................................100 (This large value will cause R2 to be ignored.) 
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Reports Tab 
Numeric Results by Term........................Checked 
Numeric Results by Design.....................Checked  
Regular F Test ........................................Not checked 
GG F Test ...............................................Checked 
Wilks’ Lambda.........................................Not checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
GG Detail Report.....................................Checked 
Means Matrix...........................................Checked 
Covariance Matrix ...................................Checked 
Test in Summary Statement ...................GG F Test 
Show Plot 1 .............................................Checked 
Show Plot 2 .............................................Not checked 
Test That is Plotted .................................GG F Test 
Max Term-Order Plotted .........................2 
Max Term-Order Reported......................2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Design Report 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
B(3) GG F 0.3096 2 6 1.00 3.74 3.29 1.14 0.0500 0.6904 
W(4) GG F 0.3266 2 6 1.00 1.92 1.31 1.47 0.0500 0.6734 
BW GG F 0.1588 2 6 1.00 1.92 1.31 1.47 0.0500 0.8412 
 
B(3) GG F 0.6459 3 9 1.00 3.74 3.29 1.14 0.0500 0.3541 
W(4) GG F 0.8099 3 9 1.00 1.92 1.31 1.47 0.0500 0.1901 
BW GG F 0.6267 3 9 1.00 1.92 1.31 1.47 0.0500 0.3733 
 
B(3) GG F 0.8478 4 12 1.00 3.74 3.29 1.14 0.0500 0.1522 
W(4) GG F 0.9486 4 12 1.00 1.92 1.31 1.47 0.0500 0.0514 
BW GG F 0.8598 4 12 1.00 1.92 1.31 1.47 0.0500 0.1402 
 
B(3) GG F 0.9415 5 15 1.00 3.74 3.29 1.14 0.0500 0.0585 
W(4) GG F 0.9871 5 15 1.00 1.92 1.31 1.47 0.0500 0.0129 
BW GG F 0.9535 5 15 1.00 1.92 1.31 1.47 0.0500 0.0465 
 
B(3) GG F 0.9793 6 18 1.00 3.74 3.29 1.14 0.0500 0.0207 
W(4) GG F 0.9970 6 18 1.00 1.92 1.31 1.47 0.0500 0.0030 
BW GG F 0.9860 6 18 1.00 1.92 1.31 1.47 0.0500 0.0140 
 
B(3) GG F 0.9931 7 21 1.00 3.74 3.29 1.14 0.0500 0.0069 
W(4) GG F 0.9993 7 21 1.00 1.92 1.31 1.47 0.0500 0.0007 
BW GG F 0.9961 7 21 1.00 1.92 1.31 1.47 0.0500 0.0039 
 
B(3) GG F 0.9978 8 24 1.00 3.74 3.29 1.14 0.0500 0.0022 
W(4) GG F 0.9999 8 24 1.00 1.92 1.31 1.47 0.0500 0.0001 
BW GG F 0.9990 8 24 1.00 1.92 1.31 1.47 0.0500 0.0010 

 

The Design Report gives the power for each term in the design for each value of n. It is useful 
when you want to compare the powers of the terms in the design at a specific sample size. 



570-32  Repeated Measures Analysis of Variance 

In this example, the design goals of 0.95 power on all terms are achieved for n = 6. 

The definitions of each of the columns of the report are as follows. 

Term 
This column contains the identifying label of the term. The number of levels for a factor is given 
in parentheses. 

Test 
This column identifies the test statistic. Since the power depends on the test statistic, you should 
make sure that this is the test statistic that you will use. 

Power 
This is the computed power for the term. 

n 
The value of n is the number of subjects per group. 

N 
The value of N is the total number of subjects in the study. 

Multiply Means By 
This is the value of the means multiplier, K.  

SD of Effects (Sm) 
This is the standard deviation of the effects  σm  for this term.  

Standard Deviation 
This is the value of σ , the random variation that σm  is compared against by the F test. See the 
Technical Details for details on how these values are calculated. 

Effect Size 
The Effect Size is calculated by the expression σ σm / . It is an index of the size of the effect 
values relative to the standard deviation. Its value may be compared from experiment to 
experiment, regardless of the scale of the response variable. 

Alpha 
Alpha is the significance level of the test 

Beta 
Beta is the probability of failing to reject the null hypothesis when the alternative hypothesis is 
true. 
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Term Reports 
 

Results for Factor B (Levels = 3) 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.3096 2 6 1.00 3.74 3.29 1.14 0.0500 0.6904  
GG F 0.6459 3 9 1.00 3.74 3.29 1.14 0.0500 0.3541  
GG F 0.8478 4 12 1.00 3.74 3.29 1.14 0.0500 0.1522  
GG F 0.9415 5 15 1.00 3.74 3.29 1.14 0.0500 0.0585  
GG F 0.9793 6 18 1.00 3.74 3.29 1.14 0.0500 0.0207  
GG F 0.9931 7 21 1.00 3.74 3.29 1.14 0.0500 0.0069  
GG F 0.9978 8 24 1.00 3.74 3.29 1.14 0.0500 0.0022  
 
Results for Factor W (Levels = 4) 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.3266 2 6 1.00 1.92 1.31 1.47 0.0500 0.6734  
GG F 0.8099 3 9 1.00 1.92 1.31 1.47 0.0500 0.1901  
GG F 0.9486 4 12 1.00 1.92 1.31 1.47 0.0500 0.0514  
GG F 0.9871 5 15 1.00 1.92 1.31 1.47 0.0500 0.0129  
GG F 0.9970 6 18 1.00 1.92 1.31 1.47 0.0500 0.0030  
GG F 0.9993 7 21 1.00 1.92 1.31 1.47 0.0500 0.0007  
GG F 0.9999 8 24 1.00 1.92 1.31 1.47 0.0500 0.0001  
 
Results for Term BW 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.1588 2 6 1.00 1.92 1.31 1.47 0.0500 0.8412  
GG F 0.6267 3 9 1.00 1.92 1.31 1.47 0.0500 0.3733  
GG F 0.8598 4 12 1.00 1.92 1.31 1.47 0.0500 0.1402  
GG F 0.9535 5 15 1.00 1.92 1.31 1.47 0.0500 0.0465  
GG F 0.9860 6 18 1.00 1.92 1.31 1.47 0.0500 0.0140  
GG F 0.9961 7 21 1.00 1.92 1.31 1.47 0.0500 0.0039  
GG F 0.9990 8 24 1.00 1.92 1.31 1.47 0.0500 0.0010  

 

The Term Reports provide a complete report for each term at all sample sizes. They are especially 
useful when you are only interested in the power of one or two terms. 

The definitions of each of the columns of the report are identical to the corresponding columns in 
the Design Report, so they are not repeated here. 

Geisser-Greenhouse Correction Detail Report 
 

   Critical   
Term (Levels) Power Alpha F Lambda df1|df2 Epsilon E(Epsilon) G1 
n = 2  N = 6 Means x 1 
B (3) 0.3096 0.0500 9.55 7.74 2|3 1.00 1.00 0.00 
W (4) 0.3266 0.0500 7.60 12.88 3|9 0.77 0.43 -1.01 
BW 0.1588 0.0500 6.92 12.88 6|9 0.77 0.43 -1.01 
n = 3  N = 9 Means x 1 
B (3) 0.6459 0.0500 5.14 11.62 2|6 1.00 1.00 0.00 
W (4) 0.8099 0.0500 4.12 19.32 3|18 0.77 0.60 -1.01 
BW 0.6267 0.0500 3.46 19.32 6|18 0.77 0.60 -1.01 
n = 4  N = 12 Means x 1 
B (3) 0.8478 0.0500 4.26 15.49 2|9 1.00 1.00 0.00 
W (4) 0.9486 0.0500 3.58 25.76 3|27 0.77 0.66 -1.01 
BW 0.8598 0.0500 2.95 25.76 6|27 0.77 0.66 -1.01 
n = 5  N = 15 Means x 1 
B (3) 0.9415 0.0500 3.89 19.36 2|12 1.00 1.00 0.00 
W (4) 0.9871 0.0500 3.36 32.20 3|36 0.77 0.68 -1.01 
BW 0.9535 0.0500 2.75 32.20 6|36 0.77 0.68 -1.01 
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n = 6  N = 18 Means x 1 
B (3) 0.9793 0.0500 3.68 23.23 2|15 1.00 1.00 0.00 
W (4) 0.9970 0.0500 3.25 38.64 3|45 0.77 0.70 -1.01 
BW 0.9860 0.0500 2.64 38.64 6|45 0.77 0.70 -1.01 
n = 7  N = 21 Means x 1 
B (3) 0.9931 0.0500 3.55 27.11 2|18 1.00 1.00 0.00 
W (4) 0.9993 0.0500 3.17 45.07 3|54 0.77 0.71 -1.01 
BW 0.9961 0.0500 2.57 45.07 6|54 0.77 0.71 -1.01 
n = 8  N = 24 Means x 1 
B (3) 0.9978 0.0500 3.47 30.98 2|21 1.00 1.00 0.00 
W (4) 0.9999 0.0500 3.12 51.51 3|63 0.77 0.72 -1.01 
BW 0.9990 0.0500 2.52 51.51 6|63 0.77 0.72 -1.01 

 

This report gives the details of the components of the Geisser-Greenhouse correction for each 
term and sample size. It is useful when you want to compare various aspects of this test. 

The definitions of each of the columns of the report are as follows. 

Term 
This column contains the identifying label of the term. For factors, the number of levels is also 
given in parentheses. 

Power 
This is the computed power for the term. 

Alpha 
Alpha is the significance level of the test. 

Critical F 
This is the critical value of the F statistic. An F value computed from the data that is larger than 
this value is statistically significant at the alpha level given. 

Lambda 
This is the value of the noncentrality parameter λ  of the approximate noncentral F distribution.  

df1|df2 
These are the values of the numerator and denominator degrees of freedom of the approximate F 
test that is used. These values are useful when comparing various designs. Other things being 
equal, you would like to have df2 large and df1 small. 

Epsilon 
The Geisser-Greenhouse epsilon is a measure of how far the covariance matrix departs from the 
assumption of circularity.  

E(Epsilon) 
This is the expected value of epsilon. It is a measure of how far the covariance matrix departs 
from the assumption of circularity.  

G1 
G1 is part of a correction factor used to convert ε  to ( )E $ε . It is reported for your convenience. 
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Summary Statements 
 

A repeated measures design with 1 between factor and 1 within factor has 3 groups with 2 
subjects each for a total of 6 subjects. Each subject is measured 4 times. This design achieves 
31% power to test factor B if a Geisser-Greenhouse Corrected F Test is used with a 5% 
significance level and the actual effect standard deviation is 3.74 (an effect size of 1.14), 
achieves 33% power to test factor W if a Geisser-Greenhouse Corrected F Test is used with a 5% 
significance level and the actual effect standard deviation is 1.92 (an effect size of 1.47), 
and achieves 16% power to test the BW interaction if a Geisser-Greenhouse Corrected F Test is 
used with a 5% significance level and the actual effect standard deviation is 1.92 (an effect 
size of 1.47). 

 

A summary statement can be generated for each sample size that is used. This statement gives the 
results in sentence form. The number of designs reported on textually is controlled by the 
Summary Statement option on the Reports Tab. 

Means Matrix 
 

Name B1 B2 B3 
W1 -10.62 5.19 -2.72 
W2 1.46 3.97 2.72 
W3 -4.58 4.58 0.00 
W4 -4.58 4.58 0.00 

 

This report shows the means matrix that was read in from the spreadsheet or generated by the Sm 
values that were given. It may be used to get an impression of the magnitude of the difference 
among the means that is being studied. When a Means Multiplier, K, is used, each value of K is 
multiplied times each value of this matrix. 

Variance-Covariance Matrix Section 
 

Variance-Covariance Matrix Section 
Time W1 W2 W3 W4 
W1 4.00 0.70 0.49 0.34 
W2 0.70 4.00 0.70 0.49 
W3 0.49 0.70 4.00 0.70 
W4 0.34 0.49 0.70 4.00 

 

This report shows the variance-covariance matrix that was read in from the spreadsheet or 
generated by the settings of on the Covariance tab. The standard deviations are given on the 
diagonal and the autocorrelations are given off the diagonal. 
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Plots Section 
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The chart shows the relationship between power and n for the terms in the design. Note that high-
order interactions may be omitted from the plot by reducing the Max Term-Order Plotted option 
on the Plot Setup tab. 

Example 2 – Varying the Difference Between the Means 
Continuing with Example 1, the researchers want to evaluate the impact on power of varying the 
size of the difference among the means for a range of sample sizes from 2 to 8 per groups. The 
researchers could try calculating various multiples of the means, inputting them, and recording 
the results. This can be accomplished very easily by using the K option.  

Keeping all other settings as in Example 1, the value of K is varied from 0.2 to 3.0 in steps of 0.2. 
We determined these values by experimentation so that a full range of power values are shown on 
the plots. 

In the output to follow, we only display the plots. You may want to display the numeric reports as 
well, but we do not here in order to save space.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by clicking on Means, then Many Means (ANOVA), then Repeated Measures ANOVA. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................2 3 4 8 
=n’s..........................................................checked  
Means Matrix...........................................blank  
K (Means Multipliers) ..............................0.2 to 3.0 by 0.2 

For First Between-Subject Factor 
Label........................................................B 
Levels......................................................3 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........93 87 84 

For First Within-Subject Factor 
Label........................................................W 
Levels......................................................4 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........93 89 88 91 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........W 100 

Covariance Tab 
Specify Covariance Method ....................1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time..............Constant 
SD1 (Standard Deviation 1) ....................4 
Time Metric ............................................. Ignored 
Specify How Autocorr’s Change .............1st Order Autocorr  
R1 (Autocorrelation) ................................0.7 
Max Time Diff. .........................................100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................Not checked 
Numeric Results by Design.....................Not checked 
Regular F Test ........................................Not checked 
GG F Test ...............................................Not checked 
Wilks’ Lambda.........................................Not checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
GG Detail Report.....................................Not checked 
Means Matrix...........................................Not checked 
Covariance Matrix ...................................Not checked 
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Reports Tab (continued) 
Show Plot 1 .............................................Not checked 
Show Plot 2 .............................................Checked 
Test That is Plotted .................................GG F Test 
Max Term-Order Plotted .........................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Plots Section 
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Factor W Power vs K by n using GG F Test
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Term BW Power vs K by n using GG F Test
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These charts show how the power depends on the relative size of Sm (i.e. K) as well as the group 
sample size n. 
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Example 3 – Impact of the Number of Repeated 
Measurements 
Continuing with Example 1, the researchers want to study the impact on power of changing the 
number of measurements made on each individual. Their experimental protocol calls for four 
measurements that are 30 minutes apart. They want to see the impact of taking twice that many 
measurements. To keep the output simple and two the point, they decide to look at the case when 
n = 4 and K = 1. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by clicking on Means, then Many Means (ANOVA), then Repeated Measures ANOVA. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................4 
=n’s..........................................................checked  
Means Matrix...........................................blank  
K (Means Multipliers) ..............................1.0 

For First Between-Subject Factor 
Label........................................................B 
Levels......................................................3 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........93 87 84 

For First Within-Subject Factor 
Label........................................................W 
Levels......................................................4 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........RANGE 88 93 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........W 100 

Covariance Tab 
Specify Covariance Method ....................1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time..............Constant 
SD1 (Standard Deviation 1) ....................4 
Time Metric ............................................. Ignored 
Specify How Autocorr’s Change .............1st Order Autocorr  
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Covariance Tab (continued) 
R1 (Autocorrelation) ................................0.7 
Max Time Diff. .........................................100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................Not checked 
Numeric Results by Design.....................Checked  
Regular F Test ........................................Not checked 
GG F Test................................................Checked 
Wilks’ Lambda.........................................Not checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
GG Detail Report.....................................Not checked 
Means Matrix...........................................Not checked 
Covariance Matrix ...................................Not checked 
Show Plot 1 .............................................Not checked 
Show Plot 2 .............................................Not checked 
Max Term-Order Reported......................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Design Report 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
(Results with 4 measurements) 
B(3) GG F 0.8478 4 12 1.00 3.74 3.29 1.14 0.0500 0.1522 
W(4) GG F 0.9350 4 12 1.00 1.86 1.31 1.42 0.0500 0.0650 
BW GG F 0.8348 4 12 1.00 1.86 1.31 1.42 0.0500 0.1652 
 
(Results with 8 measurements) 
B(3) GG F 0.8375 4 12 1.00 3.74 3.34 1.12 0.0500 0.1625 
W(8) GG F 0.9354 4 12 1.00 1.64 0.83 1.97 0.0500 0.0646 
BW GG F 0.8321 4 12 1.00 1.64 0.83 1.97 0.0500 0.1679 
 

Notice that the power of the between subjects factor decreased slightly, the power of the within-
subjects factor increased slightly, and the power of the interaction test decreased slightly. This 
pattern of increase or decrease depends on all the settings.  

We tried varying the value of the autocorrelation from 0.7 to 0.1 and found this to impact the 
direction of the change in the number of measurements. Hence, our conclusion is that there is no 
single answer. Changing the number of measurements may increase or decrease the power of a 
specific test depending on the values of the other parameters. 
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Example 4 – Power after a Study 
This example will show how to calculate the power of F tests from data that have already been 
collected and analyzed using the analysis of variance. The following results were obtained using 
the analysis of variance procedure in NCSS. In this example, Gender is the between factor with 
two levels and Treatment is the within factor with three levels. The experiment was conducted 
with two subjects per group, but there is interest in the power for 2, 3, and 4 subjects per group. 
All significance levels are set to 0.05. 
   
 Analysis of Variance Table 

Source  Sum of Mean  Prob  
Term DF Squares Square F-Ratio Level  
A (Gender) 1 21.33333 21.33333 32.00 0.029857 
B(A) 2 1.333333 0.6666667    
C (Treatment) 2 5.166667 2.583333 6.20 0.059488 
AC 2 5.166667 2.583333 6.20 0.059488 
BC(A) 4 1.666667 0.4166667    
Total (Adjusted) 11 34.66667 
Total 12 
 
Means and Effects Section 
   Standard 
Term Count Mean Error 
All 12 17.33333  
A: Gender 
Females 6 16 0.3333333 
Males 6 18.66667 0.3333333 
C: Treatment 
L 4 16.75 0.3227486 
M 4 17 0.3227486 
H 4 18.25 0.3227486 
AC: Gender,Treatment 
Females,L 2 14.5 0.4564355 
Females,M 2 16 0.4564355 
Females,H 2 17.5 0.4564355 
Males,L 2 19 0.4564355 
Males,M 2 18 0.4564355 
Males,H 2 19 0.4564355 

 
Note that the treatment means (L, M, and H) show an increasing pattern from 16.75 to 18.25, but 
the hypothesis test of this factor is not statistically significant at the 0.05 level. We will now 
calculate the power of the three F tests using PASS. We will use the regular F test since that is 
what was used in the above table. 

From the above printout, we note that MSB = 0.6666667 and MSW = 0.4166667. Plugging these 
values into the estimating equations 
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+ −
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$
.
.

.σ 2 0 4166667
1 016666667

0 5=
−

=  

so that 

$ . .σ = =05 0 70710681 

With these values calculated, we can setup PASS to calculate the power of the three F tests as 
follows. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, you 
will need to open the PASS RM Example 2.S0 dataset by clicking on the DATA icon in the 
toolbar at the top of PASS Home window. On the Data window, select File, then Open from the 
menus. Navigate to the Data folder that is located in the folder into which you installed PASS 
and select PASS RM Example 2.S0. Once the dataset is loaded, go back to the PASS Home 
window. From the PASS Home window, load the Repeated Measures Analysis of Variance 
procedure window by clicking on Means, then Many Means (ANOVA), then Repeated 
Measures ANOVA. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example4 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................2 3 4 
=n’s..........................................................checked  
Means Matrix...........................................FEMALES-MALES  
K (Means Multipliers) ..............................1.0 

For First Between-Subject Factor 
Label........................................................B 
Levels ......................................................2 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects).........Ignored since the Means Matrix is loaded. 

For First Within-Subject Factor 
Label........................................................W 
Levels ......................................................3 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects).........Ignored since the Means Matrix is loaded. 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects).........Ignored since the Means Matrix is loaded. 
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Covariance Tab 
Specify Covariance Method ....................1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time..............Constant 
SD1 (Standard Deviation 1) .................... .70710681 
Time Metric ............................................. Ignored 
Specify How Autocorr’s Change .............Constant  
R1 (Autocorrelation) ................................0.16666667 
Max Time Diff. .........................................100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................Checked 
Numeric Results by Design.....................Not Checked  
Regular F Test ........................................Checked 
GG F Test ...............................................Not checked 
Wilks’ Lambda.........................................Not checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
GG Detail Report.....................................Not checked 
Means Matrix...........................................Not checked 
Covariance Matrix ...................................Not checked 
Test in Summary Statement ...................Regular F Test 
Show Plot 1 .............................................Not checked 
Show Plot 2 .............................................Not checked 
Max Term-Order Reported......................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
B(2) F 0.8004 2 4 1.00 1.33 0.47 2.83 0.0500 0.1996 
W(3) F 0.5536 2 4 1.00 0.66 0.37 1.76 0.0500 0.4464 
BW F 0.5536 2 4 1.00 0.66 0.37 1.76 0.0500 0.4464 
 
B(2) F 0.9985 3 6 1.00 1.33 0.47 2.83 0.0500 0.0015 
W(3) F 0.8933 3 6 1.00 0.66 0.37 1.76 0.0500 0.1067 
BW F 0.8933 3 6 1.00 0.66 0.37 1.76 0.0500 0.1067 
 
B(2) F 1.0000 4 8 1.00 1.33 0.47 2.83 0.0500 0.0000 
W(3) F 0.9801 4 8 1.00 0.66 0.37 1.76 0.0500 0.0199 
BW F 0.9801 4 8 1.00 0.66 0.37 1.76 0.0500 0.0199 
 

You can see that the power of the tests on W and BW was only 0.55 for an n of 2. However, if n 
would have been 3, a much more reasonable power of 0.89 would have been achieved.  



570-44  Repeated Measures Analysis of Variance 

Example 5 – Cross-over Design 
A crossover design is a special type of repeated measures design in which the treatments are 
applied to the subjects in different orders. The between-subjects (grouping) factor is defined by 
the specific sequence in which the treatments are applied. For example, suppose the treatments 
are represented by B1 and B2. Further suppose that half the subjects receive treatment B1 
followed by treatment B2 (sequence B1B2), while the other half receive treatment B2 followed 
by treatment B1 (sequence B2B1). This is a two-group crossover design.  

Crossover designs assume that a long enough period elapses between measurements so that the 
effects of one treatment are washed out before the next treatment is applied. This is known as the 
assumption of no carryover effects. 

When a crossover design is analyzed using repeated measures, the interaction is the only term of 
interest. The F test on the between factor tests whether averages across each sequence are equal—
a test of little interest. The F test on the within factor tests whether the response is different across 
the time periods—also of little interest. The F test for interaction tests whether the change in 
response across time is the same for both sequences. The interaction can only be significant if the 
treatments effect the outcome differently. Hence, to specify a crossover design requires the 
careful specification of the interaction effects. 

With this background, we present an example. Suppose researchers want to investigate the 
reduction in heart-beat rate caused by the administration of a certain drug using a simple two-
period crossover design. The researchers want a sample size large enough to detect a drop in 
heart-beat rate from 95 to 90 with a power of 90% at the 0.05 significance level. Previous studies 
have shown a within-patient autocorrelation of 0.50 and a standard deviation of 3.98. They decide 
to consider sample sizes between 2 and 8. 

The hypothesized interaction is specified by entering the mean heart-beat rates of the four 
treatment groups as 95, 90, 90, and 95. Since the standard deviation of these values is all that is 
used, the order of these values does not matter. In this case the sequences means are both 92.5 
and the average time-period means are both 92.5. Hence, the interaction effects are 2.5, -2.5, -2.5, 
and 2.5. You can check that the set of numbers ‘95, 90, 90, 95’ has the same standard deviation as 
the set ‘2.5, -2.5, -2.5, 2.5’ or even ‘5, 0, 0, 5’. All of these will work. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by clicking on Means, then Many Means (ANOVA), then Repeated Measures ANOVA. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................2 to 8 by 1 
=n’s..........................................................checked  
Means Matrix...........................................blank  
K (Means Multipliers) ..............................1.0 
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Data Tab (continued) 

For First Between-Subject Factor 
Label........................................................Seq 
Levels......................................................2 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........0.1 (This value is arbitrary.) 

For First Within-Subject Factor 
Label........................................................Time 
Levels......................................................2 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........0.1 (This value is arbitrary.) 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........95 90 90 95 

Covariance Tab 
Specify Covariance Method ....................1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time..............Constant 
SD1 (Standard Deviation 1) ....................3.98 
Time Metric ............................................. Ignored 
Specify How Autocorr’s Change .............1st Order Autocorr  
R1 (Autocorrelation) ................................0.5 
Max Time Diff. .........................................100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................Checked 
Numeric Results by Design.....................Not checked 
Regular F Test ........................................Not checked 
GG F Test ...............................................Checked 
Wilks’ Lambda.........................................Not checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
GG Detail Report.....................................Not checked 
Means Matrix...........................................Not checked 
Covariance Matrix ...................................Not checked 
Show Plot 1 .............................................Not checked 
Show Plot 2 .............................................Not checked 
Max Term-Order Reported......................2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Results for Term SeqTime 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.3017 2 4 1.00 2.50 1.99 1.26 0.0500 0.6983  
GG F 0.6401 3 6 1.00 2.50 1.99 1.26 0.0500 0.3599  
GG F 0.8395 4 8 1.00 2.50 1.99 1.26 0.0500 0.1605  
GG F 0.9338 5 10 1.00 2.50 1.99 1.26 0.0500 0.0662  
GG F 0.9742 6 12 1.00 2.50 1.99 1.26 0.0500 0.0258  
GG F 0.9903 7 14 1.00 2.50 1.99 1.26 0.0500 0.0097  
GG F 0.9965 8 16 1.00 2.50 1.99 1.26 0.0500 0.0035  
 

We only display the interaction term since that is the only term of interest. A quick glance at the 
plot shows that 90% power is achieved when n is five. This corresponds to a total sample size of 
ten subjects.  

Example 6 – Power of a Completed Cross-over Design 
The following analysis of variance table was generated by NCSS for a set of crossover data. Find 
the power of the interaction F test assuming a significance level of 0.05. 

 
Analysis of Variance Table 
Source  Sum of Mean  Prob 
Term DF Squares Square F-Ratio Level 
A: Sequence 1 89397.6 89397.6 1.19 0.285442 
B(A): Subject 28 2110739 75383.54    
C: Period 1 117395.3 117395.3 1.40 0.246854  
AC 1 122401.7 122401.7 1.46 0.237263  
BC(A) 28 2349752 83919.72    
Total (Adjusted) 59 4789686 
Total 60 
 
Means Section 
   Standard 
Term Count Mean Error  
All 60 492.2000  
A: Sequence 
1 30 453.6000 50.12768 
2 30 530.8000 50.12768 
C: Period 
1 30 447.9667 52.88973 
2 30 536.4333 52.88973 
AC: Sequence,Period 
1,1 15 364.2000 74.79738 
1,2 15 543.0000 74.79738 
2,1 15 531.7333 74.79738 
2,2 15 529.8666 74.79738  
 

One difficulty in analyzing an existing crossover design is determining an appropriate value for 
the hypothesized interaction effects. One method is to find the standard deviation of the 
interaction effects by taking the square root of the Sum of Squares for the interaction divided by 
the total number of observations. In this case,  
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Another method is to find the individual interaction effects by subtraction. This method proceeds 
as follows. 

First, subtract the Period means from the Sequence by Period means. 
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Next, compute the column means and subtract them from the current values. This results in the 
effects. 
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Finally, compute the standard deviation of the effects. Since the mean of the effects is zero, the 
standard deviation is  
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Another difficulty that must be solved is to estimate the autocorrelation and within-subject 
standard deviation. From the above printout, we note that MSB = 75383.54 and MSW = 
83919.72. Plugging these values into the estimating equations 
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so that 

$ . .σ = =7965163 282 2262  
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by clicking on Means, then Many Means (ANOVA), then Repeated Measures ANOVA. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................15 
=n’s..........................................................checked  
Means Matrix...........................................blank  
K (Means Multipliers) ..............................1.0 

For First Between-Subject Factor 
Label........................................................S 
Levels ......................................................2 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........453.6000  530.8000 

For First Within-Subject Factor 
Label........................................................P 
Levels ......................................................2 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........447.9667 536.4333 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........45.1667 

Covariance Tab 
Specify Covariance Method ....................1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time..............Constant 
SD1 (Standard Deviation 1) ....................282.2262 
Time Metric..............................................Ignored 
Specify How Autocorr’s Change .............1st Order Autocorr  
R1 (Autocorrelation) ................................-0.05358447 
Max Time Diff. .........................................100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................Not checked 
Numeric Results by Design.....................Checked 
Regular F Test ........................................Not checked 
GG F Test................................................Checked 
Wilks’ Lambda.........................................Not checked 
Pillai-Bartlett ............................................Not checked 



Repeated Measures Analysis of Variance  570-49 

Reports Tab (continued) 
Hotelling-Lawley......................................Not checked 
GG Detail Report.....................................Not checked 
Means Matrix...........................................Not checked 
Covariance Matrix ...................................Not checked 
Number of Summary Statements............0 
Show Plot 1 .............................................Not checked 
Show Plot 2 .............................................Not checked 
Max Term-Order Reported......................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
S(2) GG F 0.1832 15 30 1.00 38.60 194.14 0.20 0.0500 0.8168 
P(2) GG F 0.2078 15 30 1.00 44.23 204.84 0.22 0.0500 0.7922 
SP GG F 0.2147 15 30 1.00 45.17 204.84 0.22 0.0500 0.7853 
 

Notice that these power values are low. Fifteen was not a large enough sample size to detect Sm 
values near 40. 

Example 7 – Validation using O’Brien and Muller 
O’Brien and Muller’s article in the book edited by Edwards (1993) analyze the power of a two-
group repeated-measures experiment in which three measurements are made on each subject. 

The hypothesized means are  
 

 Group 1 Group 2 
Time 1 3 1 
Time 2 12 5 
Time 3 8 7 
 

The covariance matrix is 
 

 Time 1 Time 2 Time 3 
Time 1 25 16 12 
Time 2 16 64 30 
Time 3 12 30 36 
 



570-50  Repeated Measures Analysis of Variance 

With n’s of 12, 18, and 24 and an alpha of 0.05, they obtained power values using the Wilks’ 
Lambda test. Their reported power values are 
 

Power Values for each Term 
n Group Time Interaction 
12 0.326 0.983 0.461 
18 0.467 0.999 0.671 
24 0.589 0.999 0.814 
 

O’Brien, in a private communication, re-ran these data using the Geisser-Greenhouse correction. 
His results were as follows: 
  

Power Values for each Term 
n Group Time Interaction 
12 0.326 0.993 0.486 
18 0.467 0.999 0.685 
24 0.589 0.999 0.819 
 

In order to run this example in PASS, the values of the means and the covariance matrix (given 
above) must be entered on a spreadsheet. We have loaded these values into the database called 
OBRIEN. Either enter the values yourself, or load the OBRIEN database which should be in the 
Data directory. The instructions below assume that the means are in columns one and two, while 
the covariance matrix is in columns four through six of the current database.  

Setup 
In order to run this example the Obrien.S0 data must be loaded into the spreadsheet. To open the 
spreadsheet window from the PASS Home Window, click on the Tools menu and select 
Spreadsheet. Once the spreadsheet is open, the Obrien.S0 data is loaded by clicking the File 
menu and selecting Open. The Obrien.S0 file is then selected from the DATA folder (the default 
location for this folder is C:\...\[My] Documents\NCSS\PASS2008). Then click Open. 

This section presents the values of each of the parameters needed to run this example. From the 
PASS Home window, load the Repeated Measures Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then Repeated Measures ANOVA. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example7 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
n (Subjects Per Group) ...........................12 18 24 
=n’s..........................................................checked  
Means Matrix...........................................M1-M2  
K (Means Multipliers) ..............................1.0 

For First Between-Subject Factor 
Label........................................................G 
Levels ......................................................2 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
Sm (Standard Deviation of Effects).........Ignored 
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Data Tab (continued) 

For First Within-Subject Factor 
Label........................................................T 
Levels......................................................3 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects)......... Ignored 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects)......... Ignored 

Covariance Tab 
Specify Covariance Method ....................2) Covariance Matrix Variables  
Spreadsheet Columns.............................S1-S3 

Reports Tab 
Numeric Results by Term........................Checked 
Numeric Results by Design.....................Not checked 
Regular F Test ........................................Not checked 
GG F Test ...............................................Checked 
Wilks’ Lambda.........................................Checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
GG Detail Report.....................................Not checked 
Means Matrix...........................................Not checked 
Covariance Matrix ...................................Not checked 
Number of Summary Statements............0 
Show Plot 1 .............................................Not checked 
Show Plot 2 .............................................Not checked 
Max Term-Order Reported......................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
  
Results for Factor G (Levels =2) 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.3263 12 24 1.00 1.67 5.17 0.32 0.0500 0.6737  
Wilks 0.3263 12 24 1.00 1.67 5.17 0.32 0.0500 0.6737  
GG F 0.4673 18 36 1.00 1.67 5.17 0.32 0.0500 0.5327  
Wilks 0.4673 18 36 1.00 1.67 5.17 0.32 0.0500 0.5327  
GG F 0.5889 24 48 1.00 1.67 5.17 0.32 0.0500 0.4111  
Wilks 0.5889 24 48 1.00 1.67 5.17 0.32 0.0500 0.4111  
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Results for Factor T (Levels =3) 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.9933 12 24 1.00 2.86 2.73 1.05 0.0500 0.0067  
Wilks 0.9825 12 24 1.00 2.86 2.73 1.05 0.0500 0.0175  
GG F 0.9999 18 36 1.00 2.86 2.73 1.05 0.0500 0.0001  
Wilks 0.9995 18 36 1.00 2.86 2.73 1.05 0.0500 0.0005  
GG F 1.0000 24 48 1.00 2.86 2.73 1.05 0.0500 0.0000  
Wilks 1.0000 24 48 1.00 2.86 2.73 1.05 0.0500 0.0000  
 
Results for Term GT 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.4861 12 24 1.00 1.31 2.73 0.48 0.0500 0.5139  
Wilks 0.4605 12 24 1.00 1.31 2.73 0.48 0.0500 0.5395  
GG F 0.6850 18 36 1.00 1.31 2.73 0.48 0.0500 0.3150  
Wilks 0.6706 18 36 1.00 1.31 2.73 0.48 0.0500 0.3294  
GG F 0.8193 24 48 1.00 1.31 2.73 0.48 0.0500 0.1807  
Wilks 0.8136 24 48 1.00 1.31 2.73 0.48 0.0500 0.1864  

 

PASS agrees exactly with O’Brien’s calculations.  

Example 8 – Unequal Group Sizes 
Usually, in the planning stages, the group sample sizes are equal. Occasionally, however, you 
may want to plan for a situation in which one group will have a much larger sample size than the 
others. Also, when doing a power analysis on a study that has already been conducted, the group 
sample sizes are often unequal. 

In this example, we will re-analyze the Example 4. However, we will now assume that there were 
four subjects in group 1 and eight subjects in group 2. The setup and output for this example are 
as follows. Remember that you must open the database PASS RM EXAMPLE2 before running 
this example. 

Setup 
In order to run this example the PASS RM Example 2.S0 data must be loaded into the 
spreadsheet. To open the spreadsheet window from the PASS Home Window, click on the Tools 
menu and select Spreadsheet. Once the spreadsheet is open, the PASS RM Example 2.S0 data is 
loaded by clicking the File menu and selecting Open. The PASS RM Example 2.S0 file is then 
selected from the DATA folder (the default location for this folder is C:\...\[My] 
Documents\NCSS\PASS2008). Then click Open. 

This section presents the values of each of the parameters needed to run this example. From the 
PASS Home window, load the Repeated Measures Analysis of Variance procedure window by 
clicking on Means, then Many Means (ANOVA), then Repeated Measures ANOVA. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example8 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................4 8 
=n’s..........................................................Not checked  
Means Matrix...........................................FEMALES-MALES  
K (Means Multipliers) ..............................1.0 

For First Between-Subject Factor 
Label........................................................B 
Levels......................................................2 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects)......... Ignored since the Means Matrix is loaded. 

For First Within-Subject Factor 
Label........................................................W 
Levels......................................................3 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects)......... Ignored since the Means Matrix is loaded. 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects)......... Ignored since the Means Matrix is loaded. 

Covariance Tab 
Specify Covariance Method ....................1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time..............Constant 
SD1 (Standard Deviation 1) .................... .70710681 
Time Metric ............................................. Ignored 
Specify How Autocorr’s Change .............Constant  
R1 (Autocorrelation) ................................0.16666667 
Max Time Diff. .........................................100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................Checked 
Numeric Results by Design.....................Not Checked  
Regular F Test ........................................Not checked 
GG F Test ...............................................Checked 
Wilks’ Lambda.........................................Not checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
GG Detail Report.....................................Not checked 
Means Matrix...........................................Not checked 
Covariance Matrix ...................................Not checked 
Show Plot 1 .............................................Not checked 
Show Plot 2 .............................................Not checked 
Max Term-Order Reported......................2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
B(2) GG F 1.0000 6.0 12 1.00 1.26 0.47 2.67 0.0500 0.0000 
W(3) GG F 0.9983 6.0 12 1.00 0.62 0.37 1.66 0.0500 0.0017 
BW GG F 0.9983 6.0 12 1.00 0.62 0.37 1.66 0.0500 0.0017 
n's: 4 8  
 

Notice that the values of n are now shown to one decimal place. That is because the value 
reported is the average value of n. The actual n’s are shown following the report.  

Example 9 – Designs with More Than Two Factors 
Occasionally, you will have a design that has more than two factors. We will now show you how 
to compute the necessary sample size for such a design. 

Suppose your design calls for two between-subject factors, Age (A) and Gender (G), and two 
within-subject factors, Dose-Level (D) and Application-Method (M). Suppose the number of 
levels of these four factors are, respectively, 3, 2, 4, and 2. 

Our first task is to determine appropriate values of Sm for each of the terms. We decide to ignore 
the interactions during the planning and only consider the factors themselves. The desired 
difference to be detected among the three age groups can be represented by the means 80, 88, and 
96. The desired difference to be detected among the two genders can be represented by the means 
80 and 96. The desired difference to be detected among the four dose levels is represented by the 
means 80, 82, 84, and 86. The desired difference to be detected among the two application 
methods is represented by the means 80 and 86. 

Our next task is to specify the covariance matrix. From previous experience, we have found that a 
constant value of 20.0 is appropriate for SD1. An autocorrelation of 0.5 with a first-order 
autocorrelation pattern is also appropriate. 

Finally, we decide to calculate the power using the GG F test at the following sample sizes: 2, 4, 
6, 8, 10, 20, 30, and 40. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by clicking on Means, then Many Means (ANOVA), then Repeated Measures ANOVA. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example9 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................2 4 6 8 10 20 30 40 
=n’s..........................................................Checked  
Means Matrix...........................................blank  
K (Means Multipliers) ..............................1.0 

For First Between-Subject Factor 
Label........................................................A 
Levels......................................................3 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects).........80 88 96 

For Second Between-Subject Factor 
Label........................................................G 
Levels......................................................2 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects).........80 96 

For First Within-Subject Factor 
Label........................................................D 
Levels......................................................4 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects).........80 82 84 86 

For Second Within-Subject Factor 
Label........................................................M 
Levels......................................................2 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects).........80 86 

Interactions Tab 
All Interactions 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects).........D 100 

Covariance Tab 
Specify Covariance Method ....................1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time..............Constant 
SD1 (Standard Deviation 1) ....................20 
Time Metric ............................................. Ignored 
Specify How Autocorr’s Change .............1st Order Autocorrelation 
R1 (Autocorrelation) ................................0.5 
Max Time Diff. .........................................100 (This large value will cause R2 to be ignored.) 
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Reports Tab 
Numeric Results by Term........................Not checked 
Numeric Results by Design.....................Checked  
Regular F Test ........................................Not checked 
GG F Test................................................Checked 
Wilks’ Lambda.........................................Not checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
GG Detail Report.....................................Not checked 
Means Matrix...........................................Not checked 
Covariance Matrix ...................................Not checked 
Test in Summary Statement....................Regular F Test 
Show Plot 1 .............................................Checked 
Show Plot 2 .............................................Not checked 
Test That is Plotted .................................GG F Test  
Max Term-Order Plotted .........................1 
Max Term-Order Reported......................1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
A(3) GG F 0.2735 2 12 1.00 6.53 11.18 0.58 0.0500 0.7265 
G(2) GG F 0.5465 2 12 1.00 8.00 11.18 0.72 0.0500 0.4535 
D(4) GG F 0.0506 2 12 1.00 2.24 7.64 0.29 0.0500 0.9494 
M(2) GG F 0.5072 2 12 1.00 3.00 4.41 0.68 0.0500 0.4928 
 
A(3) GG F 0.6493 4 24 1.00 6.53 11.18 0.58 0.0500 0.3507 
G(2) GG F 0.9118 4 24 1.00 8.00 11.18 0.72 0.0500 0.0882 
D(4) GG F 0.1563 4 24 1.00 2.24 7.64 0.29 0.0500 0.8437 
M(2) GG F 0.8833 4 24 1.00 3.00 4.41 0.68 0.0500 0.1167 
 
A(3) GG F 0.8556 6 36 1.00 6.53 11.18 0.58 0.0500 0.1444 
G(2) GG F 0.9858 6 36 1.00 8.00 11.18 0.72 0.0500 0.0142 
D(4) GG F 0.2412 6 36 1.00 2.24 7.64 0.29 0.0500 0.7588 
M(2) GG F 0.9767 6 36 1.00 3.00 4.41 0.68 0.0500 0.0233 
 
A(3) GG F 0.9471 8 48 1.00 6.53 11.18 0.58 0.0500 0.0529 
G(2) GG F 0.9980 8 48 1.00 8.00 11.18 0.72 0.0500 0.0020 
D(4) GG F 0.3245 8 48 1.00 2.24 7.64 0.29 0.0500 0.6755 
M(2) GG F 0.9959 8 48 1.00 3.00 4.41 0.68 0.0500 0.0041 
 
A(3) GG F 0.9823 10 60 1.00 6.53 11.18 0.58 0.0500 0.0177 
G(2) GG F 0.9997 10 60 1.00 8.00 11.18 0.72 0.0500 0.0003 
D(4) GG F 0.4054 10 60 1.00 2.24 7.64 0.29 0.0500 0.5946 
M(2) GG F 0.9993 10 60 1.00 3.00 4.41 0.68 0.0500 0.0007 
 
A(3) GG F 1.0000 20 120 1.00 6.53 11.18 0.58 0.0500 0.0000 
G(2) GG F 1.0000 20 120 1.00 8.00 11.18 0.72 0.0500 0.0000 
D(4) GG F 0.7286 20 120 1.00 2.24 7.64 0.29 0.0500 0.2714 
M(2) GG F 1.0000 20 120 1.00 3.00 4.41 0.68 0.0500 0.0000 
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A(3) GG F 1.0000 30 180 1.00 6.53 11.18 0.58 0.0500 0.0000 
G(2) GG F 1.0000 30 180 1.00 8.00 11.18 0.72 0.0500 0.0000 
D(4) GG F 0.8971 30 180 1.00 2.24 7.64 0.29 0.0500 0.1029 
M(2) GG F 1.0000 30 180 1.00 3.00 4.41 0.68 0.0500 0.0000 
 
A(3) GG F 1.0000 40 240 1.00 6.53 11.18 0.58 0.0500 0.0000 
G(2) GG F 1.0000 40 240 1.00 8.00 11.18 0.72 0.0500 0.0000 
D(4) GG F 0.9658 40 240 1.00 2.24 7.64 0.29 0.0500 0.0342 
M(2) GG F 1.0000 40 240 1.00 3.00 4.41 0.68 0.0500 0.0000 
 

This report gives the power values for the various terms and sample sizes that were entered. It is 
much easier to consider the following plot to interpret the results. 

Plots Section 
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From this chart, we can see that the first within-subject factor, dose level, has a power much 
lower than the other factors. Looking at the Sm values in the numeric table, we find that the Sm 
value for factor D is much less than for the other values. This explains why its power is so poor. 
Our options are to either increase the sample size or increase the value of Sm for factor D. 
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Chapter 571 

Mixed Models 
Introduction 
The Mixed Models procedure power analyzes a variety of experimental designs in which the 
outcome (response) is continuous. Thus, as with the analysis of variance (ANOVA), the Mixed 
Models procedure is used to test hypotheses comparing various group means. Unlike ANOVA, 
the Mixed Models procedure relaxes the strict assumptions regarding the variances of the groups. 
Mixed models are very extensive. This procedure is restricted to random effects models. Random 
effects models are commonly used to analyze longitudinal (repeated measures) data. 

The linear mixed model extends many of the classical statistical techniques, such as  

• Two-sample designs (extending the t-test) 
• One-way layout designs (extending one-way ANOVA) 
• Factorial designs (extending factorial GLM) 
• Split-plot designs (extending split-plot GLM) 
• Repeated-measures designs (extending repeated-measures GLM) 
• Cross-over designs (extending GLM) 

Types of Linear Mixed Models 
Several linear mixed model subtypes exist that are characterized by the random effects, fixed 
effects, and covariance structure they involve. These include fixed effects models, random effects 
models, and covariance pattern models.  

Fixed Effects Models 
A fixed effects model is a model where only fixed effects are included in the model. An effect (or 
factor) is fixed if the levels in the study represent all levels of interest of the factor, or at least all 
levels that are important for inference (e.g., treatment, dose, etc.). No random components are 
present. The general linear model is a fixed effects model. Fixed effects models can include 
interactions. The fixed effects can be estimated and tested using the F-test.  

The fixed effects in the model include those factors for which means, standard errors, and 
confidence intervals will be estimated and tests of hypotheses will be performed. Other variables 
for which the model is to be adjusted (that are not important for estimation or hypothesis testing) 
may also be included in the model as fixed factors.  

Random Effects Models 
A random effects model includes both fixed and random terms in the model. An effect (or factor) 
is random if the levels of the factor represent a random subset of a larger group of levels (e.g., 
patients). The random effects are not tested, but are included to make the model more realistic.  
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Longitudinal Data Models 
Longitudinal data arises when more than one response is measured on each subject in the study. 
Responses are often measured over time at fixed time points. A time point is fixed if it is pre-
specified. Various variance-matrix structures can be employed to model the variance and 
correlation among repeated measurements.  

Types of Factors 

Between-Subject Factors 
Between-subject factors are those that separate the experimental subjects into groups. If twelve 
subjects are randomly assigned to three treatment groups (four subjects per group), treatment is a 
between-subject factor. 

Within-Subject Factors 
Within-subject factors are those in which the response is measured on the same subject at several 
time points. Within-subject factors are those factors for which multiple levels of the factor are 
measured on the same subject. If each subject is measured at the low, medium, and high level of 
the treatment, treatment is a within-subject factor.  

Technical Details 

What is a Mixed Model? 
In a general linear model (GLM), a random sample of the individuals in is drawn. Treatments are 
applied to each individual and an outcome is measured. The data so obtained are analyzed using 
an analysis of variance table that includes an F-test.  

A mathematical model may be formulated that underlies each analysis of variance. This model 
expresses of the response variable as the sum of population parameters and a residual. For 
example, a common linear model for a two-factor experiment is 

ijkijjiijk eabbaY + +++= )(μ  

where i = 1, 2, ... , I (the number of levels of factor 1),  j = 1, 2, ..., J  (the number of levels of 
factor 2), and k = 1, 2, ... , K  (the number of subjects in the study). This model expresses the 
value of the response variable, Y, as the sum of five components:  

μ the mean. 

ai the contribution of the ith level of a factor A. 

bj the contribution of the jth level of a factor B. 

(ab)ij the combined contribution (or interaction) of the ith level of a factor A and the jth level 
of a factor B. 

eijk the contribution of the kth individual. This is often called the residual. 
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In this example, the linear model is made up of fixed effects only. An effect is fixed if the levels in 
the study represent all levels of the factor that are of interest, or at least all levels that are 
important for inference (e.g., treatment, dose, etc.).  

The following assumptions are made when using the F-test in a general linear model. 

1. The response variable is continuous. 

2. The individuals are independent. 

3. The eijk follow the normal probability distribution with mean equal to zero. 

4. The variances of the eijk are equal for all values of i, j, and k. 

The Linear Mixed Model (LMM) 
The linear mixed model (LMM) is a natural extension of the general linear model. Mixed models 
extend linear models by allowing for the addition of random effects, where the levels of the factor 
represent a random subset of a larger group of all possible levels (e.g., time of administration, 
clinic, etc.). For example, the two-factor linear model above could be augmented to include 
random effects such as an adjustment for each patient, since a patient may be assumed to be a 
random realization from a distribution of patients. The general form of the mixed model in matrix 
notation is 

y = Xβ + Zu + ε 

where 

y  vector of responses 

X known design matrix of the fixed effects 

β unknown vector of fixed effects parameters to be estimated 

Z  known design matrix of the random effects 

u  unknown vector of random effects 

ε  unobserved vector of random errors 

We assume 

u ~ N(0,G) 

ε ~ N(0,R) 

Cov[u, ε] = 0 

where 

G variance-covariance matrix of u 

R variance-covariance matrix of the errors ε 

The variance-covariance matrix of y, denoted V, is 

        V  = Var[y] 

     = Var[Xβ + Zu + ε] 

     = 0 + Var[Zu + ε] 

     = ZGZ' + R 
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Individual Subject Formulation 
Because of the size of the matrices that are involved in mixed model analysis, it is useful for 
computational purposes to reduce the dimensionality of the problem by analyzing the data one 
subject at a time. Because the data from different subjects are statistically independent, the log-
likelihood of the data can be summed over the subjects, according to the formulas below. Before 
we look at the likelihood functions, we examine the linear mixed model for a particular subject:  

yi = Xiβ + Ziui + εi,    i = 1, …, N 

where 

yi ni×1 vector of responses for subject i.  

Xi ni×p design matrix of fixed effects for subject i (p is the number of columns in X). 

β p×1 vector of regression parameters. 

Zi ni×q design matrix of the random effects for subject i. 

ui q×1 vector of random effects for subject i which has means of zero and covariance matrix 
Gsub. 

εi  ni×1 vector of errors for subject i with zero mean and covariance Ri. 

ni number of repeated measurements on subject i. 

N  number of subjects. 

The following definitions will also be useful. 

ei  vector of residuals for subject i (ei = yi - Xiβ). 

Vi  Var[yi] = ZiGsubZi' + Ri 

To see how the individual subject mixed model formulation relates to the general form, we have 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

Ny

y
y

y
M
2

1

,  ,  ,  ,   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

NX

X
X

X
M

2

1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

NZ00
00
00Z

Z O
1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

Nu

u
u

u
M
2

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

Nε

ε
ε

ε
M
2

1

In order to test the parameters in β, which is typically the goal in LMM analysis, the unknown 
parameters (β, G, and R) must be estimated. Estimates for β require estimates of G and R. In 
order to estimate G and R, the structure of G and R must be specified. Details of the specific 
structures for G and R are discussed later. 

The following assumptions are made when using the F-test in a LMM. 

1. The response variable is continuous. 

2. The individuals are independent. 

3. The responses follow the normal probability distribution with mean equal to zero and 
variance structure given by V. 

A distinct (and arguably the most important) advantage of LMM over the GLM is flexibility in 
random error and random effect variance component modeling (note that the equal-variance 
assumption of GLM is not necessary for LMM). LMM allows you to model both heterogeneous 
variances and correlations among observations through the specification of the covariance matrix 
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structures for u and ε. The variance matrix estimates are obtained using maximum likelihood 
(ML) or, more commonly, restricted maximum likelihood (REML). The fixed effects in the 
mixed model are tested using F-tests.  

Structure of the Variance-Covariance Matrix 

The G Matrix 
The G matrix is the variance-covariance matrix for the random effects u. Typically, when the G 
matrix is used to specify the variance-covariance structure of y, the structure for R is simply σ2I. 
Caution should be used when both G and R are specified as complex structures, since large 
numbers of sometimes redundant covariance elements can result.  

The G matrix is made up of N symmetric Gsub matrices, 
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The dimension of Gsub is q × q, where q is the number of random effects for each subject. 

Structures of Gsub 
The structure of the Gsub matrix in this procedure is diagonal. 

Diagonal Gsub 
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The R Matrix 
The R matrix is the variance-covariance matrix for errors, ε. When the R matrix is used to specify 
the variance-covariance structure of y, the Gsub matrix is not used. 

The full R matrix is made up of N symmetric R sub-matrices, 
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where  are all of the same structure.  NRRRR ,,,, 321 L
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Structures of R 
There are many possible structures for the sub-matrices that make up the R matrix. The RSub 
structures that can be specified in PASS are shown below. 

Diagonal 
Homogeneous Heterogeneous Correlation 
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Compound Symmetry 
Homogeneous Heterogeneous Correlation 
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Toeplitz 
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Toeplitz(2) 
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Banded(2) 
Homogeneous Heterogeneous Correlation 
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Note: This is the same as Toeplitz(1). 
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Banded(3) 
Homogeneous Heterogeneous Correlation 
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Partitioning the Variance-Covariance Structure with Groups 
In the case where it is expected that the variance-covariance parameters are different across 
groups of a between-subjects factor, a different set of R or G parameters can be specified for each 
group. This produces a set of variance-covariance parameters that is different for each level of the 
chosen group variable, but each set has the same structure. 

Likelihood Formulas 
There are two types of likelihood estimation methods that are generally considered in mixed 
model estimation: maximum likelihood (ML) and restricted maximum likelihood (REML). 
REML is generally favored over ML because the variance estimates using REML are unbiased 
for small sample sizes, whereas ML estimates are unbiased only asymptotically (see Littell et al., 
2006 or Demidenko, 2004). Both estimation methods are available in PASS.  

Maximum Likelihood 
The general form -2 log-likelihood ML function is  

( ) ( )π2lnln,2 1
TML N,L +′+=− − eVeVRGβ  

The equivalent individual subject form is  
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( ) ( ) ( )π2lnln,2
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Restricted Maximum Likelihood 
The general form -2 log-likelihood REML function is  

( ) ( ) ( )π2lnlnln,2 11 pN,L TREML −+′+′+=− −− XVXeVeVRGβ  

The equivalent individual subject form is  

( ) [ ] ( ) ( π2lnlnln,2
1 1

11 pN,L T

N
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N
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where, again, NT  is the total number of observations, or 
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and p is the number of columns in X or Xi. 

Estimating and Testing Fixed Effects Parameters 
The estimation phase in the analysis of a mixed model produces variance and covariance 
parameter estimates of the elements of G and R, giving R̂  and G , and hence, . The REML 
and ML solutions for β  are given by 

ˆ V̂
ˆ

( ) yVXXVXβ 111 ˆˆˆ −−− ′′=  

with estimated variance-covariance 

( ) ( ) 11ˆˆvarˆ −−′==Σ XVXβ  

See, for example, Brown and Prescott (2006), Muller and Stewart (2006), or Demidenko (2004) 
for more details of the estimating equations.  

Hypothesis tests and confidence intervals for β are formed using a linear combination matrix (or 
vector) L. Although you don’t have to specify L, it is important that you understand how its 
function. 

L Matrix Details 
L matrices specify linear combinations of β corresponding to means or hypothesis tests of 
interest. Essentially, the L matrix defines the mean or test. The number of columns in each L 
matrix is the same as the number of elements of β. For estimating a particular mean, the L matrix 
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consists of a single row. For hypothesis tests, the number of rows of L varies according to the 
test. Below are some examples of L matrices that arise in common analyses: 

L Matrix for Testing a Single Factor (Food with 4 levels) in a Single-Factor 
Model 
No. Effect Food L1 L2 L3 
1 Intercept     
2 Food HighIron 1.0000 1.0000 1.0000 
3 Food LowIron -1.0000   
4 Food None  -1.0000  
5 Food Salicyl   -1.0000 

L Matrix for a Single Mean (LowIron) of a Single Factor (4 levels) in a 
Single-Factor Model 
No. Effect Food L1 
1 Intercept  1.0000 
2 Food HighIron  
3 Food LowIron 1.0000 
4 Food None  
5 Food Salicyl  
 
L Matrix for Testing a Single Factor (Drug – 3 levels) in a Two-Factor Model 
with Interaction 
No. Effect Drug Time L1 L2 
1 Intercept     
2 Drug Kerlosin  1.0000 1.0000 
3 Drug Laposec  -1.0000  
4 Drug Placebo   -1.0000 
5 Time  0.5   
6 Time  1   
7 Time  1.5   
8 Time  2   
9 Time  2.5   
10 Time  3   
11 Drug*Time Kerlosin 0.5 0.1667 0.1667 
12 Drug*Time Kerlosin 1 0.1667 0.1667 
13 Drug*Time Kerlosin 1.5 0.1667 0.1667 
14 Drug*Time Kerlosin 2 0.1667 0.1667 
15 Drug*Time Kerlosin 2.5 0.1667 0.1667 
16 Drug*Time Kerlosin 3 0.1667 0.1667 
17 Drug*Time Laposec 0.5 -0.1667  
18 Drug*Time Laposec 1 -0.1667  
19 Drug*Time Laposec 1.5 -0.1667  
20 Drug*Time Laposec 2 -0.1667  
21 Drug*Time Laposec 2.5 -0.1667  
22 Drug*Time Laposec 3 -0.1667  
23 Drug*Time Placebo 0.5  -0.1667 
24 Drug*Time Placebo 1  -0.1667 
25 Drug*Time Placebo 1.5  -0.1667 
26 Drug*Time Placebo 2  -0.1667 
27 Drug*Time Placebo 2.5  -0.1667 
28 Drug*Time Placebo 3  -0.1667 
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Kenward and Roger Fixed Effects Hypothesis Tests 
Hypothesis tests have the general form 

H0: Lβ = 0 

where L is a linear contrast matrix of rank h corresponding to the desired comparisons to be made 
in the hypothesis test. Let d be the denominator degrees of freedom and q be the number of 
variance-covariance parameters, which is the dimension of W (defined below). 

The Kenward and Roger (1997) test statistic for testing H0 is currently the most recommended 
method of specifying the F-ratio and its degrees of freedom. The F-ratio is 
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Solution Algorithms 

Methods for Finding Likelihood Solutions (Newton-Raphson, 
Fisher Scoring, MIVQUE, and Differential Evolution)  
There are four techniques in the Mixed Models procedure for determining the maximum 
likelihood or restricted maximum likelihood solution (optimum): Newton-Raphson, Fisher 
Scoring, MIVQUE, and Differential Evolution. 

The general steps for the Newton-Raphson, Fisher Scoring, and Differential Evolution techniques 
are (let θ be the overall covariance parameter vector): 

1. Roughly estimate θ according to the specified structure for each. 

2. Evaluate the likelihood of the model given the data and the estimates of θ. 

3. Improve upon the estimates of θ using a search algorithm. (Improvement is defined as an 
increase in likelihood.) 

4. Iterate until maximum likelihood is reached, according to some convergence criterion. 

5. Use the final θ estimates to estimate β. 

Newton-Raphson and Fisher Scoring 
The differences in the techniques revolve around the initial estimates in Step 1, and the 
improvements in estimates made in Step 3. For the Newton-Raphson and Fisher Scoring 
techniques, Step 3 occurs as follows: 

3a.  With the estimated θ, compute the gradient vector g, and the Hessian matrix H. 
3b.  Compute d = -H-1g. 
3c.  Let λ = 1. 
3d.  Compute new estimates for θ, iteratively, using θi = θi-1+ λd. 
3e.  If θi is a valid set of covariance parameters and improves the likelihood, continue to 3f. 

Otherwise, reduce λ  by half and return to Step 3d. 
3f.  Check for convergence. If the convergence criteria (small change in -2log-likelihood) are 

met, stop. If the convergence criteria are not met, go back to Step 3a. 
 

The gradient vector g, and the Hessian matrix H, used for the Newton-Raphson and Fisher 
Scoring techniques for solving the REML equations are shown in the following table: 
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REML Gradient (g) and Hessian (H) 

Technique Gradient (g) Hessian (H) 
Newton-Raphson g1 + g2 + g3 H1 + H2 + H3 

Fisher Scoring g1 + g2 + g3 -H1 + H3 

 

The gradient vector g, and the Hessian matrix H, used for the Newton-Raphson and Fisher 
Scoring techniques for solving the ML equations are shown in the following table: 
 

ML Gradient (g) and Hessian (H) 

Technique Gradient (g) Hessian (H) 
Newton-Raphson g1 + g2 H1 + H2 

Fisher Scoring g1 + g2 -H1 

 

where g1, g2, g3, H1, H2, and H3 are defined as in Wolfinger, Tobias, and Sall (1994). 
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Second Derivatives 
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See Wolfinger, Tobias, and Sall (1994), page 1299, for details. 

MIVQUE  
The MIVQUE estimates of θ in REML estimation are found by solving 

231 )( gθHH −=+− . 

The MIVQUE estimates of θ in ML estimation are found by solving 

21 gθH −=− . 

See Wolfinger, Tobias, and Sall (1994), page 1306, for details. 

Differential Evolution  
The differential evolution techniques used in this procedure for the ML and REML optimization 
are described in Price, Storn, and Lampinen (2005). This algorithm is very slow, but it is also 
very robust. As it stands now, it is too slow to be used. However, as computers become faster, 
this algorithm will become more viable. 

Specifying the Minimum Detectable Difference 
The four main parameters of a power analysis are the sample size, the effect size, the significance 
level, and the power level. Other extraneous parameters, such as the variance, must also be 
specified. This section describes the specification of the effect size, or minimum detectable 
difference (MDD) as we choose to call it in this chapter.  

Power is defined as the probability of rejecting the null hypothesis of zero difference when the 
actual difference is a given amount. As the size of the actual difference increases, so does the 
power. The MDD (or minimum effect size) is the smallest difference among the population 
means that will be detected by an experiment at the specified settings of the other parameters.  

Typically, a longitudinal design includes a between-subjects factor, a within-subject factor, and 
their interaction. A MDD must be specified for each. As the number of factors grows, the number 
of interactions grows, and the number of MDD’s that must be specified also grows. It becomes 
crucial that you specify these values in a meaningful and accurate way.  

In the Repeated Measures module, PASS only requires the standard deviation of the group means. 
Unfortunately, this is a quantity that researchers have very little experience with. It seldom 
appears on any of the standard reports that are produced by commercial software. It is seldom 



Mixed Models  571-15 

present in the written reports of analyses. A different method is used to specify the MDD in 
PASS.   

In this routine, the MDD is specified as the difference between the smallest and largest effects. 
For example, suppose that a factor has three levels with means 10, 15, 18. The detectable 
difference is 18 – 10 = 8. This is a simply quantity that is easy to interpret. 

The Effect Pattern for Factors 
When there are more than two means, the minimum detectable difference does not uniquely 
define a set of means that can be simulated. For example the following sets of means all have 
identical MDD’s, but the means themselves are quite different: (10, 12, 18), (10, 14, 18), and (10, 
18, 18). The following method for defining the pattern is quite informative: 

1. Set the first (low) value to -0.5. 

2. Set the last (high) value to 0.5. 

3. Set each value in between to (Mean – Min) / MDD – 0.5. 

Using these steps, the three sets of means may be reduced to MDD and a pattern as follows: 

Original MDD Pattern MDD x Pattern 
10, 12, 18 8 -0.5, -0.25, 0.5 -4, -2, 4 
10, 14, 18 8 -0.5, 0.0, 0.5 -4, 0, 4 
10, 18, 18 8 -0.5, 0.5, 0.5 -4, 4, 4 

Thus, each set of means can be easily reduced to two components: the MDD and a pattern. This is 
the method that PASS uses to supply the sets of means. Using this method, it is easy to compare 
various sizes of means. You simply enter different values for the MDD, keeping the pattern the 
same. 

The Effect Pattern for Interactions 
Specifying the structure of the interactions is a little more problematic. Often, you are not 
interested in the interaction. When the interaction is of interest, you may have only a vague idea 
of its structure. Part of your analysis will be to investigate the effect of the interaction, with little 
or no knowledge of its pattern beforehand.  

Specifying the MDD for the interaction is somewhat intuitive. The MDD defines the largest 
difference among the interaction effects. A difficulty still arises in that there is a very large 
number of possible patterns, many of which are useful. For planning purposes, we have decided 
to use a standard pattern in PASS. The interaction pattern used in PASS is defined as the 
Kronecker product of the factor patterns that make up the interaction, scaled so that the largest 
value is 0.5 and the smallest value is -0.5. 

Example 

Suppose that a two-factor interaction is made up of a three-level factor A with a pattern of -0.5, 0, 
0.5 and a two-level factor B with a pattern of -0.5, 0.5. The interaction pattern would be found as 
follows. The Kronecker product of these two patterns is 0.25, -0.25, 0.0, 0.0, -0.25, 0.25. 
Rescaling so that the minimum is -0.5 and the maximum is 0.5 is achieved by doubling the 
values. The final interaction pattern is 0.5, -0.5, 0.0, 0.0, -0.5, 0.5. This pattern compares the 
difference due to factor B across the levels of factor A. 
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Suppose the MDD for A is set to 8, the MDD for B is set to 15, and the MDD for AB is set to 10. 
Suppose the overall mean is 12. The six cell means would be found by adding the individual 
effects as follows 

Term A1B1 A1B2 A2B1 A2B2 A3B1 A3B2 
A -4.0 -4.0 0.0 0.0 4.0 4.0 
B -7.5 7.5 -7.5 7.5 -7.5 7.5 
AB 5.0 -5.0 0.0 0.0 -5.0 5.0 
Total -6.5 -1.5 -7.5 7.5 -8.5 16.5 
Overall 12.0 12.0 12.0 12.0 12.0 12.0 
Cell Mean 5.5 10.5 4.5 19.5 3.5 28.5 

The cell means are then used to simulate the data for power and sample size calculation. This set 
of cell means has the MDD’s and patterns specified. 

Specifying the Simulated Variance-Covariance Matrix 
As stated above, the variance of y is V = ZGZ' + R. In this PASS Mixed Models module, ZGZ' 
is called the random component and R is called the residual component. Since V is block-
diagonal (with one block for each subject), it is specified by specifying the random and residual 
components for one subject and repeating those components for each subject.  

ZGZ' 
When the random component is included, the model is called a random effects model. For a 
design with four time points, the structure of ZGZ' is  
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This structure only requires a single value: g.  

R 
The structure of R is quite flexible. Since it is a variance-covariance matrix, the only stipulation is 
that it must be non-negative definite. Possible choices for R when the variance is constant are 

Diagonal Constant (Compound Symetric) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

2

2

2

2

σ
σ

σ
σ

  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

2222

2222

2222

2222

σρσρσρσ
ρσσρσρσ
ρσρσσρσ
ρσρσρσσ



Mixed Models  571-17 
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Possible choices for R when the variance is allowed to vary are 

Diagonal Constant 
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ZGZ' + R 
When ZGZ' is included and R is set to diagonal as recommended, the value of V becomes 
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This is the compound symmetric pattern that is assumed in the repeated measures analysis of 
variance (RMANOVA). This model is often used to compare LMM with RMANOVA. 

Power Calculations using Computer Simulation 
Computer simulation allows us to estimate the power that is actually achieved by a test procedure in 
situations such as LMM that are not mathematically tractable. Computer simulation was once 
limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time. The simulations can still be time consuming, so we have proposed some steps below that will 
significantly shortened then time needed to obtain answers.  
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The Simulation 
It is important that you understand how the simulation is setup. There are three main tabs (panels or 
windows) that contain parameters that you will need to set. These are the Data tab, the Covariance 
tab, and the Fitted Model tab.  

Data Tab 
The Data tab contains all the parameters associated with the sample size, the effect size, and the 
significance level (alpha). The effect size parameters define the experimental design. 

Covariance Tab 
The Covariance tab specifies the parameters used to define the covariance of the data that is 
generated. Note that the covariance of the data you generate does not have to match the covariance 
model that you use to fit the data. In fact, since you seldom know even the structure of the true 
covariance matrix, it is more realistic to generate data using one type of covariance matrix and then 
fit the generated data with a different covariance structure.  

Fitted Model Tab 
The Fitted Model tab specifies the covariance matrix that is actually fit to your data. As stated 
above, the model does not need to coincide with the model used to generate the data. It may be 
more realistic if it does not. 

Steps in Conducting a Simulation Analysis 

Simulation Steps 
The steps to a simulation study are  

1. Specify the design that will be studied. Enter the sample size, MDD’s, and variance 
covariance matrix. Specify the covariance matrix of the model that is fitted to the data. 

2. Generate random samples from the design specified. Calculate the F-tests from the 
simulated data and determine if the null hypothesis is accepted or rejected. Tabulate the 
number of rejections and use this to calculate the test’s power.  

3. Repeat step 2 several hundred or more times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. 

4. Additionally, you can run a separate simulation to determine if the significance level 
(alpha) of the F-test matches the significance level you have selected. This is done by 
setting the MDD’s to zero. 
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Saving Simulation Time 
Simulations for large models or large sample sizes take several hours to run. The simulation time 
can be reduced by running the simulation in two steps. 

1. Specify a reasonable range for the group sample sizes. For example, you may want to try 
group sample sizes of 5, 10, 30, 80, and 120. Set the number of simulations to 300 or 500. 
Although these is not a large enough simulation size to give you definitive results, you can 
study the confidence intervals for power provided in the reports and plots to determine a 
reduced range of sample sizes. 

2. Reduce the range of the sample size values, increase the number of simulations to 1000 or 
2000, and rerun the simulations. These simulations may run for a while, so be prepared for 
running times of several minutes or hours. The power values that come from these 
simulations should be very precise. 

Generating the Random Numbers 
The simulation proceeds by generating the normal random deviates in groups that are the size of the 
number of time points. That is, a set of normals are generated for a single subject. This set of 
normals is transformed into a set of normals having the desired covariance structure using the 
commonly know technique of multiplying the generated unit normals by the square root of the 
variance-covariance matrix. The square root is taken using the Choleski decompositions. The 
resulting response vector matrix has the desired covariance matrix.  

Symbolically, suppose there are t time points and further suppose that the desired variance-
covariance matrix of the data to be simulated is given by V. Find a matrix W such that V = WW'. 
Note that, by construction, W is lower triangular. If we generate t unit random normal deviates 
and place them in a vector z, the vector y = Wz has variance-covariance matrix WW' = V. 
Finally, the appropriate cell mean (based on the minimum detectable differences) is added to the 
y to obtain the simulation data with the desired properties. Once all of the data required for a 
complete experiment is generated, the mixed model is solved using the mixed model algorithm 
coded for NCSS’s mixed model procedure. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options necessary to define the sample size, 
significance level, effect size, and simulation size. 

Solve For 

Find (Solve For) 
This procedure always solves for the power, so there is no specific Solve For option. 
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Sample Size 

n (Subjects Per Group) 
Specify one or more values for the number of subjects per group. The total sample size is the sum 
of the individual group sizes across all groups. 

You can specify a list such as 2 4 6. The items in the list may be separated with commas or 
blanks. The interpretation of the list depends on the =n's check box. When the =n's box is 
checked, a separate analysis is calculated for each value of n. When the =n's box is not checked, 
PASS uses the n’s as the actual group sizes. In this case, the number of items entered must match 
the number of groups in the design, which is equal to the product of the number of levels of A 
and B. 

You can also enter the sample sizes in columns of the spreadsheet. The column contains the 
group sample sizes, one per row. Columns are indicated by adding an equals sign to the left of the 
first entry. For example, if you have entered a set of unequal group sample sizes in column 2, you 
would enter ‘=C2’ here. Multiple columns, such as columns 2 through 4, are specified as ‘=C2 C3 
C4’. 

= n’s 
This option controls whether or not the number of subjects per group is to be equal for all groups. 
When checked, the number of subjects per group is equal for all groups. A list of values such as 
‘5 10 15’ represents three designs: one with five per group, one with ten per group, and one with 
fifteen per group. A simulation is conducted for each value. 

When this option is not checked, the n’s are assumed to be unequal. A list of values represents the 
size of the individual groups. For example, ‘5 10 15’ represents a single, three-group design with 
five in the first group, ten in the second group, and fifteen in the third group. If four values are 
needed, but only two are entered, the last value is carried forward. 

Error Rates 

Alpha 
This option specifies the probability of a type-I error (alpha) for each factor and interaction. A 
type-I error occurs when you reject the null hypothesis of zero effects when in fact they are zero. 
Since they are probabilities, alpha values must be between zero and one. Routinely, the value of 
0.05 is used for alpha. This value may be interpreted as meaning that about one F-test in twenty 
will falsely reject the null hypothesis.  

Simulations 

Simulations 
This option specifies the number of iterations, M, used in each simulation. Larger numbers of 
iterations result in longer run times but more accurate results. 

The precision of the simulated power estimates can be determined by recognizing that they follow 
the binomial distribution. Thus, confidence intervals may be constructed for power estimates. The 
following table gives an estimate of the precision that is achieved for various simulation sizes 
when the power is either 0.50 or 0.95. The table values are interpreted as follows: a 95% 
confidence interval of the true power is given by the power reported by the simulation plus and 
minus the ‘Precision’ amount given in the table. 
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 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
  

Notice that a simulation size of 1000 gives a precision of plus or minus 0.014 when the true 
power is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a 
small amount of additional precision achieved.  

Because of the long run time needed to obtain an estimate of power, it is crucial that you set this 
parameter carefully. We suggest the following two-step procedure. 

Step 1 
Set the number of simulations to 200, 300, or 500 and run examples for a realistic range of 
sample sizes. Study the results (especially the confidence intervals) to determine a range of 
sample sizes you want to investigate more carefully. 

Step 2 
Reduce the range of N to just one or two values and set the number of simulations to a large 
amount. 

Step 3 (Optional) 
Take the rest of the day off—the simulation may take awhile! 

Effect Size  

Specify Effects Using 
Indicate which options are used to specify the Effect Size. The possible choices are Means in 
Spreadsheet Columns or the reset of the options on this panel. 

Means in Spreadsheet Columns 
Specify spreadsheet columns containing a hypothesized means matrix that represents the 
minimum detectable differences among the means. Under the null hypothesis, this matrix is all 
zeros.  

The between-subject factors (A & B) are represented across the columns of the spreadsheet and 
the within-subject factors (C & D) are represented down the rows. The number of columns 
specified must equal the number of groups, which is equal to the number of levels in A times the 
number of levels in B. The number of rows must equal the number of time points, which is equal 
to the number of levels in C multiplied by the number of levels in D.  
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For example, suppose you are designing an experiment that is to have two between factors (A & 
B) and two within factors (C & D). Suppose each of the four factors has two levels. The columns 
of the spreadsheet would represent 

A1B1 A1B2 A2B1 A2B2. 

The rows of the spreadsheet would represent 

C1D1 

C1D2 

C2D1 

C2D2 

Example 
To see how this option works, consider the following table of hypothesized means for an 
experiment with one between factor (A) having two groups and one within factor (C) having 
three time periods. The values in columns C1 and C2 of the spreadsheet are 

C1 C2 
2.0 4.0 
4.0 6.0 
6.0 11.0 

By subtracting the appropriate means, the following table of effects results 
C1 C2 | Means | Effects 

Row1 0.5 -0.5 | 3.0 | -2.5 
Row2 0.5 -0.5 | 5.0 | -0.5 
Row3 -1.0 1.0 | 8.5 |  3.0 

--- --- | --- 
Means 4.0 7.0 | 5.5 
Effects -1.5 1.5 

Effect Size – Factors Separating 
Subjects into Groups (Between) 
These options specify the effect sizes of the between-subjects factors (A and B). 

Levels 
Specify the number of levels (categories) in this factor. Typical values are from 2 to 8. Set this to 
a blank (or 0) to ignore the factor in the design. 

Effects Pattern 
This option specifies the pattern of the means for this factor. This pattern is multiplied by the 
Detectable Difference to form the factor means used in the simulation. For example, suppose that 
the pattern of a five-category factor is -.50 -.25 0.0 .25 0.5 and the detectable difference is 10. The 
resulting effects are -5.0 -2.5 0.0 2.5 5.0. The power reported by the simulation is the value to 
detect a difference of 10 (5 – (– 5)) when the pattern of means is a linear growth pattern. Note 
that the power depends on both the pattern and the detectable difference. 

Possible choices are displayed next using examples that assume that the factor has five categories. 

• List of Means 
Enter a list of means directly into the List of Means box to the right. 
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• Linear Up or Down 
Up: -.50 -.25 0.0 .25 0.5.   Down: .50 .25 0.0 -.25 -.50. 

• First Effect High or Low 
High: .5 -.5 -.5 -.5 -.5.   Low: -.5 .5 .5 .5 .5. 

• Last Effect High or Low 
High: -.5 -.5 -.5 -.5 .5.   Low: .5 .5 .5 .5 -.5. 

• First Half High or Low 
High: .5 .5 .5 -.5 -.5.   Low: -.5 -.5 -.5 .5 .5. 

• Zig Zag High or Low 
High: .5 -.5 .5 -.5 .5.   Low: -.5 .5 -.5 .5 -.5. 

• Interaction Effect Patterns 
The effect patterns of interactions are formed as the Kronecker product of the individual 
factor patterns. 

Detectable Difference 
This is the difference between the largest and smallest effects associated with this factor or 
interaction. This represents the minimum detectable difference between any two levels (or factor-
level combinations). The actual means used in the simulation are found by multiplying the Effects 
Pattern by this value. 

Each value specified here results in a separate simulation. Note that, because of report and plot 
labeling, it is best if you only put multiple values in one of these boxes at a time. Otherwise, the 
plots will be labeled using the less-informative term ‘Combination’. 

Example 
Suppose that you selected Linear Up as the Effects Pattern of a five-level factor and set the 
detectable difference to 8. Further suppose that the Baseline Mean (below) is set to 20. The 
resulting means for this factor would be: 16 18 20 22 24.  

Note that the maximum difference between any two of these means is 8. 

List of Means 
You can specify a list of means directly instead of specifying the pattern and detectable 
difference. When you do so, the effects pattern and detectable difference are calculated from the 
means you specify. 

When you specify too many values for the number of levels in the factor, the extra values are 
ignored. When you specify too few values, the last value you specify is copied forward. 

Using Columns in the Spreadsheet 
You can specify the list of means in columns of the spreadsheet. When you do this, you enter the 
column(s) name(s) here using the equal sign.  

For example, if you stored two sets of means, one in C5 and the other in C6, you would enter 
‘=C5 C6’ here (or you could select the columns by pressing the button to the right). Once you 



571-24  Mixed Models 

have entered values into a spreadsheet, it is up to you to load that spreadsheet each time you run 
the simulation. 

Note that a separate simulation is run for each column you specify. 

Effect Size – Factors with Multiple 
Levels Within a Subject (Within) 
These options specify the effect sizes of the within-subject factors (C and D). 

Levels 
Specify the number of levels (categories) in this factor. Typical values are from 2 to 8. Set this to 
a blank (or 0) to ignore the factor in the design.  

Note that the number of time points is calculated as the product of the number of levels factors C 
and D. 

The rest of these options behave as described in the Between-Subject section above. 

Possible choices are displayed next using examples that assume that the factor has five categories. 

Effect Size – Interactions 
These options specify the effect sizes of any interactions that are specified. 

Interaction Check Box 
Check this box to include the corresponding interaction in the model. In most situations, you 
should include all appropriate interactions since these have an impact on the degrees of freedom 
of the F-tests. You can set their Detectable Difference near zero if you want to ignore them. 

Occasionally, you will want to limit the number of interactions that you include in the model. 

Note that the model is forced to be hierarchical. This means that if you include the three-way 
interaction ABC in the model, you must also include A, B, C, AB, AC, and BC. 

Detectable Difference 
This is the difference between the largest and smallest effects associated with this term. This 
represents the minimum detectable difference between any two factor-level combinations. The 
actual means used in the simulation are found by multiplying the effects pattern by this value. 
The effect pattern is created by forming the Kronecker product of the effect patterns of each 
factor in the interaction. The result is standardized so that the maximum difference in the pattern 
is 1.0. Each item in the pattern is multiplied by the Detectable Difference. The cell means are 
found by adding the appropriate effects for the main effects, interaction effects, and baseline 
mean.  

Each value specified here results in a separate simulation. Note that, because of report and plot 
labeling, it is best if you only put multiple values in one of these boxes at a time. Otherwise, the 
plots will be labeled using the less-informative term ‘Combination’. 
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Covariance Tab 
This tab specifies the variance-covariance matrix of the data that are generated during the 
simulation. Note that this structure does not have to match the structure of the mixed model that is 
fitted. 

There are two components that can be specified: the random component and the residual 
component. If you specify a random component, you should set the residual component to 
‘Variance Pattern’ (diagonal). 

Random Component 

Specify Using 
Specify whether to include a Random Effects (subjects) component in the model. Possible 
choices are 

• None 
Do not include a Random Component in the model. 

• Random Effects (Subjects) 
Add a random effects component to the model. This component accounts for subject-to-
subject variability. In this case, the Residual Component should be set to Variance Pattern 
(which does not include autocorrelations). 

Random Component – Random 
Effects (Subjects) Parameter 

Subject Variance 
This is the value of random component’s variance component. It is usually obtained from a 
previous run of a random effects mixed model. Since it is a variance, it must be positive. 

When a Group Factor is used, a separate value must be supplied for each of the groups. 

Residual Component 

Specify Using 
Specify how you want to specify the Residual Component. 

• Variance Pattern 
This option indicates that the residual component includes only diagonal parameters (no 
autocorrelation).  

• Variance and Autocorrelation Patterns 
This option indicates that the residual component includes off-diagonal parameters. Diagonal 
parameters represent variances and off-diagonal parameters represent autocorrelations. 

• Covariance Matrix in Spreadsheet 
A covariance matrix is to be read in from the spreadsheet. 
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Residual Component – Variance 
(Diagonal) Pattern 

Specify Variances 
This option specifies how the variances of the residual component are specified. Possible choices 
are 

• Constant in V1 
All variances are set to V1. All autocorrelations are set to zero. 

When a Grouping Factor is used, a list of variances can be read in from the spreadsheet. A 
column containing the group variances is specified with an equals sign, e.g. ‘=C1’. When this 
option is used, each row of the spreadsheet provides the variance for the corresponding 
group. 

• V1 to V2 
The variances range from the V1 to V2 according to the Time Values. V1 is used for the first 
time value and V2 is used for the last time value. 

When a Grouping Factor is used, a list of V2 values can be read in from the spreadsheet. A 
column containing the V2’s is specified with an equals sign, e.g. ‘=C2’. When this option is 
used, each row of the spreadsheet provides the variance for the corresponding group. 

• Variance List 
A list of variances, one per time point, is specified here. The list(s) can also be specified as 
columns of the spreadsheet using the equals sign, e.g. ‘=C3’. 

V1 
The value of V1 is specified here.  

When a Grouping Factor is used, a list of variances can be read in from the spreadsheet. A 
column containing the group variances is specified with an equals sign, e.g. ‘=C1’. When this 
option is used, each row of the spreadsheet provides the variance for the corresponding group. 

V2 
The value of V2 is specified here. The variances range from V1 to V2 proportional to the Time 
Values. 

When a Grouping Factor is used, a list of variances can be read in from the spreadsheet. A 
column containing the group variances is specified with an equals sign, e.g. ‘=C2’. When this 
option is used, each row of the spreadsheet provides the variance for the corresponding group. 

Variance List 
A list of variances, one per time point, is specified here. The list can also be specified as a column 
of the spreadsheet using the equals sign, e.g. ‘=C3’. 
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Residual Component – 
Autocorrelation (Off-Diagonal) 
Pattern 

Specify Autocorrelations 
This option specifies the pattern of the autocorrelations in the Residual Component of the 
variance-covariance matrix. Three options are possible: 

• Constant in AC 
The value of AC is used as the constant autocorrelation. 

• AR(1) in AC 
The value of AC is used to generate a first order autocorrelation pattern. This pattern reduces 
the magnitude of the autocorrelation at each successive step by multiplying the value at the 
previous step by AC. Thus the pattern is AC AC*AC AC*AC*AC etc. 

• Autocorrelation List 
A list of AC values, separated by blanks or commas, is used to specify the autocorrelation 
pattern across the time. 

AC (Autocorrelation) 
This is the autocorrelation, AC, between two measurements made on a subject at two time points 
that differ by one time unit. A value near 0 indicates low correlation. A value near 1 indicates 
high correlation. Its use depends on the selection in the Specify Autocorr's option. 

Possible values range from -1 to 1. However, in this situation, a positive value is usually assumed, 
so the more realistic range is 0 to 1. 

If Time Greater Than 
This is the maximum time difference between two measurement points before the autocorrelation 
is set to a second autocorrelation value.  

For example, you might wish to specify a constant AC of 0.4 for the first two time periods, and 
then, for any two measures that are greater than two time values apart, switch the autocorrelation 
to zero.  If you have specified a Constant autocorrelation pattern, and set this value to ‘2’, the 
resulting autocorrelation pattern of the Residual Component would be 
1.0  0.4  0.4  0.0  0.0 

0.4  1.0  0.4  0.4  0.0 

0.4  0.4  1.0  0.4  0.4 

0.0  0.4  0.4  1.0  0.4 

0.0  0.0  0.4  0.4  1.0 

When you want to ignore this value, set it to a large number such as 100. 

The cutoff value refers to the Time Values that you have specified elsewhere on this screen. 

 Then AC Becomes 
This is the second autocorrelation value. It is used when the time difference between two 
measurement points is larger than the value to the left.  
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For example, suppose AC is 0.4, this value is 0.0, and ‘If Time Greater Than’ value is ‘2’. The 
resulting autocorrelation pattern of the Residual Component would be 
1.0  0.4  0.4  0.0  0.0 

0.4  1.0  0.4  0.4  0.0 

0.4  0.4  1.0  0.4  0.4 

0.0  0.4  0.4  1.0  0.4 

0.0  0.0  0.4  0.4  1.0 

When you want to ignore this value, set the ‘If Time Greater Than’ value to a large number such 
as 100. 

RANGE: Since we usually assume a positive autocorrelation, this value ranges between 0 and 1. 

Autocorrelation List 
This is a list of autocorrelations, one for each time point. The number of autocorrelations must 
match the number of time values which is equal to the product of the number of levels for factors 
C and D.   

Since this is a type of correlation, possible values range from -1 to 1. However, positive values 
are usually assumed, so the realistic range is 0 to 1. A value near 0 indicates low correlation. A 
value near 1 indicates high correlation. 

You can alternatively enter the list of autocorrelations in a column of the spreadsheet and specify 
that column here. When the program finds an equals sign in this box, it reads in the values of the 
designated column. Blanks are converted to zeros. For example, if you have entered the 
autocorrelation list in column one, you would enter ‘=C1’ here. 

If there are not enough values entered, the last value is copied forward. 

Residual Component – Covariance 
Matrix in Spreadsheet 

Covariance Matrix in Spreadsheet 
This option designates the columns on the current spreadsheet holding the covariance matrix. The 
number of columns and number of rows with data must match the number of time periods at 
which the subjects are measured. The matrix must be positive definite. 

Press the button at the right to select the columns from the spreadsheet. 

Note that it is your responsibility to be certain that the spreadsheet is loaded with the correct 
values. 

Miscellaneous Options 

Grouping Factor 
Specify a grouping factor--either Factor A or B.  

When selected, a set of variance and autocorrelation parameters must be included for each level 
of this factor. 
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Time Values 
This option specifies the time points at which measurements of the subjects are made. Often, 
measurements are made at equidistant points through time. But this is not always the case. The 
number of time points is the product of the number of levels of all within factors. The time metric 
influences the values of the variances as well as the correlations between two measurements on 
the same individual. 

If the correlation matrix uses the time metric, the individual correlations are based on the formula: 
Corr(Yi,Yj)=AC^(|ti-tj|), where AC is the autocorrelation and ti and tj are two points in the time 
metric list. This formula allows you to easily specify many different types of correlation 
structures. 

The syntax for entering the time metric is given next. 

STEP <Start> <Inc>  

Measurements are made at time intervals of length INC, beginning at START. For example, 
‘STEP 0 2’ would generate the time series: 0, 2, 4, 6, etc. 

RANGE <Min> <Max> 

A set of equal-spaced time points is generated from the MIN value to the MAX value. This 
setting is very useful when you want to study the impact of increasing/decreasing the number of 
measurements per subject during the same period of time. That is, if the study will last five 
weeks, will the power of the statistical tests increase if you take ten measurements rather than 
five? 

List 

You may enter a list of values separated by blanks or commas. For example, you could enter 0 
0.143 1 2 3 if times were 0 weeks, 1/7 week (day 1), 1 week, 2 weeks, 3 weeks. 

Example 

Suppose the number of time points is 6. Entering RANGE 0,10 will generate the Time Values: 0, 
2, 4, 6, 8, 10. If the number of times is changed to 11, the Time Values will become: 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10. 

Fitted Model Tab 
This tab controls the variance-covariance matrix model that is actual fit during the solution of 
each simulation sample.  

Fitted Variance-Covariance Model – 
Random Effects Component  

Random Model 
Specify whether to include a Random Effects (Subjects) component in the fitted model. Possible 
choices are 

• None 
Do not include a Random Component in the fitted model. 
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• Random Effects (Subjects) 
Add a random subjects component to the fitted model. In this case, the Residual Component 
should be set to ‘Diagonal’ (which does not include autocorrelations). 

Groups 
Specify a grouping factor: either factor A or B.  

When selected, a set of variance and autocorrelation parameters must be included for each level 
of this factor. 

Fitted Variance-Covariance Model – 
Residual Component  

Pattern 
Specify the type of R matrix (Residual Component Pattern) to be generated. The default type is 
the Diagonal matrix. When terms are specified in the Random Model, this option should be set to 
Diagonal. A brief summary of the various structures follows.  

R = Autocorrelation 

Ri = ith autocorrelation 

Rij = autocorrelation between ith and jth time points 

S^2 = Sigma^2  

Si^2 = Sigma^2 for ith time point 

• Diagonal 
|1 0 0 0| 

|0 1 0 0| 

|0 0 1 0|*S^2 

|0 0 0 1| 

• Compound Symmetry 
|1 R R R| 

|R 1 R R| 

|R R 1 R|*S^2 

|R R R 1| 

• AR(1) 
|1   R   R^2 R^3| 

|R   1   R   R^2| 

|R^2 R   1   R  |*S^2 

|R^3 R^2 R   1  | 



Mixed Models  571-31 

• Toeplitz(i) 
e.g. Toeplitz(3) =  

|1  R1 R2 0 | 

|R1 1  R1 R2| 

|R2 R1 1  R1|*S^2 

|0  R2 R1 1 | 

• Banded(i) 
e.g. Banded(2) =  

|1 R 0 0| 

|R 1 R 0| 

|0 R 1 R|*S^2 

|0 0 R 1| 

• Unstructured 
|1.00 R12 R13 R14| 

|R12 1.00 R23 R24| 

|R13 R23 1.00 R34|*S^2 

|R14 R24 R34 1.00| 

Heterogeneous covariance structures allow for nonconstant values for S^2. 

e.g. Diagonal - Heterogeneous = 

|S1^2 0    0    0   | 

|0    S2^2 0    0   | 

|0    0    S3^2 0   |  

|0    0    0    S4^2| 

Force Positive Covariances 
When checked, this option forces all covariances in the Random and Repeated Components (off-
diagonal elements of the R matrix) to be non-negative. When this option is not checked, 
covariances can be negative. 

Usually, negative covariances are okay and should be allowed. However, some Residual 
Component patterns such as ‘Compound Symmetry’ assume that covariances (autocorrelations) 
are positive. 
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Solution Options 

Likelihood Type 
Specify the type of likelihood equation to be solved. The options are: 

• MLE 
The Maximum Likelihood solution has become less popular. 

• REML (recommended) 
The Restricted Maximum Likelihood solution is recommended. It is the default in other 
software programs (such as SAS). 

Solution Method 
Specify the method to be used to solve the likelihood equations. The options are: 

• Newton-Raphson 
This is an implementation of the popular 'gradient search' procedure for maximizing the 
likelihood equations. Whenever possible, we recommend that you use this method.  

• Fisher-Scoring 
This is an intermediate step in the Newton-Raphson procedure. However, when the Newton-
Raphson fails to converge, you may want to stop with this procedure. 

• MIVQUE 
This non-iterative method is used to provide starting values for the Newton-Raphson method. 
For large problems, you may want to investigate the model using this method since it is much 
faster. 

• Differential Evolution 
This grid search technique will often find a solution when the other methods fail to converge. 
However, it is painfully slow--often requiring hours to converge--and so should only be used 
as a last resort. 

Solution Options – Newton-Raphson / 
Fisher Scoring Options 

Fisher Scoring Iter’s 
This is the maximum number of Fisher Scoring iterations that occur in the maximum likelihood 
finding process. When Solution Method is set to Newton-Raphson, up to this number of Fisher 
Scoring iterations occur before beginning Newton-Raphson iterations. We recommend setting 
this to ‘1’. 

Newton-Raphson Iter’s 
This is the maximum number of Newton-Raphson iterations that occur in the maximum 
likelihood finding process. When Solution Method is set to Newton-Raphson, Fisher-scoring 
iterations occur before beginning Newton-Raphson iterations. We recommend setting this to ‘5’. 
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Lambda 
Each parameter’s change is multiplied by this value at each iteration. Usually, this value can be 
set to one. However, it may be necessary to set this value to 0.5 to implement step-halving: a 
process that is necessary when the Newton-Raphson diverges.  

Note: this parameter only used by the Fisher-Scoring and Newton-Raphson methods. 

Convergence Criterion 
This procedure uses relative Hessian convergence (or the Relative Offset Orthogonality 
Convergence Criterion) as described by Bates and Watts (1981). 

Recommended: The default value, 1E-8, will be adequate for many problems. When the routine 
fails to converge, try increasing the value to 1E-6. 

Zero (Rounding) 
This cutoff value is used by the least-squares algorithm to lessen the influence of rounding error. 
Values lower than this are reset to zero. If unexpected results are obtained, try using a smaller 
value, such as 1E-32. Note that 1E-5 is an abbreviation for the number 0.00001. 

Recommended: 1E-10 or 1E-12. 

Range: 1E-3 to 1E-40. 

Variance Zero 
When an estimated variance component (diagonal element) is less than this value, the variance is 
assumed to be zero and all reporting is terminated since the algorithm has not converged properly. 

To correct this problem, remove the corresponding term from the Random Factors Model or 
simplify the Repeated Variance Pattern. Since the parameter is zero, why would you want to keep 
it? 

Recommended: 1E-6 or 1E-8. 

Range: 1E-3 to 1E-40. 

Correlation Zero 
When an estimated correlation (off-diagonal element) is less than this value, the correlation is 
assumed to be zero and all reporting is terminated since the algorithm has not converged properly. 

To correct this problem, remove the corresponding term from the Random Factors Model or 
simplify the Repeated Variance Pattern. Since the parameter is zero, why would you want to keep 
it? 

Recommended: 1E-6 or 1E-8. 

Range: 1E-3 to 1E-40. 

Max Retries 
Specify the maximum number of retries to occur. During the maximum likelihood search process, 
the search may lead to an impossible combination of variance-covariance parameters (as defined 
by a matrix of variance-covariance parameters that is not positive definite). When such a 
combination arises, the search algorithm will begin again. Max Retries is the maximum number 
of times the process will re-start to avoid such combinations. 

We recommend setting this to ‘1’. 
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Solution Options – Differential 
Evolution Options 

Crossover Rate 
This value controls the amount of movement of the differential evolution algorithm toward the 
current best. Larger values accelerate movement toward the current best, but reduce the chance of 
locating the global maximum. Smaller values improve the chances of finding the global, rather 
than a local, solution, but increase the number of iterations until convergence. 

RANGE: Usually, a value between .5 and 1.0 is used.  

RECOMMENDED: 0.9. 

Mutation Rate 
This value sets the mutation rate of the search algorithm. This is the probability that a parameter 
is set to a random value within the parameter space. It keeps the algorithm from stalling on a local 
maximum.   

RANGE: Values between 0 and 1 are allowed.  

RECOMMENDED: 0.9 for random coefficients (complex) models or 0.5 for random effects 
(simple) models. 

Max Iter’s 
Specify the maximum number of differential evolution iterations used by the differential 
evolution algorithm. A value between 100 and 200 is usually adequate.  For large datasets, i.e., 
number of rows greater than 1000, you may want to reduce this number. 

Min Relative Change 
This parameter controls the convergence of the likelihood maximizer. When the relative change 
in the likelihoods from one generation to the next is less than this amount, the algorithm 
concludes that it has converged. The relative change is |L(g+1) - L(g)| / L(g) where L(g) is 
absolute value of the likelihood at generation 'g'. Note that the algorithm also terminates if the 
Maximum Generations are reached or if the number of individuals that are replaced in a 
generation is zero. The value 0.00000000001 (ten zeros) seems to work well in practice. Set this 
value to zero to ignore this convergence criterion. 

Solutions/Iter’n 
This is the number of trial points (solution sets) that are used by the differential evolution 
algorithm during each iteration. In the terminology of differential evolution, this is the population 
size.  

RECOMMENDED: A value between 15 and 25 is recommended. More points may dramatically 
increase the running time. Fewer points may not allow the algorithm to converge. 
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Example 1 – Determining Power for Given Sample Size 
Researchers are planning a study of the impact of a drug on heart rate. They want to evaluate the 
differences in heart rate among two age groups: 20-55 and over 55. Their experimental protocol 
calls for a baseline heart rate measurement, followed by administration of a certain level of the 
drug, followed by an additional measurement 30 minutes later. They want to be able to detect a 
10% difference in heart rate among the age groups. They want to detect 5% difference in heart 
rate within an individual across time. They decide the experiment should detect interaction effects 
of the same magnitude as the within-subject factor. From a heart rate of 93, a 10% reduction 
gives 84, a difference of 9. Similarly, a 5% reduction within a subject would result in a heart rate 
of 88, a difference of 5.  

They plan to analyze the data using a random effects model, setting the significance level at 0.05. 
Similar studies have found an average heart rate of 93, a subject variance of 11, and a residual 
variance of 11.  

They want to look at the power for group sizes of 3, 5, 7, and 9. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Mixed Models procedure window by clicking on Means, then 
Mixed Models, then Mixed Models. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 

Sample Size 
n (Subjects Per Group) ...........................3 5 7 9 
=n’s..........................................................checked  

Alpha 
Alpha .......................................................0.05 

Simulations 
Simulations..............................................100 

Effect Size 
Specify Effects Using ..............................Effects Patterns, etc. 

Factors Separating Subjects into Groups (Between) 
Levels (A) ................................................2 
Effects Pattern (A)...................................Linear Up 
Detectable Difference (A)........................9 

Factors with Multiple Levels Within a Subject (Within) 
Levels (A) ................................................2 
Effects Pattern (A)...................................Linear Up 
Detectable Difference (A)........................5 
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Data Tab (continued) 

Interactions 
AC ...........................................................checked 
Baseline Mean ........................................93 

Covariance Tab 

Random Component 
Specify Using ..........................................Random Effects (Subjects) 

Random Effects Parameter 
Subject Variance .....................................11  

Residual Component 
Specify Using ..........................................Variance Pattern 

Variance (Diagonal) Pattern 
Specify Variances ...................................Constant in V1  
V1 ............................................................11  

Fitted Model Tab 

Fitted Variance-Covariance Model 

Random Effects Component 
Random Model........................................Random Effects (Subjects) 

Residual Component 
Pattern.....................................................Diagonal 

Solution Options 
Likelihood Type .......................................REML  
Solution Method ......................................Newton-Raphson  

Reports Tab 

Select Reports 
To avoid accidental omission of output, all reports and plots are automatically displayed. 

Report Options 
Simulation Alpha .....................................0.05 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Power Report for Each Design 
 

Power by Design 
  Lower Upper       
  95% 95%   Minimum  Number of  
Model  C.L. of C.L. of   Detectable  Simulation Factor 
Term Power Power Power N(1) N Difference Alpha Samples Pattern 
A (2) 0.4300 0.3314 0.5329 3 6 9.00 0.0500 100 Linear Up 
C (2) 0.4800 0.3790 0.5822 3 6 5.00 0.0500 100 Linear Up 
AC 0.4900 0.3886 0.5920 3 6 5.00 0.0500 100  
 
A (2) 0.8200 0.7305 0.8897 5 10 9.00 0.0500 100 Linear Up 
C (2) 0.7900 0.6971 0.8651 5 10 5.00 0.0500 100 Linear Up 
AC 0.9000 0.8238 0.9510 5 10 5.00 0.0500 100  
 
A (2) 0.9600 0.9007 0.9890 7 14 9.00 0.0500 100 Linear Up 
C (2) 0.8700 0.7880 0.9289 7 14 5.00 0.0500 100 Linear Up 
AC 0.9500 0.8872 0.9836 7 14 5.00 0.0500 100  
 
A (2) 0.9900 0.9455 0.9997 9 18 9.00 0.0500 100 Linear Up 
C (2) 1.0000 0.9638 1.0000 9 18 5.00 0.0500 100 Linear Up 
AC 0.9900 0.9455 0.9997 9 18 5.00 0.0500 100  
 
Simulation Time: 65.78 seconds. 

 

This report gives the simulated power for each term in the design for each value of N, one design 
at a time. It is useful when you want to compare the powers of the terms in the design at a specific 
sample size. 

The definitions of each of the columns of the report are as follows. 

Model Term 
This column contains the identifying label of the term. The number of levels for a factor is given 
in parentheses. 

Power 
This is the simulated power for the term. 

Lower and Upper 95% C.L. of Power 
These are the lower and upper confidence limits of a 95% confidence interval for the simulated 
power. These are exact, distribution-free, confidence limits based on the binomial distribution. 

N(1) 
The value of the number of subjects per group. 

N 
The value of N is the total number of subjects in the study. 

Minimum Detectable Difference 
This is the value of the minimum detectable difference that was entered (or calculated) for this 
term. This is a measure of the magnitude of the effect size.  
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Alpha 
Alpha is the significance level of the F-test for this term. 

Number of Simulation Samples 
This is the number of simulation samples for which the mixed model algorithm converged. 

Factor Pattern 
This is the type of factor pattern that was used with the detectable difference to form the group 
means. 

Term Reports 
 

Power by Term 
  Lower Upper       
  95% 95%   Minimum  Number of  
Model  C.L. of C.L. of   Detectable  Simulation Factor 
Term Power Power Power N(1) N Difference Alpha Samples Pattern 
A (2) 0.4300 0.3314 0.5329 3 6 9.00 0.0500 100 Linear Up 
A (2) 0.8200 0.7305 0.8897 5 10 9.00 0.0500 100 Linear Up 
A (2) 0.9600 0.9007 0.9890 7 14 9.00 0.0500 100 Linear Up 
A (2) 0.9900 0.9455 0.9997 9 18 9.00 0.0500 100 Linear Up 
 
C (2) 0.4800 0.3790 0.5822 3 6 5.00 0.0500 100 Linear Up 
C (2) 0.7900 0.6971 0.8651 5 10 5.00 0.0500 100 Linear Up 
C (2) 0.8700 0.7880 0.9289 7 14 5.00 0.0500 100 Linear Up 
C (2) 1.0000 0.9638 1.0000 9 18 5.00 0.0500 100 Linear Up 
 
AC 0.4900 0.3886 0.5920 3 6 5.00 0.0500 100  
AC 0.9000 0.8238 0.9510 5 10 5.00 0.0500 100  
AC 0.9500 0.8872 0.9836 7 14 5.00 0.0500 100  
AC 0.9900 0.9455 0.9997 9 18 5.00 0.0500 100  

 

This report provides the same information as the previous Design report, so the item definitions 
are the same. It is sorted by term, to make comparison of powers across various sample sizes 
easier.  

Whole Design Power Plots 
 

Power vs N by Term using Alpha=0.05
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This plot shows the power values on the vertical axis and the sample sizes across the horizontal 
axis. The plot symbols represent different model terms. 
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Confidence Interval Power Plots 
 

Power vs N by Confidence Interval for Term=A
Alpha=0.05
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Power vs N by Confidence Interval for Term=C
Alpha=0.05
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Power vs N by Confidence Interval for Term=AC
Alpha=0.05
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These plots show the confidence limits for the power for each term across the various sample 
sizes. Using these plots, you can quickly see for which sample sizes you might want to run a more 
precise (larger) simulation. 

Individual Term Power Plots 
 

Power vs N for Term=A Alpha=0.05
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Power vs N for Term=C Alpha=0.05
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Power vs N for Term=AC Alpha=0.05
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These plots show the power for each term across the various sample sizes without including the 
confidence limits.  

Detectable Differences for Each Term 
 

Combination    
No. A C AC 
1 9.00 5.00 5.00 

 

This report shows the values of the Minimum Detectable Differences for each term. It is 
particularly useful to identify each combination when you enter several different values for 
various terms, so that there are several combinations. 

Effect Pattern Section 
 

---------- A ---------- ---------- C ---------- --------- AC ---------       
Levels Value Levels Value Levels Value       
 1 -0.50  1 -0.50 1,1 0.50       
 2 0.50  2 0.50 1,2 -0.50       
    2,1 -0.50       
    2,2 0.50  

 

This report shows the patterns of each of the active terms in the model. These values are 
multiplied by the corresponding minimum detectable differences to form the effects associated 
with each term 

Expanded Effect Pattern Section 
 

---------- A ---------- ---------- C ---------- --------- AC ---------       
Levels Value Levels Value Levels Value       
1,1 -0.50 1,1 -0.50 1,1 0.50       
1,2 -0.50 1,2 0.50 1,2 -0.50       
2,1 0.50 2,1 -0.50 2,1 -0.50       
2,2 0.50 2,2 0.50 2,2 0.50       

 

This report shows the effect patterns of each of the cells in the model. These values are multiplied 
by the corresponding minimum detectable difference and summed to form the cell means for each 
group in the design. 
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Hypothesized Means Matrix for Detectable Differences Combination 1 
 

Factors A1 A2 
C1 88.50 92.50 
C2 88.50 102.50 

 

This report shows hypothesized means matrix for each combination of detectable differences. 
Note that the between factors are represented across the columns of the report and the within 
factors are represented down its rows. 

Variance-Covariance Matrix  
 

Factors C1 C2 
C1 22.00 11.00 
C2 11.00 22.00 

 

This report shows the variance-covariance matrix used to generate the data. You should check 
that they are correct. 

Variance and Autocorrelations 
 

Factors C1 C2 
C1 22.00 0.50 
C2 0.50 22.00 

 

This report shows the variances on the diagonal and the autocorrelations on the off-diagonal. You 
should check that they are correct. 

Example 2 – Validation using Brown and Prescott 
Brown and Prescott (2006) pages 268-269 present the following example of determining a sample 
size for a repeated measures design that is analyzed using a linear mixed model. Note that this 
analytic procedure is provided in PASS as the procedure entitled Inequality Test for Two Means 
in a Repeated Measures Design. That procedure is sometimes called the time-averaged 
difference.  

In this example, a group size of 31 is found to achieve 80% power when the residual variance is 
76, the autocorrelation is 0.53, the minimum detectable difference of a single between-subject 
factor is 5, the number of repeated measurements is 4, and the significance level is 0.05. 

In this example, because of the long running time, the number of simulation samples will be set to 
100. You can increase this to 500 or 1000 to obtain greater precision. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Mixed Models procedure window by clicking on Means, then 
Mixed Models, then Mixed Models. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example2 from the Template tab on the 
procedure window. 
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Option Value 
Data Tab 

Sample Size 
n (Subjects Per Group) ...........................31 
=n’s..........................................................checked  

Alpha 
Alpha .......................................................0.05 

Simulations 
Simulations..............................................100 

Effect Size 
Specify Effects Using ..............................Effects Patterns, etc. 

Factors Separating Subjects into Groups (Between) 
Levels (A) ................................................2 
Effects Pattern (A)...................................Linear Up 
Detectable Difference (A)........................5 

Factors with Multiple Levels Within a Subject (Within) 
Levels (A) ................................................4 
Effects Pattern (A)...................................Linear Up 
Detectable Difference (A)........................5 

Interactions 
AC ...........................................................unchecked 

Covariance Tab 

Random Component 
Specify Using ..........................................none 

Residual Component 
Specify Using ..........................................Variance and Autocorrelation Patterns 

Variance (Diagonal) Pattern 
Specify Variances ...................................Constant in V1  
V1 ............................................................76  

Autocorrelation Pattern 
Specify Autocorr’s ...................................Constant in AC 
AC ...........................................................0.53  

Fitted Model Tab 

Fitted Variance-Covariance Model 

Random Effects Component 
Random Model........................................Random Effects (Subjects) 

Residual Component 
Pattern.....................................................Diagonal 

Solution Options 
Likelihood Type .......................................REML  
Solution Method ......................................Newton-Raphson  
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Output 
Click the Run button to perform the calculations and generate the following output. 

Power Report for Each Design 
 

Power by Design 
  Lower Upper       
  95% 95%   Minimum  Number of  
Model  C.L. of C.L. of   Detectable  Simulation Factor 
Term Power Power Power N(1) N Difference Alpha Samples Pattern 
A (2) 0.7900 0.6971 0.8651 31 62 5.00 0.0500 100 Linear Up 
C (4) 0.9800 0.9296 0.9976 31 62 5.00 0.0500 100 Linear Up 
 
Simulation Time: 2.18 minutes. 

 

Note that for just a 100 simulations, the power 0.79 has come out remarkably close to the actual 
value of 0.80 given by Brown and Prescott. The confidence interval, 0.70 to 0.87, is wide and 
could be run with a larger number of simulations to obtain a more precise answer. 

Example 3 – Validation using Repeated Measures 
ANOVA 
For balanced designs, LMM and Repeated Measures ANOVA can be used to analyze the same 
data. Although they both produce F-tests, the values of the F-test are different for the two tests.It 
is instructive to compare the power of these competing procedures.  

In this example, we will determine the power for group sizes of 3, 9, and 15 when the random 
effects (subject) variance is 2, the residual variance is 2, the minimum detectable differences of 
all three terms is 1.0, the number of repeated measurements is 2, and the significance level is 
0.05. A random effects model will be fit. The number of simulation samples will be set to 500. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Mixed Models procedure window by clicking on Means, then 
Mixed Models, then Mixed Models. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example3 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 

Sample Size 
n (Subjects Per Group) ...........................3 9 15 
=n’s..........................................................checked  

Alpha 
Alpha .......................................................0.05 

Simulations 
Simulations..............................................500 

Data Tab (continued) 
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Effect Size 
Specify Effects Using ..............................Effects Patterns, etc. 

Factors Separating Subjects into Groups (Between) 
Levels (A) ................................................2 
Effects Pattern (A)...................................Linear Up 
Detectable Difference (A)........................1 

Factors with Multiple Levels Within a Subject (Within) 
Levels (A) ................................................2 
Effects Pattern (A)...................................Linear Up 
Detectable Difference (A)........................1 

Interactions 
AC ...........................................................checked 
Detectable Difference (AC) .....................1 

Covariance Tab 

Random Component 
Specify Using ..........................................Random Effects (Subjects) 
Subject Variance .....................................2 

Residual Component 
Specify Using ..........................................Variance Pattern 

Variance (Diagonal) Pattern 
Specify Variances ...................................Constant in V1  
V1 ............................................................2  

Fitted Model Tab 

Fitted Variance-Covariance Model 

Random Effects Component 
Random Model........................................Random Effects (Subjects) 

Residual Component 
Pattern.....................................................Diagonal 

Solution Options 
Likelihood Type .......................................REML  
Solution Method ......................................Newton-Raphson  
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Output 
Click the Run button to perform the calculations and generate the following output. 

Power Report for Each Design 
 

Power by Design 
  Lower Upper       
  95% 95%   Minimum  Number of  
Model  C.L. of C.L. of   Detectable  Simulation Factor 
Term Power Power Power N(1) N Difference Alpha Samples Pattern 
A (2) 0.0500 0.0326 0.0729 3 6 1.00 0.0500 500 Linear Up 
C (2) 0.1440 0.1144 0.1779 3 6 1.00 0.0500 500 Linear Up 
AC 0.1640 0.1326 0.1994 3 6 1.00 0.0500 500  
 
A (2) 0.2220 0.1863 0.2610 9 18 1.00 0.0500 500 Linear Up 
C (2) 0.4860 0.4414 0.5308 9 18 1.00 0.0500 500 Linear Up 
AC 0.4920 0.4473 0.5368 9 18 1.00 0.0500 500  
 
A (2) 0.3440 0.3024 0.3875 15 30 1.00 0.0500 500 Linear Up 
C (2) 0.7540 0.7138 0.7912 15 30 1.00 0.0500 500 Linear Up 
AC 0.7320 0.6909 0.7704 15 30 1.00 0.0500 500  
 
Simulation Time: 5.54 minutes. 

 

Next, we will run this same design through the Repeated Measures ANOVA procedure. To make 
it comparable, set both the between and within factors (B and W) to have two levels each with 
Sm set to 0.5. The covariance is set with SD1 equal to 2 and R1 equal to 0.5. 

The results of this run are presented next. 

Power Report for RMANOVA 
 

Power Using RMANOVA 
     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
B(2) F 0.0859 3 6 1.00 0.50 1.73 0.29 0.0500 0.9141 
W(2) F 0.1588 3 6 1.00 0.50 1.00 0.50 0.0500 0.8412 
BW F 0.1588 3 6 1.00 0.50 1.00 0.50 0.0500 0.8412 
 
B(2) F 0.2105 9 18 1.00 0.50 1.73 0.29 0.0500 0.7895 
W(2) F 0.5134 9 18 1.00 0.50 1.00 0.50 0.0500 0.4866 
BW F 0.5134 9 18 1.00 0.50 1.00 0.50 0.0500 0.4866 
 
B(2) F 0.3328 15 30 1.00 0.50 1.73 0.29 0.0500 0.6672 
W(2) F 0.7529 15 30 1.00 0.50 1.00 0.50 0.0500 0.2471 
BW F 0.7529 15 30 1.00 0.50 1.00 0.50 0.0500 0.2471 

 

The above results are summarized in the following table. 
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Comparing LMM and RMANOVA Power 
  Lower Upper       
  95% 95%  
Model  C.L. of C.L. of RMANOVA 
Term Power Power Power Power N(1)  
A (2) 0.0500 0.0326 0.0729 0.0859 3  
C (2) 0.1440 0.1144 0.1779 0.1588 3  
AC 0.1640 0.1326 0.1994 0.1588 3   
 
A (2) 0.2220 0.1863 0.2610 0.2105 9  
C (2) 0.4860 0.4414 0.5308 0.5134 9  
AC 0.4920 0.4473 0.5368 0.5134 9   
 
A (2) 0.3440 0.3024 0.3875 0.3328 15  
C (2) 0.7540 0.7138 0.7912 0.7529 15 
AC 0.7320 0.6909 0.7704 0.7529 15 
  

By studying the values in this table, we see that two procedures agree very well for group sample 
sizes of 9 and 15. However, when the group sample size is 3, the power of RMANOVA is higher. 

Example 4 – Heterogeneous Variances 
One of the features offered by LMM is the ability to specify unequal group variances. This 
example will look at how to do this.  

In this example, we will determine the power for group sizes of 6 when the random effects 
(subject) variance is 2 when A =1 and 4 with A=2, the residual variance is 2 when A=1 and 4 
when A = 2, the minimum detectable differences of all three terms is 1.0, the number of repeated 
measurements is 2, and the significance level is 0.05. A random effects model will be fit. The 
number of simulation samples will be set to 100. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Mixed Models procedure window by clicking on Means, then 
Mixed Models, then Mixed Models. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example4 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 

Sample Size 
n (Subjects Per Group) ...........................6 
=n’s..........................................................checked  

Alpha 
Alpha .......................................................0.05 

Simulations 
Simulations..............................................100 

Effect Size 
Specify Effects Using ..............................Effects Patterns, etc. 
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Data Tab (continued) 

Factors Separating Subjects into Groups (Between) 
Levels (A) ................................................2 
Effects Pattern (A)...................................Linear Up 
Detectable Difference (A)........................1 

Factors with Multiple Levels Within a Subject (Within) 
Levels (A) ................................................2 
Effects Pattern (A)...................................Linear Up 
Detectable Difference (A)........................1 

Interactions 
AC ...........................................................checked 
Detectable Difference (AC) .....................1 

Covariance Tab 

Random Component 
Specify Using ..........................................Random Effects (Subjects) 
Subject Variance .....................................2 4 

Residual Component 
Specify Using ..........................................Variance Pattern 

Variance (Diagonal) Pattern 
Specify Variances ...................................Constant in V1  
V1 ............................................................2 4 

Miscellaneous Options 
Grouping Factor ......................................A  

Fitted Model Tab 

Fitted Variance-Covariance Model 

Random Effects Component 
Random Model........................................Random Effects (Subjects) 
Groups ....................................................A 
 

Residual Component 
Pattern.....................................................Diagonal 
Groups ....................................................A 

Solution Options 
Likelihood Type .......................................REML  
Solution Method ......................................Newton-Raphson  
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Output 
Click the Run button to perform the calculations and generate the following output. 

Power Report for Each Design 
 

Power by Design 
  Lower Upper       
  95% 95%   Minimum  Number of  
Model  C.L. of C.L. of   Detectable  Simulation Factor 
Term Power Power Power N(1) N Difference Alpha Samples Pattern 
A (2) 0.1500 0.0865 0.2353 6 12 1.00 0.0500 100 Linear Up 
C (2) 0.2200 0.1433 0.3139 6 12 1.00 0.0500 100 Linear Up 
AC 0.2800 0.1948 0.3787 6 12 1.00 0.0500 100 

 
Variance-Covariance Matrix 
Factors C1 C2 
A1C1 4.00 2.00 Note that now there are two variance-covariance matrices displayed. 
A1C2 2.00 4.00 
A2C1 8.00 4.00 
A2C2 4.00 8.00 
 
Variances and Autocorrelations 
Factors C1 C2 
A1C1 4.00 0.50 
A1C2 0.50 4.00 
A2C1 8.00 0.50 
A2C2 0.50 8.00 

  

Notice how easy it is to obtain a power analysis for the case of unequal variances. 
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Chapter 575 

Multiple 
Comparisons 
Introduction 
This module computes sample sizes for multiple comparison procedures. The term “multiple 
comparison” refers to the individual comparison of two means selected from a larger set of 
means. The module emphasizes one-way analysis of variance designs that use one of three 
multiple-comparison methods: Tukey’s all pairs (MCA), comparisons with the best (MCB), or 
Dunnett’s all versus a control (MCC). Because these sample sizes may be substantially different 
from those required for the usual F test, a separate module is provided to compute them. 

There are only a few articles in the statistical literature on the computation of sample sizes for 
multiple comparison designs. This module is based almost entirely on the book by Hsu (1996). 
We can give only a brief outline of the subject here. Users who want more details are referred to 
Hsu’s book. 

Although this module is capable of computing sample sizes for unbalanced designs, it emphasizes 
balanced designs. 

Technical Details 

The One-Way Analysis of Variance Design 
The summarized discussion that follows is based on the common, one-way analysis of variance 
design. Suppose the responses  in k groups each follow a normal distribution with respective 

means,

Yij

μ μ μ1 2, , ,L k , and unknown variance, . Let  denote the number of 
subjects in each group.  

σ 2 n n nk1 2, , ,L

The analysis of these responses is based on the sample means 
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and the pooled sample variance 
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The F test is the usual method for analyzing such a design, and tests whether all of the means are 
equal. However, a significant F test does not indicate which of the groups are different, only that 
at least one is different. The analyst is left with the problem of determining which group(s) is(are) 
different and by how much.  

The probability statement associated with the F test is simple, straightforward, and easy to 
interpret. However, when several simultaneous comparisons are made among the group means, 
the interpretation of individual probability statements becomes much more complex. This is 
called the problem of multiplicity. Multiplicity here refers to the fact that the probability of 
making at least one incorrect decision increases as the number of statistical tests increases. The 
method of multiple comparisons has been developed to account for such multiplicity. 

Power Calculations for Multiple Comparisons 
For technical reasons, the definition of power in the case of multiple comparisons is different 
from the usual definition. Following Hsu (1996) page 237, power is defined as follows.  

Using a 1− α  simultaneous confidence interval multiple comparison method, power is the 
probability that the confidence intervals cover the true parameter values and are sufficiently 
narrow. Power is still defined to be 1− β . Note that 1 1− < −β α . Here, narrow refers to the 
width of the confidence intervals. The definition says that the confidence intervals should be as 
narrow as possible while still including the true parameter values. This definition may be restated 
as the probability that the simultaneous confidence intervals are correct and useful. 

The parameter ω  represents the maximum width of any of the individual confidence intervals in 
the set of simultaneous confidence intervals. Thus, ω  is used to specify the narrowness of the 
confidence intervals. 

Multiple Comparisons with a Control (MCC) 
A common experimental design compares one or more treatment groups with a control group. 
The control group may receive a placebo, the standard treatment, or even an experimental 
treatment. The distinguishing feature is that the mean response of each of the other groups is to be 
compared with this control group.  

We arbitrarily assume that the last group (group k), is the control group. The k-1 parameters of 
primary interest are 
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In this situation, Dunnett’s method provides simultaneous, one- or two-sided confidence intervals 
for all of these parameters.  

The one-sided confidence intervals, δ δ1, ,L k−1 , are specified as follows: 

Pr $ $ $ , ,, , , ,δ μ μ σα λ λi i k df
i k

q
n n

for i k
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and q, found by numerical integration, is the solution to 
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where  is the standard normal distribution function and ( )Φ z ( )γ z  is the density of $ /σ σ . 

The two-sided confidence intervals for δ δ1, ,L k−1  are specified as follows: 

Pr $ $ $ , ,, , , ,δ μ μ σ αα λ λi i k df
i k

q
n n

for i k
k

∈ − − + = −
⎛

⎝
⎜

⎞

⎠
⎟ = −

−1 1

1 1 1 1 1L L  

where 

λi
i

i k

n
n n

=
+

 
and |q|, found by numerical integration, is the solution to 

( ) ( )Φ Φ Φ
λ

λ

λ

λ
γ αi i

i

k z q s z q s
d z s ds

+

−

⎛

⎝
⎜

⎞

⎠
⎟ −

−

−

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
=

−

−∞

∞∞

∏∫∫ 1 1
1

2 2
1

1

0

 

where  is the standard normal distribution function and ( )Φ z ( )γ z  is the density of $ /σ σ . 

Interpretation of Dunnett’s Simultaneous Confidence Intervals 
There is a specific interpretation given for Dunnett’s method. It provides a set of confidence 
intervals calculated so that, if the normality and equal-variance assumptions are valid, the 
probability that all of the k-1 confidence intervals enclose the true values of δ δ1 1, ,L k−  is 1− α . 
The presentation below is for the two-sided case. The one-sided case is the same as for the MCB 
case.  
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Sample Size and Power – Balanced Case 
Using the modified definition of power, the two-sided case is outlined as follows. 
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This calculation is made using the algorithm developed by Hsu (1996). 

To reiterate, this calculation requires you to specify the minimum value of ω μ μ= −i j  that you 

want to detect, the group sample size, n, the power, 1− β , the significance level, α , and the 
within-group standard deviation, σ . 

Sample Size and Power – Unbalanced Case 
Using the modified definition of power, the unbalanced case is outlined as follows. 
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This calculation is made using the algorithm developed by Hsu (1996). 

To reiterate, this calculation requires you to specify the minimum value of ω μ μ= −i j  that you 

want to detect, the group sample sizes, , the power, 1n n nk1 2, , ,L − β , the significance level, 
α , and the within-group standard deviation, σ . 
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Multiple Comparisons with the Best (MCB) 
The method of multiple comparisons with the best (champion) is used in situations in which the 
best group (we will assume the best is the largest, but it could just as well be the smallest) is 
desired. Because of sampling variation, the group with the largest sample mean may not actually 
be the group with the largest population mean. The following methodology has been developed to 
analyze data in this situation.  

Perhaps the most obvious way to define the parameters in this situation is as follows 
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1
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L
Lμ μ  

Obviously, the group for which all of these values are positive will correspond to the group with 
the largest mean.  

Another way of looking at this, which has some advantages, is to use the parameters 

θ μ μi i i j j for i k= − =
≠

max , , ,1L  

since, if θi > 0 , group i is the best.  

Hsu (1996) recommends using constrained MCB inference in which the intervals are constrained 
to include zero. Hsu recommends this because inferences about which group is best are sharper. 
For example, a confidence interval for θi  whose lower limit is 0 indicates that group i is the best. 
Similarly, a confidence interval for θi  whose upper limit is 0 indicates that group i is not the best. 

Hsu (1996) shows that ( )100 1− α %  simultaneous confidence intervals for θi  are given by 
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where  is found using Dunnett’s one-sided procedure discussed above assuming that group i is 
the control group. 

qi

Sample Size and Power – Balanced Case  
Using the modified definition of power, the balanced case is outlined as follows 
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This calculation is made using the algorithm developed by Hsu (1996). 

To reiterate, this calculation requires you to specify the minimum value of ω μ μ= −i j  that you 

want to detect, the group sample size, n, the power, 1− β , the significance level, α , and the 
within-group standard deviation, σ . 

Sample Size and Power – Unbalanced Case 
Using the modified definition of power, the unbalanced case is outlined as follows 
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This calculation is made using the algorithm developed by Hsu (1996). 

To reiterate, this calculation requires you to specify the minimum value of ω μ μ= −i j  that you 

want to detect, the group sample sizes, , the power, 1n n nk1 2, , ,L − β , the significance level, 
α , and the within-group standard deviation, σ . 
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All-Pairwise Comparisons (MCA) 
In this case you are interested in all possible pairwise comparisons of the group means. There are 
k(k-1)/2 such comparisons. A popular method in this case is that developed by Tukey.  

Balanced Case  
The Tukey method provides simultaneous, two-sided confidence intervals. They are specified as 
follows 
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where  is the standard normal distribution function and ( )Φ z ( )γ z  is the density of $ /σ σ . Note 

that ′ =q q2 *  is the critical value of the Studentized range distribution. 

Sample Size and Power  
Using the modified definition of power, the balanced case is outlined as follows 
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This calculation is made using the algorithm developed by Hsu (1996). 

To reiterate, this calculation requires you to specify the minimum value of ω μ μ= −i j  that you 
want to detect, the group sample size, n, the power, 1− β , the significance level, α , and the 
within-group standard deviation, σ . 
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Unbalanced Case 
The simultaneous, two-sided confidence intervals are specified as follows 

Pr $ $ $μ μ μ μ σ αi j i k
e

i k

q
n n

for i j− ∈ − ± + ≠
⎛

⎝
⎜

⎞

⎠
⎟ = −

1 1 1  

Unfortunately, qe  cannot be calculated as a double integral as in previous cases. Instead, the 

Tukey-Kramer approximate solution is used. Their proposal is to use q *  in place of qe .  

Sample Size and Power  
Using the modified definition of power, the unbalanced case is outlined as follows 
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This calculation is made using the algorithm developed by Hsu (1996). 

To reiterate, this calculation requires you to specify the minimum value of ω μ μ= −i j  that you 

want to detect, the group sample sizes, , the power, 1n n nk1 2, , ,L − β , the significance level, 
α , and the within-group standard deviation, σ . 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for using the other parameters. Under most 
situations you will select either Power and Beta for a power analysis or n for sample size 
determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. In the 
case of multiple comparisons, power is the probability that the confidence intervals will cover the 
true parameter values and be sufficiently narrow to be useful. This is a modified definition of 
power; since beta equals 1-power, it is has a modified definition as well. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size / Groups – Sample Size 
Multiplier 

n (Sample Size Multiplier) 
This is the base, per-group sample size. One or more values separated by blanks or commas may 
be entered. A separate analysis is performed for each value listed here. 

The group samples sizes are determined by multiplying this number by each of the Group Sample 
Size Pattern numbers. If the Group Sample Size Pattern numbers are represented by m1, m2, m3, 
…, mk and this value is represented by n, the group sample sizes N1, N2, N3, ..., Nk are calculated 
as follows: 

N1=[n(m1)] 

N2=[n(m2)] 

N3=[n(m3)] 

etc. 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. 

For example, suppose there are three groups and the Group Sample Size Pattern is set to 1,2,3. If 
n is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10, five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 

As a second example, suppose there are three groups and the Group Sample Size Pattern is 
0.2,0.3,0.5. When the fractional Pattern values sum to one, n can be interpreted as the total 
sample size of all groups and the Pattern values as the proportion of the total in each group.  

If n is 10, the three group sample sizes would be 2, 3, and 5. 

If n is 20, the three group sample sizes would be 4, 6, and 10. 

If n is 12, the three group sample sizes would be 

(0.2)12 = 2.4 which is rounded up to the next whole integer, 3. 

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4. 

(0.5)12 = 6.  

Note that in this case, 3+4+6 does not equal n (which is 12). This can happen because of 
rounding. 

Sample Size / Groups – Groups 

k (Number of Groups) 
This is the number of group means being compared. It must be greater than or equal to three.  

You can enter a list of values, in which case a separate analysis will be calculated for each value. 
Commas or blanks may separate the numbers. A TO-BY list may also be used. 
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Note that the number of items used in the Hypothesized Means box and the Group Sample Size 
Pattern box is controlled by this number. 

Examples: 

3,4,5 

4 5 6 

3 to 11 by 2 

Group Sample Size Pattern 
A set of positive, numeric values (one for each group) is entered here. The sample size of group i 
is found by multiplying the ith number from this list times the value of n and rounding up to the 
next whole number. The number of values must match the number of groups, k. When too few 
numbers are entered, 1’s are added. When too many numbers are entered, the extras are ignored. 

Note that in the case of Dunnett’s test, the last group corresponds to the control group. Thus, if 
you want to study the implications of having a group with a different sample size for the control 
group, you should specify that sample size in the last position. 

• Equal 
If all sample sizes are to be equal, enter “Equal” here and the desired sample size in n. A set 
of k 1's will be used. This will result in N1 = N2 = N3 = n. That is, all sample sizes are equal 
to n.  

Effect Size 

Minimum Detectable Difference 
Specify one or more values of the minimum detectable difference. This is the smallest difference 
between any two group means that is to be detectable by the experiment. Note that this is a 
positive amount. This value is set by the researcher to represent the smallest difference between 
two means that will be of practical significance to other researchers. Note that in the case of 
Dunnett’s test, this is the maximum difference between each treatment and the control.  

Examples: 

3 

3 4 5 

10 to 20 by 2 

S (Standard Deviation of Subjects) 
This option refers to σ , the standard deviation within a group. It represents the variability from 
subject to subject that occurs when the subjects are treated identically. It is assumed to be the 
same for all groups. This value is approximated in an analysis of variance table by the square root 
of the mean square error. 

Since they are positive square roots, the numbers must be strictly greater than zero. You can press 
the SD button to obtain further help on estimating the standard deviation. 

Note that if you are using this procedure to test a factor (such as an interaction) from a more 
complex design, the value of standard deviation is estimated by the square root of the mean 
square of the term that is used as the denominator in the F test.  
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You can enter a list of values separated by blanks or commas, in which case a separate analysis 
will be calculated for each value. 

Examples of valid entries: 

1,4,7,10 

1 4 7 10 

1 to 10 by 3 

Test 

Type of Multiple Comparison 
Specify the type of multiple comparison test to be analyzed. The tests available are 

• All Pairs - Tukey Kramer 
All possible paired comparisons. 

• With Best - Hsu 
Constrained comparisons with the best. 

• With Control - Dunnett 
Two-sided versus a control group. 

Iterations/Precision Tab 
The Iterations/Precision tab contains parameters that control the progress and termination of the 
iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
left blank. 

Precision 

Search Precision 
Specify the precision to be used in the routines that search for the value of the minimum 
detectable difference. Note that the closer this value is to zero, the longer a search will take. 
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Example 1 – Calculating Power 
An experiment is being designed to compare the means of four groups using the Tukey-Kramer 
pairwise multiple comparison test with a significance level of 0.05. Previous studies indicate that 
the standard deviation is 5.3. The typical mean response level is 63.4. The researcher believes that 
a 25% increase in the mean will be of interest to others. Since 0.25(63.4) = 15.85, this is the 
number that will be used as the minimum detectable difference.   

To better understand the relationship between power and sample size, the researcher wants to 
compute the power for several group sample sizes between 2 and 14. The sample sizes will be 
equal across all groups.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Comparisons procedure window by clicking on 
Means, then Multiple Comparisons, then Multiple Comparisons (Analytic). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................2 to 14 by 2 
k (Number of Groups) .............................4 
Group Sample Size Pattern ....................Equal 
Minimum Detectable Difference..............15.85 
S (Standard Deviation of Subjects).........5.3 
Type of Multiple Comparison ..................All Pairs - Tukey Kramer 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results Report 
 

Numeric Results for Multiple Comparison Test: Tukey-Kramer (Pairwise) 
 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.0113 2.00 4 8 0.0500 0.9887 15.85 5.30 2.9906 
0.0666 4.00 4 16 0.0500 0.9334 15.85 5.30 2.9906 
0.3171 6.00 4 24 0.0500 0.6829 15.85 5.30 2.9906 
0.7371 8.00 4 32 0.0500 0.2629 15.85 5.30 2.9906 
0.9301 10.00 4 40 0.0500 0.0699 15.85 5.30 2.9906 
0.9497 12.00 4 48 0.0500 0.0503 15.85 5.30 2.9906 
0.9500 14.00 4 56 0.0500 0.0500 15.85 5.30 2.9906 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
n is the average group sample size. 
k is the number of groups. 
Total N is the total sample size of all groups. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
The Minimum Detectable Difference between any two group means. 
S is the within group standard deviation. 
The Diff / S is the ratio of Min. Detect. Diff. to standard deviation. 
 
Summary Statements 
In a single factor ANOVA study, sample sizes of 2, 2, 2, and 2 are obtained from the 4 groups 
whose means are to be compared. The total sample of 8 subjects achieves 1% power to detect a 
difference of at least 15.85 using the Tukey-Kramer (Pairwise) multiple comparison test at a 
0.0500 significance level. The common standard deviation within a group is assumed to be 5.30. 
 

This report shows the numeric results of this power study. Following are the definitions of the 
columns of the report. 

Power 
This is the probability that the confidence intervals will cover the true parameter values and be 
sufficiently narrow to be useful. 

Average n 
The average of the group sample sizes. 

k 
The number of groups. 

Total N 
The total sample size of the study. 

Alpha 
The probability of rejecting a true null hypothesis. This is often called the significance level. 

Beta 
Equal to 1- power. Note the definition of power above. 

Minimum Detectable Difference 
This is the value of the minimum detectable difference. This is the minimum difference between 
two means that is thought to be of practical importance. Note that in the case of Dunnett’s test, 
this is the minimum difference between a treatment mean and the control mean that is of practical 
importance. 

Standard Deviation (S) 
This is the within-group standard deviation. It was set in the Data window. 

Diff / S 
This is an index of relative difference between the means standardized by dividing by the 
standard deviation. This value can be used to make comparisons among studies. 
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Detailed Results Report 
 

Tukey-Kramer Test Details   
  Percent   Minimum  
  n of   Detectable Standard 
Group n Total N Alpha Power Difference Deviation 
1 2 25.00 0.0500 0.0113 15.85 5.30 
2 2 25.00     
3 2 25.00     
4 2 25.00     
Total 8 100.00 
 

This report shows the details of each row of the previous report. 

Group 
The group identification number is shown on each line. The second to the last line represents the 
last group. When Dunnett’s test has been selected, this line represents the control group. 

The last line, labeled Total, gives the total for all the groups. 

n 
This is the sample size of each group. This column is especially useful when the sample sizes are 
unequal. 

Percent n of Total N 
This is the percentage of the total sample that is allocated to each group. 

Alpha 
The probability of rejecting a true null hypothesis. This is often called the significance level. 

Power 
This is the probability that the confidence intervals will cover the true parameter values and be 
sufficiently narrow to be useful. 

Minimum Detectable Difference 
This is the value of the minimum detectable difference. This is the minimum difference between 
two means that is thought to be of practical importance. Note that in the case of Dunnett’s test, 
this is the minimum difference between a treatment mean and the control mean that is of practical 
importance. 

Standard Deviation (S) 
This is the within-group standard deviation. It was set in the Data window. 
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Plots Section 
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This plot gives a visual presentation to the results in the Numeric Report. We can see the impact 
on the power of increasing the sample size. 

When you create one of these plots, it is important to use trial and error to find an appropriate 
range for the horizontal variable so that you have results with both low and high power. 

Example 2 – Power after Dunnett’s Test 
This example covers the situation in which you are calculating the power of Dunnett’s test on 
data that have already been collected and analyzed. 

An experiment included a control group and two treatment groups. Each group had seven 
individuals. A single response was measured for each individual and recorded in the following 
table. 
 

Control T1 T2 
554 774 786 
447 465 536 
356 759 653 
452 646 685 
674 547 658 
654 665 669 

 

When analyzed using the one-way analysis of variance procedure in NCSS, the following results 
were obtained.  
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 Analysis of Variance Table  
   
 Source  Sum of Mean  Prob 
 Term DF Squares Square F-Ratio Level  
 A ( ... ) 2 75629.8 37814.9 3.28 0.061 
 S(A) 18 207743.4 11541.3 
 Total (Adjusted) 20 283373.3 
 Total 21 
 

Dunnett's Simultaneous Confidence Intervals for Treatment vs. Control 
Response: Control,T1,T2 
Term A:  
Control Group: Control 
Alpha=0.050  Error Term=S(A)  DF=18  MSE=11541.3 Critical Value=2.3987 
 
Treatment   Lower 95.0% Difference Upper 95.0% Test 
Group Count Mean Simult.C.I. With Control Simult.C.I. Result 
T1 7 660.43 -5.17 132.57 270.31  
T2 7 649.14 -16.46 121.29 259.03 

 

The significance level (Prob Level) was only 0.061—not enough for statistical significance. Since 
the lower confidence limits are negative and the upper confidence limits are positive, Dunnett’s 
two-sided test did not find a significant difference between either treatment and the control group. 
The researcher had hoped to show that the treatment groups had higher response levels than the 
control group. He could see that the group means followed this pattern since the mean for T1 was 
about 25% higher than the control mean and the mean for T2 was about 23% higher than the 
control mean. He decided to calculate the power of the experiment. 

Setup 
The data entry for this problem is simple. The only entry that is not straight forward is finding an 
appropriate value for the standard deviation. Since the standard deviation is estimated by the 
square root of the mean square error, it is calculated as 11541.3 = 107 4304. . 

This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Comparisons procedure window by clicking on 
Means, then Multiple Comparisons, then Multiple Comparisons (Analytic). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................7 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
Minimum Detectable Difference..............133 
S (Standard Deviation of Subjects).........107.4304 
Type of Multiple Comparison ..................With Control - Dunnett 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.0002 7.00 3 21 0.0500 0.9998 133.00 107.43 1.2380 

 

The power is only 0.0002. Hence, there was little chance of detecting a difference of 133 between 
a treatment and a control group.  
It was of interest to the researcher to determine how large of a sample was needed if the power 
was to be 0.90. Setting Beta equal to 0.90 and ‘Find/Solve For’ to n resulted in the following 
report. 
 

 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.9042 33.00 3 99 0.0500 0.0958 133.00 107.43 1.2380 

 

We see that instead of 7 per group, 33 per group were needed. 
It was also of interest to the research to determine how large of a difference between the means 
could have been detected. Setting ‘Find’ to Min Detectable Difference resulted in the following 
report. 
 

 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.9000 7.00 3 21 0.0500 0.1000 348.81 107.43 3.2468 

 

We see that a study of this size with these parameters could only detect a difference of 348.8. 
This explains why the results were not significant. 

Example 3 – Using Unequal Sample Sizes 
It is usually advisable to design experiments with equal sample sizes in each group. In some 
cases, however, it may be necessary to allocate subjects unequally across the groups. This may 
occur when the group variances are unequal, the costs per subject are different, or the dropout 
rates are different. This module can be used to study the power of unbalanced experiments. 

In this example which will use Dunnett’s test, the minimum detectable difference is 2.0, the 
standard deviation is 1.0, alpha is 0.05, and k is 3. The sample sizes are 7, 7, and 14. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Comparisons procedure window by clicking on 
Means, then Multiple Comparisons, then Multiple Comparisons (Analytic). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3a from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................1 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................7 7 14 
Minimum Detectable Difference..............2 
S (Standard Deviation of Subjects).........1 
Type of Multiple Comparison ..................With Control - Dunnett 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.2726 9.33 3 28 0.0500 0.7274 2.00 1.00 2.0000 
 

Alternatively, this problem could have been set up as follows (Example3b template): 

Option Value 
Data Tab 
n (Sample Size Multiplier) .......................7 
Group Sample Size Pattern ....................1 1 2 
 

The advantage of this method is that you can try several values of n while keeping the same 
allocation ratios.  

Example 4 – Validation using Hsu 
Hsu (1996) page 241 presents an example of determining the sample size in an experiment with 8 
groups. The minimum detectable difference is 10,000 psi. The standard deviation is 3,000 psi. 
Alpha is 0.05 and beta is 0.10. He finds a sample size of 10 per group for the Tukey-Kramer test, 
a sample size of 6 for Hsu’s test, and a sample size of 8 for Dunnett’s test.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Comparisons procedure window by clicking on 
Means, then Multiple Comparisons, then Multiple Comparisons (Analytic). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
templates Example4, Example4b, and Example4c from the Template tab on the procedure 
window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................n 
Power ......................................................0.9 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................Ignored since this is the Find setting 
k (Number of Groups) .............................8 
Group Sample Size Pattern ....................Equal 
Minimum Detectable Difference..............10000 
S (Standard Deviation of Subjects).........3000 
Type of Multiple Comparison ..................All Pairs - Tukey Kramer 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Tukey-Kramer Test 
 
 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.9397 10.00 8 80 0.0500 0.0603 10000.00 3000.00 3.3333 

 
PASS also found n = 10.  

Numeric Results for Hsu’s Test 
 
 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.9087 6.00 8 48 0.0500 0.0913 10000.00 3000.00 3.3333 
 

PASS also found n = 6.  

Numeric Results for Dunnett’s Test 
 
 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.9434 8.00 8 64 0.0500 0.0566 10000.00 3000.00 3.3333 

 
PASS found n = 8.  
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Example 5 – Validation using Pan and Kupper 
Pan and Kupper (1999, page 1481) present examples of determining the sample size using 
alternative methods. It is interesting to compare the method of Hsu (1996) with theirs. Although 
the results are not exactly the same, they are very close. 

In the example of Pan and Kupper, the minimum detectable difference is 0.50. The standard 
deviation is 0.50. Alpha is 0.05, and beta is 0.10. They find a sample size of 51 per group for 
Dunnett’s test and a sample size of 60 for the Tukey-Kramer test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Comparisons procedure window by clicking on 
Means, then Multiple Comparisons, then Multiple Comparisons (Analytic). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
templates Example5a and Example5b from the Template tab on the procedure window. 

tab. 

Option Value 
Data Tab 
Find (Solve For) ......................................n 
Power ......................................................0.9 
Alpha .......................................................0.05 
n (Sample Size Multiplier) ....................... Ignored since this is the Find setting 
k (Number of Groups) .............................4 
Group Sample Size Pattern ....................Equal 
Minimum Detectable Difference..............0.50 
S (Standard Deviation of Subjects).........0.50 
Type of Multiple Comparison ..................With Control - Dunnett 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Dunnett’s Test 
 
 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.9146 53.00 4 212 0.0500 0.0854 0.50 0.50 1.0000 
 

PASS found n = 53. This is very close to the 51 that Pan and Kupper found using a slightly 
different method. 
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Numeric Results for Tukey-Kramer Test 
 
 Average     Minimum Standard  
 Size  Total   Detectable Deviation  
Power (n) k N Alpha Beta Difference (S) Diff / S 
0.9057 62.00 4 248 0.0500 0.0943 0.50 0.50 1.0000 
 

PASS also found n = 62. This is very close to the 60 that Pan and Kupper found using a slightly 
different method. 
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Chapter 580 

Pair-Wise Multiple 
Comparisons 
(Simulation) 
Introduction 
This procedure uses simulation analyze the power and significance level of three pair-wise multiple-
comparison procedures: Tukey-Kramer, Kruskal-Wallis, and Games-Howell. For each scenario, 
two simulations are run: one estimates the significance level and the other estimates the power.  

The term multiple comparisons refers to a set of two or more statistical hypothesis tests. The term 
pair-wise multiple comparisons refers to the set of all pairs of means that can be generated among 
the means of k groups. For example, suppose the levels of a factor with five groups are labeled A, 
B, C, D, and E. The ten possible paired-comparisons that could be made among the five groups are 
A-B, A-C, A-D, A-E, B-C, B-D, B-E, C-D, C-E, and D-E.  

As the number of groups increases, the number of comparisons (pairs) increases dramatically. For 
example, a 5 group design has 10 pairs, a 10 group design has 45 pairs, and a 20 group design has 
190 pairs. When several comparisons are made among the group means, the determination of the 
significance level of each individual comparison is much more complex because of the problem 
of multiplicity. Multiplicity here refers to the fact that the chances of making at least one incorrect 
decision increases as the number of statistical tests increases. The method of multiple 
comparisons has been developed to account for this multiplicity.  

Error Rates 
When dealing with several simultaneous statistical tests, both individual-wise and experiment 
wise error rates should be considered.      

1. Comparison-wise error rate. This is the probability of a type-I error (rejecting a true 
H0) for a particular test. In the case of the five-group design, there are ten possible 
comparison-wise error rates, one for each of the ten possible pairs. We will denote this 
error rate αc . 

2. Experiment-wise (or family-wise) error rate. This is the probability of making one or 
more type-I errors in the set (family) of comparisons. We will denote this error rate α f .  
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The relationship between these two error rates when the tests are independent is given by 

α αf c
C= − −1 1( )  

where C is the total number of comparisons in the family. For example, if αc is 0.05 and C is 10, 
α f is 0.401. There is about a 40% chance that at least one of the ten pairs will be concluded to be 
different when in fact they are all the same. When the tests are correlated, as they are among a set 
of pair-wise comparisons, the above formula provides an upper bound to the family-wise error 
rate. 

The techniques described below provide control for α f  rather than αc . 

Technical Details 

The One-Way Analysis of Variance Design 
The discussion that follows is based on the common one-way analysis of variance design which 
may be summarized as follows. Suppose the responses Y  in k groups each follow a normal 

distribution with means
ij
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The F test is the usual method of analysis of the data from such a design, testing whether all of 
the means are equal. However, a significant F test does not indicate which of the groups are 
different, only that at least one is different. The analyst is left with the problem of determining 
which of the groups are different and by how much.  

The Tukey-Kramer procedure, the Kruskal-Wallis procedure, and the Games-Howell procedure 
are the pair-wise multiple-comparison procedures that have been developed for this situation. The 
calculation of each of these tests is given next. 
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Tukey-Kramer 
This test is referenced in Kirk (1982). It uses the critical values from the studentized-range 
distribution. For each pair of groups, the significance test between any two groups i and j is 
calculated by rejecting the null hypothesis of mean equality if 

Y Y

n n

qi j

i j

k vf

−

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≥
$

, ,
σ

α
2

2
1 1

 

where  

v n

N k

i
i

k

= −

= −
=
∑

1

k
 

Kruskal-Wallis 
This test is attributed to Dunn (1964) and is referenced in Gibbons (1976). It is a nonparametric, 
or distribution-free, test for which the assumption of normality is not necessary. It tests whether 
pairs of medians are equal using a rank test. Sample sizes of at least five (but preferably larger) 
for each treatment are recommended for use of this test. The error rate is adjusted on a 
comparison-wise basis to give the experiment-wise error rate, αf. Instead of using means, it uses 
average ranks, as the following formula indicates, with ( )( )α α= f k k/ −1 . For each pair of 
groups, i and j, the null hypothesis of equality is rejected if  
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Note that, when necessary, the usual adjustment for ties is made. 

Games-Howell 
This test is referenced in Kirk (1982) page 120. It was developed for the case when the individual 
group variances cannot be assumed to be equal. It also uses critical values from the studentized-
range distribution. For each pair of groups, i and j, the null hypothesis of equality is rejected if 
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( ) ( )
v

n n

n n n n

i

i

j

j

i

i i

j

j j

'

$ $

$ $
=

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
+

−

σ σ

σ σ

2 2 2

4

2

4

21 1
 

If any of the following conditions hold, then v n ni'= + −2 2 : 

1. 9 1  0 10 9/ /≤ ≤n ni j /

2. 9 10 10 9
2 2

/
$

/
$

/≤
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤

σ σi

i

j

jn n
 

3. 4 5 5 4 1 2 2
2 2

/ / / /
$

/
$

≤ ≤ ≤
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤n n

n ni j
i

i

j

j

and σ σ
 

4. 2 3 3 2 3 4 4 3
2 2

/ / / /
$

/
$

/≤ ≤ ≤
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤n n

n ni j
i

i

j

j

and σ σ
 

Definition of Power for Multiple Comparisons 
The notion of the power of a test is well-defined for individual tests. Power is the probability of 
rejecting a false null hypothesis. However, this definition does not extend easily when there are a 
number of simultaneous tests.  

To understand the problem, consider an experiment with three groups labeled, A, B, and C. There 
are three paired comparisons in this experiment: A-B, A-C, and B-C. How do we define power 
for these three tests? One approach would be to calculate the power of each of the three tests, 
ignoring the other two. However, this ignores the interdependence among the three tests. Other 
definitions of the power of the set of tests might be the probability of detecting at least one of the 
differing pairs, exactly one of the differing pairs, at least two of the differing pairs, and so on. As 
the number of pairs increases, the number of possible definitions of power also increases. The 
two definitions that we emphasize in PASS were recommended by Ramsey (1978). They are any-
pair power and all-pairs power. Other design characteristics, such as average-comparison power 
and false-discovery rate, are important to consider. However, our review of the statistical 
literature resulted in our focus on these two definitions of power.  

Any-Pair Power 
Any-pair power is the probability of detecting at least one of the pairs that are actually different.  

All-Pairs Power 
All-pairs power is the probability of detecting all of the pairs that are actually different.  
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Simulation Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify how each test is to be carried out. This includes indicating how the test statistic is 
calculated and how the significance level is specified. 

2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. The number rejected is used to calculate the power of each test.  

3. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. The number rejected is used to calculate the significance level of each test.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draws the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%! 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data, Reports, and Options tabs. To find out more about using the other tabs such as 
Axes/Legend, Plot Text, or Template, go to the Procedure Window chapter. 

Data 1 Tab 
The Data 1 tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for: power or sample size (n). If you choose to 
solve for n, you must choose the type of power you want to solve for: any-pair power or all-pairs 
power. The value of the option Power will then represent this type of power. 

Any-pair power is the probability of detecting at least one pair from among those that are actually 
different. All-pairs power is the probability of detecting all pairs that are actually different. 

Note that the search for n may take several minutes because a separate simulation must be run for 
each trial value of n. You may find it quicker and more informative to solve for the Power for a 
range of sample sizes. 

Error Rates 

Power or Beta 
This option is only used when Find (Solve For) is set to n (All-Pairs) or n (Any-Pair).   

Power is defined differently with multiple comparisons. Although many definitions are possible, 
two are adopted here. Any-pair power is the probability of detecting at least one pair of the means 
that are different. All-pairs power is the probability of detecting all pairs of means that are truly 
different. As the number of groups is increased, these power probabilities will decrease because 
more tests are being conducted. 

Since this is a probability, the range is between 0 and 1. Most researchers would like to have the 
power at least at 0.8. However, this may require extremely large sample sizes when the number of 
tests is large.  

FWER (Alpha) 
This option specifies one or more values of the family-wise error rate (FWER) which is the 
analog of alpha for multiple comparisons. FWER is the probability of falsely detecting 
(concluding that the means are different) at least one comparison for which the true means are the 
same. For independent tests, the relationship between the individual-comparison error rate 
(ICER) and FWER is given by the formulas 

FWER = 1 - (1 - ICER)^C 

or 

ICER = 1 - (1 - FWER)^(1/C) 
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where '^' represents exponentiation (as in 4^2 = 16) and C represents the number of comparisons. 
For example, if C = 5 and FWER = 0.05, then ICER = 0.0102. Thus, the individual comparison 
tests must be conducted using a Type-1 error rate of 0.0102, which is much lower than the 
family-wise rate of 0.05. 

The popular value for FWER remains at 0.05. However, if you have a large number of 
comparisons, you might decide that a larger value, such as 0.10, is appropriate. 

Sample Size 

n (Sample Size Multiplier) 
This is the base, per group, sample size. One or more values separated by blanks or commas may 
be entered. A separate analysis is performed for each value listed here. 

The group samples sizes are determined by multiplying this number by each of the Group Sample 
Size Pattern numbers. If the Group Sample Size Pattern numbers are represented by m1, m2, m3, 
…, mk and this value is represented by n, the group sample sizes N1, N2, N3, ..., Nk are calculated 
as follows: 

N1=[n(m1)] 

N2=[n(m2)] 

N3=[n(m3)] 

etc. 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. 

For example, suppose there are three groups and the Group Sample Size Pattern is set to 1,2,3. If 
n is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10, five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 

As a second example, suppose there are three groups and the Group Sample Size Pattern is 
0.2,0.3,0.5. When the fractional Pattern values sum to one, n can be interpreted as the total 
sample size of all groups and the Pattern values as the proportion of the total in each group.  

If n is 10, the three group sample sizes would be 2, 3, and 5. 

If n is 20, the three group sample sizes would be 4, 6, and 10. 

If n is 12, the three group sample sizes would be 

(0.2)12 = 2.4 which is rounded up to the next whole integer, 3. 

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4. 

(0.5)12 = 6.  

Note that in this case, 3+4+6 does not equal n (which is 12). This can happen because of 
rounding. 
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Group Sample Size Pattern 
The purpose of the group sample size pattern is to allow several groups with the same sample size 
to be generated without having to type each individually. 

A set of positive, numeric values (one for each row of distributions) is entered here. Each item 
specified in this list applies to the whole row of distributions. For example, suppose the entry is 1 
2 1 and Grps 1 = 3, Grps 2 = 1, Grps 3 = 2. The sample size pattern used would be 1 1 1 2 1 1. 

The sample size of group i is found by multiplying the ith number from this list by the value of n 
and rounding up to the next whole number. The number of values must match the number of 
groups, g. When too few numbers are entered, 1’s are added. When too many numbers are 
entered, the extras are ignored. 

• Equal 
If all sample sizes are to be equal, enter Equal here and the desired sample size in n. A set of 
g 1's will be used. This will result in n1 = n2 = … = ng = n. That is, all sample sizes are equal 
to n.  

Test 

MC Procedure 
Specify which pair-wise multiple comparison procedure is to be reported from the simulations. 
The choices are 

• Tukey-Kramer 
This is the most popular and the most often recommended. 

• Kruskal-Wallis 
This is recommended when a nonparametric procedure is wanted. 

• Games-Howell 
This is recommended when the variances of the groups are unequal. 

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the running time and accuracy are increased as well. 

The precision of the simulated power estimates are calculated using the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
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Simulation  Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Effect Size 
These options specify the distributions to be used in the two simulations, one set per row. The 
first option specifies the number of groups represented by the two distributions that follow. The 
second option specifies the distribution to be used in simulating the null hypothesis to determine 
the significance level (alpha). The third option specifies the distribution to be used in simulating 
the alternative hypothesis to determine the power.  

Grps [1 – 3] (Grps 4 – 9 are found on the Data 2 tab) 
This value specifies the number of groups specified by the H0 and H1 distribution statements to 
the right. Usually, you will enter ‘1’ to specify a single H0 and a single H1 distribution, or you 
will enter ‘0’ to indicate that the distributions specified on this line are to be ignored. This option 
lets you easily specify many identical distributions with a single phrase. 

The total number of groups g is equal to the sum of the values for the three rows of distributions 
shown under the Data1 tab and the six rows of distributions shown under the Data2 tab. 

Note that each item specified in the Group Sample Size Pattern option applies to the whole row 
of entries here. For example, suppose the Group Sample Size Pattern was 1 2 1 and Grps 1 = 3, 
Grps 2 = 1, and Grps 3 = 2. The sample size pattern would be 1 1 1 2 1 1.  

Note that since the first group is the control group, the value for Grps 1 is usually set to one. 

Group Distribution(s)|H0 
This entry specifies the distribution of one or more groups under the null hypothesis, H0. The 
magnitude of the differences of the means of these distributions, which is often summarized as 
the standard deviation of the means, represents the magnitude of the mean differences specified 
under H0. Usually, the means are assumed to be equal under H0, so their standard deviation 
should be zero except for rounding.  

These distributions are used in the simulations that estimate the actual significance level. They 
also specify the value of the mean under the null hypothesis, H0. Usually, these distributions will 
be identical. The parameters of each distribution are specified using numbers or letters. If letters 
are used, their values are specified in the boxes below. The value M0 is reserved for the value of 
the mean under the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 
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Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Group Distribution(s)|H1 
Specify the distribution of this group under the alternative hypothesis, H1. This distribution is 
used in the simulation that determines the power. A fundamental quantity in a power analysis is 
the amount of variation among the group means. In fact, classical power analysis formulas, this 
variation is summarized as the standard deviation of the means.  

The important point to realize is that you must pay particular attention to the values you give to 
the means of these distributions because they are fundamental to the interpretation of the 
simulation. 

For convenience in specifying a range of values, the parameters of the distribution can be 
specified using numbers or letters. If letters are used, their values are specified in the boxes 
below. The value M1 is reserved for the value of the mean under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
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Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Equivalence Margin 
Specify the largest difference for which means from different groups will be considered equal. 
When specifying group distributions, it is possible to end up with scenarios where some means 
are slightly different from each other, even though they are intended to be equivalent. This often 
happens when specifying distributions of different forms (e.g. normal and gamma) for different 
groups, where the means are intended to be the same. The parameters used to specify different 
distributions do not always result in means that are EXACTLY equal. This value lets you control 
how different means can be and still be considered equal. 

This value is not used to specify the hypothesized mean differences of interest. The hypothesized 
differences are specified using the means (or parameters used to calculate means) for the null and 
alternative distributions. 

This value should be MUCH smaller than the hypothesized mean differences. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B, C) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values for each letter using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 
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Reports Tab 
The Reports tab contains settings about the format of the output. 

Select Output – Numeric Reports 

Show Various Reports & Plots 
These options let you specify whether you want to generate the standard reports and plots. 

Show Inc’s & 95% C.I. 
Checking this option causes an additional line to be printed showing a 95% confidence interval 
for both the power and actual alpha and half the width of the confidence interval (the increment). 

Select Output – Plots 

Show Comparative Reports & Plots 
These options let you specify whether you want to generate reports and plots that compare the test 
statistics that are available. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size is aborted. When 
the maximum number of iterations is reached without convergence, the sample size is left blank. 
We recommend a value of at least 500. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of values from which the random samples will be drawn. Pools should 
be at least the maximum of 10,000 and twice the number of simulations. You can enter Automatic 
and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 
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Example 1 – Power at Various Sample Sizes 
An experiment is being designed to investigate the variety of response when an experiment is 
replicated under five different conditions. Previous studies have shown that the standard deviation 
within a group is 3.0. Researchers want to detect a shift in the mean of 3.0 or more. To 
accomplish this, they set the means of the first four groups to zero and the mean of the fifth group 
to 3.0. They want to investigate sample sizes of 5, 10, 15, and 20 subjects per group.   

Although they will conduct an F-test on the data, their primary analysis will be a set of Tukey-
Kramer multiple comparison tests. They set the FWER to 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Pair-Wise Multiple Comparisons (Simulation) procedure 
window by clicking on Means, then Multiple Comparisons, then Pair-Wise Comparisons 
(Simulation). You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
FWER (Alpha) .........................................0.05 
n (Sample Size Multiplier) .......................5 10 15 20 
Group Sample Size Pattern ....................Equal 
MC Procedure .........................................Tukey-Kramer 
Simulations..............................................2000 
Grps 1......................................................4 
Group 1 Distribution(s) | H0 ....................N(M0 S) 
Group 1 Distribution(s) | H1 ....................N(M0 S) 
Grps 2......................................................1 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M0 S) 
Minimum Difference ................................0.5 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................3 
S ..............................................................3 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Simulation Summary Report  
 

Summary of Simulations of 5 Groups 
MC Procedure: Tukey-Kramer M.C. Test 
 
  Group Total       
 Any- Smpl. Smpl. All- S.D. of S.D. of    
Sim. Pairs Size Size Pairs Means Data Actual Target  
No. Power n N Power Sm|H1 SD|H1 FWER  FWER  M0 M1 S    
1 0.251 5.0 25 0.014 1.2 3.0 0.043 0.050 0.0 3.0 3.0    
 (0.019) [0.232 0.269] (0.005) [0.008 0.019] (0.009) [0.034 0.051]     
 
2 0.562 10.0 50 0.077 1.2 3.0 0.052 0.050 0.0 3.0 3.0    
 (0.022) [0.540 0.583] (0.012) [0.065 0.088] (0.010) [0.042 0.062]     
 
3 0.770 15.0 75 0.200 1.2 3.0 0.057 0.050 0.0 3.0 3.0    
 (0.018) [0.751 0.788] (0.018) [0.182 0.217] (0.010) [0.046 0.067]     
 
4 0.898 20.0 100 0.356 1.2 3.0 0.060 0.050 0.0 3.0 3.0    
 (0.013) [0.884 0.911] (0.021) [0.335 0.377] (0.010) [0.049 0.070]     
 
 
Pool Size: 10000. Simulations: 2000. Run Time: 26.45 seconds. 
 
Summary of Simulations Report Definitions 
H0: the null hypothesis that each pair of group means are equal. 
H1: the alternative hypothesis that at least one pair of group means are not equal. 
All-Pairs Power: the estimated probability of detecting all unequal pairs. 
Any-Pairs Power: the estimated probability of detecting at least one unequal pair. 
n: the average of the group sample sizes. 
N: the combined sample size of all groups. 
Family-Wise Error Rate (FWER): the probability of detecting at least one equal pair assuming H0.  
Target FWER: the user-specified FWER.  
Actual FWER: the FWER estimated by the alpha simulation.  
Sm|H1: the standard deviation of the group means under H1. 
SD|H1: the pooled, within-group standard deviation under H1. 
Second Row: provides the precision and a confidence interval based on the size of the simulation for  
Any-Pairs Power, All-Pairs Power, and FWER. The format is (Precision) [95% LCL and UCL Alpha]. 
 
Summary Statements 
A one-way design with 5 groups has an average group sample size of 5.0 for a total sample size 
of 25. This design achieved an any-pair power of 0.2505 and an all-pair power of 0.0135 using 
the Tukey-Kramer M.C. Test with a target family-wise error rate of 0.050 and an actual target 
family-wise error rate 0.043. The average within group standard deviation assuming the 
alternative distribution is 3.0. These results are based on 2000 Monte Carlo samples from the 
null distributions: N(M0 S); N(M0 S); N(M0 S); N(M0 S); and N(M0 S) and the alternative 
distributions: N(M0 S); N(M0 S); N(M0 S); N(M0 S); and N(M1 S). Other parameters used in the 
simulation were: M0 = 0.0, M1 = 3.0, and S = 3.0. 
 

This report shows the estimated any-pairs power, all-pairs power, and FWER for each scenario. 
The second row shows three 95% confidence intervals in brackets: the first for the any-pairs 
power, the second for the all-pairs power, and the third for the FWER. Half the width of each 
confidence interval is given in parentheses as a fundamental measure of the precision of the 
simulation. As the number of simulations is increased, the width of the confidence intervals will 
decrease. 
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Any-Pairs Power 
This is the probability of detecting any of the significant pairs. This value is estimated by the 
simulation using the H1 distributions. 

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values provide the precision of the estimated power. 

All-Pairs Power 
This is the probability of detecting all of the significant pairs. This value is estimated by the 
simulation using the H1 distributions. 

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values provide the precision of the estimated power. 

Group Sample Size n 
This is the average of the individual group sample sizes. 

Total Sample Size N 
This is the total sample size of the study. 

S.D. of Means Sm|H1 
This is the standard deviation of the hypothesized means of the alternative distributions. Under 
the null hypothesis, this value is zero. This value represents the magnitude of the difference 
among the means that is being tested. It is roughly equal to the average difference between the 
group means and the overall mean.  

Note that the effect size is the ratio of Sm|H1 and SD|H1. 

S.D. of Data SD|H1 
This is the within-group standard deviation calculated from samples from the alternative 
distributions.  

Actual FWER 
This is the value of FWER (family-wise error rate) estimated by the simulation using the H0 
distributions. It should be compared with the Target FWER to determine if the test procedure is 
accurate.  

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values provide the precision of the Actual FWER. 

Target FWER 
This is the target value of FWER that was set by the user. 

M0 
This is the value entered for M0, the group means under H0. 

M1 
This is the value entered for M1, the group means under H1. 

S 
This is the value entered for S, the standard deviation. 
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Error-Rate Summary for H0 Simulation  
 

Error Rate Summary from H0 (Alpha) Simulation of 5 Groups 
MC Procedure: Tukey-Kramer M.C. Test 
    Prop.     
    (No. of     
  Mean  Type-1     
 No. of No. of Prop. Errors  Mean Min Max 
Sim. Equal Type-1 Type-1 > 0) Target Pairs Pairs Pairs 
No. Pairs Errors Errors FWER FWER Alpha Alpha Alpha 
1 10 0.057 0.006 0.043 0.050 0.006 0.005 0.007 
2 10 0.072 0.007 0.052 0.050 0.007 0.005 0.011 
3 10 0.075 0.008 0.057 0.050 0.008 0.006 0.011 
4 10 0.075 0.008 0.060 0.050 0.008 0.004 0.010 
 

This report shows the results of the H0 simulation. This simulation uses the H0 settings for each 
group. Its main purpose is to provide an estimate of the FWER. 

No. of Equal Pairs 
Since under H0 all means are equal, this is the number of unique pairs of the groups. Thus, this is 
the number of pair-wise multiple comparisons. 

Mean No. of Type-1 Errors 
This is the average number of type-1 errors (false detections) per set (family). 

Prop. Type-1 Errors 
This is the proportion of type-1 errors (false detections) among all tests that were conducted. 

Prop. (No. of Type-1 Errors>0) FWER 
This is the proportion of the H0 simulations in which at least one type-1 error occurred. This is 
called the family-wise error rate. 

Target FWER 
This is the target value of FWER that was set by the user. 

Mean Pairs Alpha 
Alpha is the probability of rejecting H0 when H0 is true. It is a characteristic of an individual test. 
This is the average alpha value over all of the tests in the family. 

Min Pairs Alpha 
This is the minimum of all of the individual comparison alphas. 

Max Pairs Alpha 
This is the maximum of all of the individual comparison alphas. 
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Error-Rate Summary for H1 Simulation  
 

Error Rate Summary from H1 (Power) Simulation of 5 Groups 
MC Procedure: Tukey-Kramer M.C. Test 
       (FDR)       
     Prop. Prop. Prop. Prop.      
 No. of Mean Mean  Equal Uneq. Detect. Undet. All Any    
 Equal/ No. of No. of  that that that that Uneq. Uneq. Mean Min Max 
Sim. Uneq. False False Prop. were were were were Pairs Pairs Pairs Pairs Pairs 
No. Pairs Pos. Neg. Errors Detect. Undet. Equal Uneq. Power Power Power Power Power 
1 6/4 0.04 3.58 0.362 0.007 0.896 0.091 0.375 0.014 0.251 0.046 0.004 0.109 
2 6/4 0.04 2.85 0.289 0.007 0.711 0.035 0.323 0.077 0.562 0.120 0.006 0.302 
3 6/4 0.03 2.11 0.214 0.006 0.527 0.017 0.261 0.200 0.770 0.192 0.002 0.478 
4 6/4 0.03 1.41 0.144 0.005 0.352 0.012 0.191 0.356 0.898 0.262 0.003 0.658 
 

This report shows the results of the H1 simulation. This simulation uses the H1 settings for each 
group. Its main purpose is to provide an estimate of the power. 

No. of Equal Pairs/Unequal Pairs 
The first value is the number of pairs for which the means were equal under H1. The second 
value is the number of pairs for which the means were different under H1. 

Mean No. False Positives 
This is the average number of equal pairs that were declared as being unequal by the testing 
procedure. A false positive is a type-1 (alpha) error. 

Mean No. False Negatives 
This is the average number of unequal pairs that were not declared as being unequal by the testing 
procedure. A false negative is a type-2 (beta) error. 

Prop. Errors 
This is the proportion of type-1 and type-2 errors. 

Prop. Equal that were Detect. 
This is the proportion of the equal pairs in the H1 simulations that were declared as unequal. 

Prop. Uneq. that were Undet. 
This is the proportion of the unequal pairs in the H1 simulations that were not declared as being 
unequal. 

Prop. Detect. that were Equal (FDR) 
This is the proportion of all detected pairs in the H1 simulations that were actually equal. This is 
often called the false discovery rate. 

Prop. Undet. that were Uneq. 
This is the proportion of undetected pairs in the H1 simulations that were actually unequal.  

All Uneq. Pairs Power 
This is the probability of detecting all of the pairs that were different in the H1 simulation. 

Any Uneq. Pairs Power 
This is the probability of detecting any of the pairs that were different in the H1 simulation. 
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Mean, Min, and Max Pairs Power 
These items give the average, the minimum, and the maximum of the individual comparison 
powers from the H1 simulation. 

Detail Model Report 
 

Detailed Model Report for Simulation No. 1 
Target FWER = 0.050, M0 = 0.0, M1 = 3.0, S = 3.0 
MC Procedure: Tukey-Kramer M.C. Test 
 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1-4 A1-A4 5/25 0.0 2.9 N(M0 S) 
H0 5 B1 5/25 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1-4 A1-A4 5/25 0.0 3.0 N(M0 S) 
H1 5 B1 5/25 3.0 3.0 N(M1 S) 
H1 All   Sm=1.2 3.0  
 
Detailed Model Report for Simulation No. 2 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1-4 A1-A4 10/50 0.0 3.0 N(M0 S) 
H0 5 B1 10/50 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1-4 A1-A4 10/50 0.0 3.0 N(M0 S) 
H1 5 B1 10/50 3.0 3.0 N(M1 S) 
H1 All   Sm=1.2 3.0  

 
Detailed Model Report for Simulation No. 3 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1-4 A1-A4 15/75 0.0 3.0 N(M0 S) 
H0 5 B1 15/75 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1-4 A1-A4 15/75 0.0 3.0 N(M0 S) 
H1 5 B1 15/75 3.0 3.0 N(M1 S) 
H1 All   Sm=1.2 3.0  
 
Detailed Model Report for Simulation No. 4 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1-4 A1-A4 20/100 0.0 3.0 N(M0 S) 
H0 5 B1 20/100 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1-4 A1-A4 20/100 0.0 3.0 N(M0 S) 
H1 5 B1 20/100 3.0 3.0 N(M1 S) 
H1 All   Sm=1.2 3.0  
 

This report shows details of each row of the previous reports. 

Hypo. Type 
This indicates which simulation is being reported on each row. H0 represents the null simulation 
and H1 represents the alternative simulation. 

Groups 
Each group in the simulation is assigned a number. This item shows the arbitrary group number 
that was assigned. 
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Group Labels 
These are the labels that were used in the individual alpha-level reports. 

n/N 
n is the average sample size of the groups. N is the total sample size across all groups. 

Group Mean 
These are the means of the individual groups as specified for the H0 and H1 simulations. 

Ave. S.D. 
This is the average standard deviation of all groups reported on each line. Note that it is 
calculated from the simulated data. 

Simulation Model 
This is the distribution that was used to simulate data for the groups reported on each line. 

Probability of Rejecting Equality  
 

Probability of Rejecting the Equality of Each Pair. Simulation No. 1 
 
Group Means A1 A2 A3 A4 B1 
A1 0.0  0.006 0.006 0.011 0.109* 
A2 0.0 0.006  0.006 0.004 0.106* 
A3 0.0 0.005 0.006  0.008 0.097* 
A4 0.0 0.005 0.007 0.007  0.107* 
B1 3.0 0.005 0.005 0.007 0.006  
 
Probability of Rejecting the Equality of Each Pair. Simulation No. 2 
 
Group Means A1 A2 A3 A4 B1 
A1 0.0  0.007 0.007 0.008 0.294* 
A2 0.0 0.006  0.007 0.006 0.280* 
A3 0.0 0.011 0.007  0.006 0.302* 
A4 0.0 0.005 0.007 0.005  0.281* 
B1 3.0 0.008 0.009 0.008 0.007  
 
Probability of Rejecting the Equality of Each Pair. Simulation No. 3 
 
Group Means A1 A2 A3 A4 B1 
A1 0.0  0.005 0.002 0.007 0.478* 
A2 0.0 0.006  0.006 0.007 0.477* 
A3 0.0 0.007 0.008  0.005 0.473* 
A4 0.0 0.009 0.008 0.007  0.465* 
B1 3.0 0.006 0.011 0.007 0.008 
  
Probability of Rejecting the Equality of Each Pair. Simulation No. 4 
 
Group Means A1 A2 A3 A4 B1 
A1 0.0  0.003 0.005 0.004 0.645* 
A2 0.0 0.008  0.008 0.007 0.650* 
A3 0.0 0.006 0.008  0.004 0.640* 
A4 0.0 0.010 0.007 0.009  0.658* 
B1 3.0 0.010 0.007 0.004 0.007  
 
Individual pairwise powers from the H1 (Power) simulation are shown in the upper-right section. 
Individual pairwise significance levels from the H0 (Alpha) simulation are shown in the lower-left section. 
* Starred values are the powers of pairs that are unequal under H1. 
 

This report shows the individual probabilities of rejecting each pair. When a pair was actually 
different, the value is the power of that test. These power values are starred.  
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The results shown on the upper-right section of each simulation report are from the H1 
simulation. The results shown on the lower-left section of the report are from the H0 simulation. 

Plots Section 
 

All-Pair Power vs n with M0=0.0 M1=3.0 S=3.0
Alpha=0.05 Tukey

A
ll-

P
ai

r P
ow

er

n

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20

  

Any-Pair Power vs n with M0=0.0 M1=3.0 S=3.0
Alpha=0.05 Tukey

A
ny

-P
ai

r P
ow

er
n

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

 
 

These plots give a visual presentation of the all-pairs power values and the any-pair power values. 

Example 2 – Comparative Results 
Continuing with Example 1, the researchers want to study the characteristics of alternative 
multiple comparison procedures. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Pair-Wise Multiple Comparisons (Simulation) procedure 
window by clicking on Means, then Multiple Comparisons, then Pair-Wise Comparisons 
(Simulation). You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
FWER (Alpha) .........................................0.05 
n (Sample Size Multiplier) .......................5 10 15 20 
Group Sample Size Pattern ....................Equal 
MC Procedure .........................................Tukey-Kramer 
Simulations..............................................2000 
Grps 1......................................................4 
Group 1 Distribution(s) | H0 ....................N(M0 S) 
Group 1 Distribution(s) | H1 ....................N(M0 S) 
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Data Tab (continued) 
Grps 2......................................................1 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M1 S) 
Minimum Difference ................................0.5 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................3 
S ..............................................................3 

Reports Tab 
Comparative Reports ..............................Checked 
Comparative Any-Pair Power Plot ..........Checked 
Comparative All-Pair Power Plot.............Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing the 5 Group Means 
 
   Tukey Kruskal Games Tukey Kruskal Games 
 Total  Kramer Wallis Howell Kramer Wallis Howell 
Sim. Sample Target All-Pair All-Pair All-Pair Any-Pair Any-Pair Any-Pair 
No. Size Alpha Power Power Power Power Power Power 
1 25 0.050 0.013 0.000 0.003 0.238 0.132 0.209     
2 50 0.050 0.076 0.010 0.055 0.555 0.456 0.523     
3 75 0.050 0.201 0.076 0.163 0.779 0.697 0.755     
4 100 0.050 0.350 0.197 0.318 0.890 0.842 0.883     
Pool Size: 10000. Simulations: 2000. Run Time: 33.82 seconds. 
 
Family-Wise FWER Comparison for Testing the 5 Group Means 
 
 Total  Tukey Kruskal Games   
Sim. Sample Target Kramer Wallis Howell   
No. Size FWER FWER FWER FWER   
1 25 0.050 0.039 0.023 0.064        
2 50 0.050 0.050 0.039 0.059        
3 75 0.050 0.051 0.033 0.055        
4 100 0.050 0.051 0.040 0.058        
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These reports show the power and FWER of each of the three multiple comparison procedures. In 
these simulations of groups from the normal distributions with equal variances, we see that the 
Tukey-Kramer procedure is the champion. 

Example 3 – Validation using Ramsey 
Ramsey (1978) presents the results of a simulation study that compared the all-pair power of 
several different multiple comparison procedures. On page 483 of this article, he presents the 
results of a simulation in which there were four groups: two with means of -0.7 and two with 
means of 0.7.  The standard deviation was 1.0 and the FWER was 0.05. Tukey’s multiple 
comparison procedure was used in the simulation. The sample size was 16 per group. Using a 
simulation of 1000 iterations, the all-pairs power was calculated as 0.723. Note that a confidence 
interval for this estimated all-pairs power is (0.703 to 0.759).   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Pair-Wise Multiple Comparisons (Simulation) procedure 
window by clicking on Means, then Multiple Comparisons, then Pair-Wise Comparisons 
(Simulation). You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
FWER (Alpha) .........................................0.05 
n (Sample Size Multiplier) .......................16 
Group Sample Size Pattern ....................Equal 
MC Procedure .........................................Tukey-Kramer 
Simulations..............................................2000 
Grps 1......................................................2 
Group 1 Distribution(s) | H0 ....................N(M0 S) 
Group 1 Distribution(s) | H1 ....................N(M0 S) 
Grps 2......................................................2 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M1 S) 
Minimum Difference ................................0.1 
M0 (Mean|H0) .........................................-0.7 
M1 (Mean|H1) .........................................0.7 
S ..............................................................1 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Summary of Simulations of 5 Groups 
MC Procedure: Tukey-Kramer M.C. Test 
 
  Group Total       
 Any- Smpl. Smpl. All- S.D. of S.D. of    
Sim. Pairs Size Size Pairs Means Data Actual Target  
No. Power n N Power Sm|H1 SD|H1 FWER  FWER  M0 M1 S    
1 0.996 16.0 64 0.729 0.7 1.0 0.052 0.050 -0.7 0.7 1.0    
 (0.004) [0.992 1.000] (0.028) [0.701 0.757] (0.014) [0.038 0.066]     
 
Pool Size: 10000. Simulations: 1000. Run Time: 4.28 seconds. 

 

Note that the value found by PASS of 0.729 is very close to the value of 0.723 found by Ramsey 
(1978). More importantly, the value found by PASS is inside the confidence limits of Ramsey’s 
study. 
We ran the simulation five more times and obtained 0.727, 0.723, 0.714, 0.740, and 0.732. We 
also ran the simulation with 10,000 iterations and obtained a power of 0.736 with a confidence 
interval of (0.727 to 0.745). 

Example 4 – Selecting a Multiple Comparison Procedure 
when the Data Contain Outliers 
This example will investigate the impact of outliers on the power and precision of the various 
multiple comparison procedures when there are five groups. 

A mixture of two normal distributions will be used to randomly generate outliers. The mixture 
will draw 95% of the data from a normal distribution with mean zero and variance one. The other 
5% of the data will come from a normal distribution with mean zero and variance that ranges 
from one to ten. In the alternative distributions, two will have means of zero and the other three 
will have means of one. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Pair-Wise Multiple Comparisons (Simulation) procedure 
window by clicking on Means, then Multiple Comparisons, then Pair-Wise Comparisons 
(Simulation). You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
FWER (Alpha) .........................................0.05 
n (Sample Size Multiplier) .......................10 20 
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Data Tab (continued) 
Group Sample Size Pattern ....................Equal 
Multiple Comparison Procedure..............Tukey Kramer 
Simulations..............................................2000 
Grps 1......................................................2 
Group 1 Distribution(s) | H0 ....................N(M0 S)[95];N(M0 A)[5] 
Group 1 Distribution(s) | H1 ....................N(M0 S)[95];N(M0 A)[5] 
Grps 2......................................................3 
Group 2 Distribution(s) | H0 ....................N(M0 S)[95];N(M0 A)[5] 
Group 2 Distribution(s) | H1 ....................N(M1 S)[95];N(M1 A)[5] 
Minimum Difference ................................0.5 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................1 
S ..............................................................1 
A ..............................................................1 5 10 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing the 5 Group Means 
 
   Tukey Kruskal Games Tukey Kruskal Games 
 Total  Kramer Wallis Howell Kramer Wallis Howell 
Sim. Sample Target All-Pair All-Pair All-Pair Any-Pair Any-Pair Any-Pair 
No. Size Alpha Power Power Power Power Power Power 
1 80 0.050 0.131 0.043 0.098 0.892 0.837 0.890     
2 80 0.050 0.019 0.017 0.016 0.592 0.751 0.701     
3 80 0.050 0.006 0.022 0.005 0.341 0.759 0.577     
Pool Size: 10000. Simulations: 2000. Run Time: 33.82 seconds. 
 
Family-Wise Error-Rate Comparison for Testing the 5 Group Means 
 
 Total  Tukey Kruskal Games   
Sim. Sample Target Kramer Wallis Howell   
No. Size FWER FWER FWER FWER   
1 80 0.050 0.046 0.036 0.049        
2 80 0.050 0.044 0.044 0.040        
3 80 0.050 0.033 0.038 0.025        
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These reports show the power and FWER of each of the three multiple comparison procedures. 
We note that when the variances are equal (A = 1), the Tukey-Kramer procedure performs only 
slightly better than the others. However, as the number of outliers is increased, the Kruskal-
Wallis procedure emerges as the better choice. Also note that in the case with many outliers 
(Simulation 3), the FWER of all procedures is below the target value. 
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Chapter 585 

Multiple 
Comparisons of 
Treatments vs. a 
Control 
(Simulation) 
Introduction 
This procedure uses simulation to analyze the power and significance level of two multiple-
comparison procedures that perform two-sided hypothesis tests of each treatment group mean 
versus the control group mean using simulation. These are Dunnett’s test and the Kruskal-Wallis 
test. For each scenario, two simulations are run: one estimates the significance level and the other 
estimates the power.  

The term multiple comparisons of treatments versus a control refers to the set of comparisons of 
each treatment group to a control group. If there are k groups of which k-1 are treatment groups, 
there will be k-1 tests.  

When several comparisons are made among the group means, the interpretation for each 
comparison becomes more complex because of the problem of multiplicity. Multiplicity here 
refers to the fact that the chances of making at least one incorrect decision increases as the 
number of statistical tests increases. The method of multiple comparisons has been developed to 
account for this multiplicity. 
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Error Rates 
When dealing with several simultaneous statistical tests, both individual-wise and experiment 
wise error rates should be considered.      

1. Comparison-wise error rate. This is the probability of a type-I error (rejecting a true 
H0) for a particular test. In the case of the five-group design, there are ten possible 
comparison-wise error rates, one for each of the ten possible pairs. We will denote this 
error rate αc . 

2. Experiment-wise (or family-wise) error rate. This is the probability of making one or 
more type-I errors in the set (family) of comparisons. We will denote this error rate α f .  

The relationship between these two error rates when the tests are independent is given by 

α αf c
C= − −1 1( )  

where C is the total number of comparisons in the family. For example, if αc is 0.05 and C is 10, 
α f is 0.401. There is about a 40% chance that at least one of the ten pairs will be concluded to be 
different when in fact they are all the same. When the tests are correlated, as they are among a set 
of pair-wise comparisons, the above formula provides an upper bound to the family-wise error 
rate. 

The techniques described below provide control for α f  rather than αc . 

Technical Details 

The One-Way Analysis of Variance Design 
The discussion that follows is based on the common one-way analysis of variance design which 
may be summarized as follows. Suppose the responses Y  in k groups each follow a normal 

distribution with means
ij

μ μ μ1 2, , ,L k  and unknown variance . Let n n  denote the 
number of subjects in each group. The control group is assumed to be group one. 
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The F test is the usual method of analysis of the data from such a design, testing whether all of 
the means are equal. However, a significant F test does not indicate which of the groups are 
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different, only that at least one is different. The analyst is left with the problem of determining 
which of the groups are different and by how much.  

The Dunnett procedure and a special version of the Kruskal-Wallis procedure have been 
developed for this situation. The calculation of each of these tests is given next. 

Dunnett’s Test 
Dunnett (1955) developed a test procedure for simultaneously comparing each treatment with a 
control group. It uses the critical values of a special t distribution given in Dunnett (1955). For 
each treatment and control pair, the significance test is calculated by rejecting the null hypothesis 
of mean equality if 

Y Y

n n

t ii
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Kruskal-Wallis Test 
This test is attributed to Dunn (1964) and is referenced in Gibbons (1976). It is a nonparametric, 
or distribution-free, test which means that normality is not assumed. It tests whether the medians 
of each treatment-control pair are equal using a rank test. Sample sizes of at least five (but 
preferably larger) for each treatment are recommended for the use of this test. The error rate is 
adjusted on a comparison-wise basis to give the experiment-wise error rate, αf. Instead of using 
means, it uses average ranks as the following formula indicates, with . For 
each treatment and control pair, the significance test is calculated by rejecting the null hypothesis 
of median equality if 
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Note that, when necessary, the usual adjustment for ties is made. 

Definition of Power for Multiple Comparisons 
The notion of the power of a test is well-defined for individual tests. Power is the probability of 
rejecting a false null hypothesis. However, this definition does not extend easily when there are a 
number of simultaneous tests.  

To understand the problem, consider an experiment with four groups labeled, C, A, B, and D. 
Suppose C is the control group. There are three paired comparisons in this experiment: A-C, B-C, 
and D-C. How do we define power for these three tests? One approach would be to calculate the 
power of each of the three tests, ignoring the other two. However, this ignores the 
interdependence among the three tests. Other definitions of the power of the set of tests might be 
the probability of detecting at least one of the differing pairs, exactly one of the differing pairs, at 
least two of the differing pairs, and so on. As the number of pairs increases, the number of 
possible definitions of power also increases. The two definitions that we emphasize in PASS were 
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recommended by Ramsey (1978). They are any-pair power and all-pairs power. Other design 
characteristics, such as average-comparison power and false-discovery rate, are important to 
consider. However, our review of the statistical literature resulted in our focus on these two 
definitions of power.  

Any-Pair Power 
Any-pair power is the probability of detecting at least one of the pairs that are actually different.  

All-Pairs Power 
All-pairs power is the probability of detecting all of the pairs that are actually different.  

Simulation Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify how each test is to be carried out. This includes indicating how the test statistic is 
calculated and how the significance level is specified. 

2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. The number rejected is used to calculate the power of each test.  

3. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. The number rejected is used to calculate the significance level of each test.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draws the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%! 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
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well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data, Reports, and Options tabs. To find out more about using the other tabs such as 
Axes/Legend, Plot Text, or Template, go to the Procedure Window chapter. 

Data 1 Tab 
The Data 1 tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for: power or sample size (n). If you choose to 
solve for n, you must choose the type of power you want to solve for: any-pair power or all-pairs 
power. The value of the option Power will then represent this type of power. 

Any-pair power is the probability of detecting at least one pair from among those that are actually 
different. All-pairs power is the probability of detecting all pairs that are actually different. 

Note that the search for n may take several minutes because a separate simulation must be run for 
each trial value of n. You may find it quicker and more informative to solve for the Power for a 
range of sample sizes. 

Error Rates 

Power or Beta 
This option is only used when Find (Solve For) is set to n (All-Pairs) or n (Any-Pair).   

Power is defined differently with multiple comparisons. Although many definitions are possible, 
two are adopted here. Any-pair power is the probability of detecting at least one pair of the means 
that are different. All-pairs power is the probability of detecting all pairs of means that are truly 
different. As the number of groups is increased, these power probabilities will decrease because 
more tests are being conducted. 

Since this is a probability, the range is between 0 and 1. Most researchers would like to have the 
power at least at 0.8. However, this may require extremely large sample sizes when the number of 
tests is large.  

FWER (Alpha) 
This option specifies one or more values of the family-wise error rate (FWER) which is the 
analog of alpha for multiple comparisons. FWER is the probability of falsely detecting 
(concluding that the means are different) at least one comparison for which the true means are the 
same. For independent tests, the relationship between the individual-comparison error rate 
(ICER) and FWER is given by the formulas 

FWER = 1 - (1 - ICER)^C 
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or 

ICER = 1 - (1 - FWER)^(1/C) 

where '^' represents exponentiation (as in 4^2 = 16) and C represents the number of comparisons. 
For example, if C = 5 and FWER = 0.05, then ICER = 0.0102. Thus, the individual comparison 
tests must be conducted using a Type-1 error rate of 0.0102, which is much lower than the 
family-wise rate of 0.05. 

The popular value for FWER remains at 0.05. However, if you have a large number of 
comparisons, you might decide that a larger value, such as 0.10, is appropriate. 

Sample Size 

n (Sample Size Multiplier) 
This is the base, per group, sample size. One or more values separated by blanks or commas may 
be entered. A separate analysis is performed for each value listed here. 

The group samples sizes are determined by multiplying this number by each of the Group Sample 
Size Pattern numbers. If the Group Sample Size Pattern numbers are represented by m1, m2, m3, 
…, mk and this value is represented by n, the group sample sizes N1, N2, N3, ..., Nk are calculated 
as follows: 

N1=[n(m1)] 

N2=[n(m2)] 

N3=[n(m3)] 

etc. 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. 

For example, suppose there are three groups and the Group Sample Size Pattern is set to 1,2,3. If 
n is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10, five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 

As a second example, suppose there are three groups and the Group Sample Size Pattern is 
0.2,0.3,0.5. When the fractional Pattern values sum to one, n can be interpreted as the total 
sample size of all groups and the Pattern values as the proportion of the total in each group.  

If n is 10, the three group sample sizes would be 2, 3, and 5. 

If n is 20, the three group sample sizes would be 4, 6, and 10. 

If n is 12, the three group sample sizes would be 

(0.2)12 = 2.4 which is rounded up to the next whole integer, 3. 

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4. 

(0.5)12 = 6.  
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Note that in this case, 3+4+6 does not equal n (which is 12). This can happen because of 
rounding. 

Group Sample Size Pattern 
The purpose of the group sample size pattern is to allow several groups with the same sample size 
to be generated without having to type each individually. 

A set of positive, numeric values (one for each row of distributions) is entered here. Each item 
specified in this list applies to the whole row of distributions. For example, suppose the entry is 1 
2 1 and Grps 1 = 3, Grps 2 = 1, Grps 3 = 2. The sample size pattern used would be 1 1 1 2 1 1. 

The sample size of group i is found by multiplying the ith number from this list by the value of n 
and rounding up to the next whole number. The number of values must match the number of 
groups, g. When too few numbers are entered, 1’s are added. When too many numbers are 
entered, the extras are ignored. 

• Equal 
If all sample sizes are to be equal, enter Equal here and the desired sample size in n. A set of 
g 1's will be used. This will result in n1 = n2 = … = ng = n. That is, all sample sizes are equal 
to n.  

Test 

MC Procedure 
Specify which pair-wise multiple comparison procedure is to be reported from the simulations. 
The choices are 

• Dunnett Test 
This is the most popular and the most often recommended. 

• Kruskal-Wallis 
This is recommended when a nonparametric procedure is wanted. 

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the running time and accuracy are increased as well. 

The precision of the simulated power estimates are calculated using the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
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 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Effect Size 
These options specify the distributions to be used in the two simulations, one set per row. The 
first option specifies the number of groups represented by the two distributions that follow. The 
second option specifies the distribution to be used in simulating the null hypothesis to determine 
the significance level (alpha). The third option specifies the distribution to be used in simulating 
the alternative hypothesis to determine the power.  

Note that group number one is the control group. 

Grps [1 – 3] (Grps 4 – 9 are found on the Data 2 tab) 
This value specifies the number of groups specified by the H0 and H1 distribution statements to 
the right. Usually, you will enter ‘1’ to specify a single H0 and a single H1 distribution, or you 
will enter ‘0’ to indicate that the distributions specified on this line are to be ignored. This option 
lets you easily specify many identical distributions with a single phrase. 

The total number of groups g is equal to the sum of the values for the three rows of distributions 
shown under the Data1 tab and the six rows of distributions shown under the Data2 tab. 

Note that each item specified in the Group Sample Size Pattern option applies to the whole row 
of entries here. For example, suppose the Group Sample Size Pattern was 1 2 1 and Grps 1 = 3, 
Grps 2 = 1, and Grps 3 = 2. The sample size pattern would be 1 1 1 2 1 1.  

Note that since the first group is the control group, the value for Grps 1 is usually set to one. 

Group Distribution(s)|H0 
This entry specifies the distribution of one or more groups under the null hypothesis, H0. The 
magnitude of the differences of the means of these distributions, which is often summarized as 
the standard deviation of the means, represents the magnitude of the mean differences specified 
under H0. Usually, the means are assumed to be equal under H0, so their standard deviation 
should be zero except for rounding.  

These distributions are used in the simulations that estimate the actual significance level. They 
also specify the value of the mean under the null hypothesis, H0. Usually, these distributions will 
be identical. The parameters of each distribution are specified using numbers or letters. If letters 
are used, their values are specified in the boxes below. The value M0 is reserved for the value of 
the mean under the null hypothesis.  
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Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 

Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Group Distribution(s)|H1 
Specify the distribution of this group under the alternative hypothesis, H1. This distribution is 
used in the simulation that determines the power. A fundamental quantity in a power analysis is 
the amount of variation among the group means. In fact, classical power analysis formulas, this 
variation is summarized as the standard deviation of the means.  

The important point to realize is that you must pay particular attention to the values you give to 
the means of these distributions because they are fundamental to the interpretation of the 
simulation. 

For convenience in specifying a range of values, the parameters of the distribution can be 
specified using numbers or letters. If letters are used, their values are specified in the boxes 
below. The value M1 is reserved for the value of the mean under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
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Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Equivalence Margin 
Specify the largest difference for which means from different groups will be considered equal. 
When specifying group distributions, it is possible to end up with scenarios where some means 
are slightly different from each other, even though they are intended to be equivalent. This often 
happens when specifying distributions of different forms (e.g. normal and gamma) for different 
groups, where the means are intended to be the same. The parameters used to specify different 
distributions do not always result in means that are EXACTLY equal. This value lets you control 
how different means can be and still be considered equal. 

This value is not used to specify the hypothesized mean differences of interest. The hypothesized 
differences are specified using the means (or parameters used to calculate means) for the null and 
alternative distributions. 

This value should be MUCH smaller than the hypothesized mean differences. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B, C) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values for each letter using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 
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Reports Tab 
The Reports tab contains settings about the format of the output. 

Select Output – Numeric Reports 

Show Various Reports & Plots 
These options let you specify whether you want to generate the standard reports and plots. 

Show Inc’s & 95% C.I. 
Checking this option causes an additional line to be printed showing a 95% confidence interval 
for both the power and actual alpha and half the width of the confidence interval (the increment). 

Select Output – Plots 

Show Comparative Reports & Plots 
These options let you specify whether you want to generate reports and plots that compare the test 
statistics that are available. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size is aborted. When 
the maximum number of iterations is reached without convergence, the sample size is left blank. 
We recommend a value of at least 500. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of values from which the random samples will be drawn. Pools should 
be at least the maximum of 10,000 and twice the number of simulations. You can enter Automatic 
and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 
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Example 1 – Power at Various Sample Sizes 
An experiment is being designed to compare the responses of three different treatments to a 
control. Previous studies have shown that the standard deviation within a group is 3.0. 
Researchers want to detect a shift in the mean of at least 2.0. To accomplish this, they set the 
mean of the control group to zero and the three treatment means to 2.0. They want to investigate 
sample sizes of 5, 10, 15, and 20 subjects per group.   

Their primary analysis will be a set of Dunnett multiple comparison tests. They set the FWER to 
0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Comparisons of Treatments vs. a Control 
(Simulation) procedure window by clicking on Means, then Multiple Comparisons, then Each 
Treatment vs. Control (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
FWER (Alpha) .........................................0.05 
n (Sample Size Multiplier) .......................5 10 15 20 
Group Sample Size Pattern ....................Equal 
MC Procedure .........................................Dunnett 
Simulations..............................................2000 
Grps 1......................................................1 
Control Distribution | H0 ..........................N(M0 S) 
Control Distribution | H1 ..........................N(M0 S) 
Grps 2......................................................3 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M1 S) 
Minimum Difference ................................0.1 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................2 
S ..............................................................3 

Report Tab 
All reports except Comparative...............checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Simulation Summary Report  
 

Summary of Simulations of the Control Group and the 3 Treatment Groups 
MC Procedure: Dunnett’s M.C. Test 
 
  Group Total       
 Any- Smpl. Smpl. All- S.D. of S.D. of    
Sim. Pairs Size Size Pairs Means Data Actual Target  
No. Power n N Power Sm|H1 SD|H1 FWER  FWER  M0 M1 S    
1 0.187 5.0 20 0.016 0.9 3.0 0.055 0.050 0.0 2.0 3.0    
 (0.017) [0.170 0.204] (0.005) [0.010 0.021] (0.010) [0.045 0.064]     
 
2 0.358 10.0 40 0.045 0.9 3.0 0.050 0.050 0.0 2.0 3.0    
 (0.021) [0.337 0.379] (0.009) [0.036 0.054] (0.010) [0.040 0.059]     
 
3 0.507 15.0 60 0.098 0.9 3.0 0.042 0.050 0.0 2.0 3.0    
 (0.022) [0.485 0.529] (0.013) [0.085 0.111] (0.009) [0.033 0.051]     
 
4 0.623 20.0 80 0.162 0.9 3.0 0.045 0.050 0.0 2.0 3.0    
 (0.021) [0.602 0.644] (0.016) [0.145 0.178] (0.009) [0.035 0.054]     
 
Pool Size: 10000. Simulations: 2000. Run Time: 26.45 seconds. 
 
Summary of Simulations Report Definitions 
H0: the null hypothesis that each treatment mean is equal to the control mean. 
H1: the alternative hypothesis that at least one treatment mean differs from the control mean. 
Pair: each comparison of a treatment mean and a control mean is a 'pair'. 
All-Pairs Power: the estimated probability of detecting all unequal pairs. 
Any-Pairs Power: the estimated probability of detecting at least one unequal pair. 
n: the average of the group sample sizes. 
N: the combined sample size of all groups. 
Family-Wise Error Rate (FWER): the probability of detecting at least one equal pair assuming H0.  
Target FWER: the user-specified FWE.  
Actual FWER: the FWER estimated by the alpha simulation.  
Sm|H1: the standard deviation of the group means under H1. 
SD|H1: the pooled, within-group standard deviation under H1. 
Second Row: provides the precision and aconfidence interval based on the size of the simulation for  
Any-Pairs Power, All-Pairs Power, and FWER. The format is (Precision) [95% LCL and UCL Alpha]. 
 
Summary Statements 
A one-way design with 3 treatment groups and one control group has an average group sample size 
of 5.0 for a total sample size of 20. This design achieved an any-pair power of 0.187 and an 
all-pair power of 0.0155 using the Dunnett's Test procedure for comparing each treatment mean 
with the control mean. The target family-wise error rate was 0.050 and the actual family-wise 
error rate was 0.055. The average within group standard deviation assuming the alternative 
distribution is 3.0. These results are based on 2000 Monte Carlo samples from the null 
distributions: N(M0 S); N(M0 S); N(M0 S); and N(M0 S) and the alternative distributions: N(M0 
S); N(M1 S); N(M1 S); and N(M1 S). Other parameters used in the simulation were: M0 = 0.0, M1 = 
2.0, and S = 3.0. 
 

This report shows the estimated any-pairs power, all-pairs power, and FWER for each scenario. 
The second row shows three 95% confidence intervals in brackets: the first for the any-pairs 
power, the second for the all-pairs power, and the third for the FWER. Half the width of each 
confidence interval is given in parentheses as a fundamental measure of the precision of the 
simulation. As the number of simulations is increased, the width of the confidence intervals will 
decrease. 
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Any-Pairs Power 
This is the probability of detecting any of the significant pairs. This value is estimated by the 
simulation using the H1 distributions. 

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values provide the precision of the estimated power. 

All-Pairs Power 
This is the probability of detecting all of the significant pairs. This value is estimated by the 
simulation using the H1 distributions. 

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values provide the precision of the estimated power. 

Group Sample Size n 
This is the average of the individual group sample sizes. 

Total Sample Size N 
This is the total sample size of the study. 

S.D. of Means Sm|H1 
This is the standard deviation of the hypothesized means of the alternative distributions. Under 
the null hypothesis, this value is zero. This value represents the magnitude of the difference 
among the means that is being tested. It is roughly equal to the average difference between the 
group means and the overall mean.  

Note that the effect size is the ratio of Sm|H1 and SD|H1 

S.D. of Data SD|H1 
This is the within-group standard deviation calculated from samples from the alternative 
distributions.  

Actual FWER 
This is the value of FWER (family-wise error rate) estimated by the simulation using the H0 
distributions. It should be compared with the Target FWER to determine if the test procedure is 
accurate.  

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values provide the precision of the Actual FWER. 

Target FWER 
The target value of FWER.  

M0 
This is the value entered for M0, the group means under H0.  

M1 
This is the value entered for M1, the group means under H1. 

S 
This is the value entered for S, the standard deviation. 
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Error-Rate Summary for H0 Simulation  
 

Error Rate Summary from H0 (Alpha) Simulation of 4 Groups 
MC Procedure: Dunnett’s M.C. Test 
    Prop.     
    (No. of     
  Mean  Type-1     
 No. of No. of Prop. Errors  Mean Min Max 
Sim. Equal Type-1 Type-1 > 0) Target Pairs Pairs Pairs 
No. Pairs Errors Errors FWER FWER Alpha Alpha Alpha 
1 3 0.067 0.022 0.055 0.050 0.022 0.020 0.025 
2 3 0.060 0.020 0.050 0.050 0.020 0.017 0.023 
3 3 0.048 0.016 0.042 0.050 0.016 0.016 0.017 
4 3 0.055 0.018 0.045 0.050 0.018 0.018 0.019 
 

This report shows the results of the H0 simulation. This simulation uses the H0 settings for each 
group. Its main purpose is to provide an estimate of the FWER. 

No. of Equal Pairs 
Since under H0 all means are equal, this is the number of unique pairs of the groups. Thus, this is 
the number of treatment groups. 

Mean No. of Type-1 Errors 
This is the average number of type-1 errors (false detections) per set (family). 

Prop. Type-1 Errors 
This is the proportion of type-1 errors (false detections) among all tests that were conducted. 

Prop. (No. of Type-1 Errors>0) FWER 
This is the proportion of the H0 simulations in which at least one type-1 error occurred. This is 
called the family-wise error rate. 

Target FWER 
This is the target value of FWER that was set by the user. 

Mean Pairs Alpha 
Alpha is the probability of rejecting H0 when H0 is true. It is a characteristic of an individual test. 
This is the average alpha value over all of the tests in the family. 

Min Pairs Alpha 
This is the minimum of all of the individual comparison alphas. 

Max Pairs Alpha 
This is the maximum of all of the individual comparison alphas. 
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Error-Rate Summary for H1 Simulation  
 

Error Rate Summary from H1 (Power) Simulation of 4 Groups 
MC Procedure: Dunnett’s M.C. Test 
       (FDR)       
     Prop. Prop. Prop. Prop.      
 No. of Mean Mean  Equal Uneq. Detect. Undet. All Any    
 Equal/ No. of No. of  that that that that Uneq. Uneq. Mean Min Max 
Sim. Uneq. False False Prop. were were were were Pairs Pairs Pairs Pairs Pairs 
No. Pairs Pos. Neg. Errors Detect. Undet. Equal Uneq. Power Power Power Power Power 
1 0/3 0.00 2.74 0.913 0.000 0.913 0.000 1.000 0.016 0.187 0.088 0.082 0.092 
2 0/3 0.00 2.45 0.816 0.000 0.816 0.000 1.000 0.045 0.358 0.184 0.182 0.188 
3 0/3 0.00 2.13 0.711 0.000 0.711 0.000 1.000 0.098 0.507 0.289 0.286 0.292 
4 0/3 0.00 1.84 0.613 0.000 0.613 0.000 1.000 0.162 0.623 0.388 0.380 0.392 
 

This report shows the results of the H1 simulation. This simulation uses the H1 settings for each 
group. Its main purpose is to provide an estimate of the power. 

No. of Equal Pairs/Unequal Pairs 
The first value is the number of pairs for which the control mean and the treatment mean were 
equal under H1. The second value is the number of pairs for which the means were different 
under H1. 

Mean No. False Positives 
This is the average number of equal pairs that were declared as being unequal by the testing 
procedure. A false positive is a type-1 (alpha) error. 

Mean No. False Negatives 
This is the average number of unequal pairs that were not declared as being unequal by the testing 
procedure. A false negative is a type-2 (beta) error. 

Prop. Errors 
This is the proportion of type-1 and type-2 errors. 

Prop. Equal that were Detect. 
This is the proportion of the equal pairs in the H1 simulations that were declared as unequal. 

Prop. Uneq. that were Undet. 
This is the proportion of the unequal pairs in the H1 simulations that were not declared as being 
unequal. 

Prop. Detect. that were Equal (FDR) 
This is the proportion of detected pairs in the H1 simulations that were actually equal. This is 
often called the false discovery rate. 

Prop. Undet. that were Uneq. 
This is the proportion of undetected pairs in the H1 simulations that were actually unequal.  

All Uneq. Pairs Power 
This is the probability of detecting all of the pairs that were different in the H1 simulation. 

Any Uneq. Pairs Power 
This is the probability of detecting any of the pairs that were different in the H1 simulation. 
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Mean, Min, and Max Pairs Power 
These items give the average, the minimum, and the maximum of the individual comparison 
powers from the H1 simulation. 

Detail Model Report 
 

Detailed Model Report for Simulation No. 1 
Target FWER = 0.050, M0 = 0.0, M1 = 2.0, S = 3.0 
MC Procedure: Dunnett’s M.C. Test 
 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1 Cntl 5/20 0.0 3.0 N(M0 S) 
H0 2-4 B1-B3 5/20 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1 Cntl 5/20 0.0 3.0 N(M0 S) 
H1 2-4 B1-B3 5/20 2.0 3.0 N(M1 S) 
H1 All   Sm=0.9 3.0  
 
Detailed Model Report for Simulation No. 2 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1 Cntl 10/40 0.0 3.0 N(M0 S) 
H0 2-4 B1-B3 10/40 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1 Cntl 10/40 0.0 3.0 N(M0 S) 
H1 2-4 B1-B3 10/40 2.0 3.0 N(M1 S) 
H1 All   Sm=0.9 3.0  
 
Detailed Model Report for Simulation No. 3 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1 Cntl 15/60 0.0 3.0 N(M0 S) 
H0 2-4 B1-B3 15/60 0.0 3.1 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1 Cntl 15/60 0.0 2.9 N(M0 S) 
H1 2-4 B1-B3 15/60 2.0 3.0 N(M1 S) 
H1 All   Sm=0.9 3.0  
 
Detailed Model Report for Simulation No. 4 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1 Cntl 20/80 0.0 3.0 N(M0 S) 
H0 2-4 B1-B3 20/80 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1 Cntl 20/80 0.0 3.0 N(M0 S) 
H1 2-4 B1-B3 20/80 2.0 3.0 N(M1 S) 
H1 All   Sm=0.9 3.0  
 

This report shows details of each row of the previous reports. 

Hypo. Type 
This indicates which simulation is being reported on each row. H0 represents the null simulation 
and H1 represents the alternative simulation. 

Groups 
Each group in the simulation is assigned a number. This item shows the arbitrary group number 
that was assigned. 
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Group Labels 
These are the labels that were used in the individual alpha-level reports. Note that the control 
group is labeled ‘Cntl’. 

n/N 
n is the average sample size of the groups. N is the total sample size across all groups. 

Group Mean 
These are the means of the individual groups as specified for the H0 and H1 simulations. 

Ave. S.D. 
This is the average standard deviation of all groups reported on each line. Note that it is 
calculated from the simulated data. 

Simulation Model 
This is the distribution that was used to simulate data for the groups reported on each line. 

Probability of Rejecting Equality  
 

Probability of Rejecting the Equality of Each Pair. Simulation No. 1 
 
Group Means Cntl B1 B2 B3 
Cntl 0.0  0.082* 0.092* 0.090* 
B1 2.0 0.025    
B2 2.0 0.020    
B3 2.0 0.022 
 
Probability of Rejecting the Equality of Each Pair. Simulation No. 2 
 
Group Means Cntl B1 B2 B3 
Cntl 0.0  0.188* 0.184* 0.182* 
B1 2.0 0.023    
B2 2.0 0.020    
B3 2.0 0.017    
 
Probability of Rejecting the Equality of Each Pair. Simulation No. 3 
 
Group Means Cntl B1 B2 B3 
Cntl 0.0  0.292* 0.286* 0.289* 
B1 2.0 0.016    
B2 2.0 0.016    
B3 2.0 0.017    
  
Probability of Rejecting the Equality of Each Pair. Simulation No. 4 
 
Group Means Cntl B1 B2 B3 
Cntl 0.0  0.392* 0.380* 0.392* 
B1 2.0 0.019    
B2 2.0 0.018    
B3 2.0 0.018    
 
Individual pairwise powers from the H1 (Power) simulation are shown in the upper-right section. 
Individual pairwise significance levels from the H0 (Alpha) simulation are shown in the lower-left section. 
* Starred values are the powers of pairs that are unequal under H1. 
 

This report shows the individual probabilities of rejecting each pair. When a pair was actually 
different, the value is the power of that test. These power values are starred.  
The results shown on the upper-right section of each simulation report are from the H1 
simulation. The results shown on the lower-left section of the report are from the H0 simulation. 



Multiple Comparisons of Treatments vs. a Control (Simulation)  585-19 
 

Plots Section 
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These plots give a visual presentation of the all-pairs power values and the any-pair power values. 

Example 2 – Comparative Results 
Continuing with Example 1, the researchers want to study the characteristics of alternative 
multiple comparison procedures.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Comparisons of Treatments vs. a Control 
(Simulation) procedure window by clicking on Means, then Multiple Comparisons, then Each 
Treatment vs. Control (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
FWER (Alpha) .........................................0.05 
n (Sample Size Multiplier) .......................5 10 15 20 
Group Sample Size Pattern ....................Equal 
MC Procedure .........................................Dunnett 
Simulations..............................................2000 
Grps 1......................................................1 
Control Distribution | H0 ..........................N(M0 S) 
Control Distribution | H1 ..........................N(M0 S) 
Grps 2......................................................3 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M1 S) 
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Data Tab (continued) 
Minimum Difference ................................0.1 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................2 
S ..............................................................3 

Reports Tab 
Comparative Reports ..............................Checked 
Comparative Any-Pair Power Plot ..........Checked 
Comparative All-Pair Power Plot.............Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing the Control Group Versus the 3 Treatment Groups 
 
    Kruskal  Kruskal   
 Total  Dunnett Wallis Dunnett Wallis   
Sim. Sample Target All-Pair All-Pair All-Pair Any-Pair   
No. Size Alpha Power Power Power Power   
1 20 0.050 0.016 0.002 0.187 0.155       
2 40 0.050 0.045 0.018 0.358 0.309       
3 60 0.050 0.098 0.056 0.507 0.474       
4 80 0.050 0.162 0.117 0.623 0.581       
Pool Size: 10000. Simulations: 2000. Run Time: 26.18 seconds. 
 
Family-Wise FWER Comparison for Testing the Control Group Versus the 3 Treatment Groups 
 
 Total   Kruskal    
Sim. Sample Target Dunnett Wallis    
No. Size FWER FWER FWER    
1 20 0.050 0.055 0.044         
2 40 0.050 0.050 0.040         
3 60 0.050 0.042 0.034         
4 80 0.050 0.045 0.038         
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These reports show the power and FWER of both of the multiple comparison procedures. In these 
simulations of groups from the normal distributions with equal variances, we see that the 
Dunnett’s procedure is the champion. 
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Example 3 – Validation using Dunnett 
Murkerjee, Robertson, and Wright (1987) page 909 present an example of a sample size 
calculation which was first discussed on page 1116 of Dunnett (1955). In this example there are 
five treatments and one control. The control mean and four of the treatment means are the same, 
while the fifth treatment mean is different.   

The value of the within-group standard deviation is 1.0. Four treatment means and the control 
mean are -0.182574 and the fifth treatment mean is 0.912871. The FWER is 0.05 in the article, 
but this is for a one-sided test. Since PASS is finding the power for two-sided tests, we set FWER 
at 0.10. When the per-group sample size is 16, the all-pairs power is 0.80. When the per-group 
sample size is 21, the all-pairs power is 0.90. Note that since there is only one treatment that is 
different from the control, the all-pairs power is equal to the any-pairs power.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Comparisons of Treatments vs. a Control 
(Simulation) procedure window by clicking on Means, then Multiple Comparisons, then Each 
Treatment vs. Control (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example3 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ...................................................... Ignored since this is the Find setting 
FWER (Alpha) .........................................0.10 
n (Sample Size Multiplier) .......................16 21 
Group Sample Size Pattern ....................Equal 
MC Procedure .........................................Dunnett 
Simulations..............................................2000 
Grps 1......................................................1 
Control Distribution(s) | H0......................N(M0 S) 
Control Distribution(s) | H1......................N(M0 S) 
Grps 2......................................................1 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M1 S) 
Grps 3......................................................4 
Group 3 Distribution(s) | H0 ....................N(M0 S) 
Group 3 Distribution(s) | H1 ....................N(M0 S) 
Minimum Difference ................................0.01 
M0 (Mean|H0) .........................................-0.182574 
M1 (Mean|H1) .........................................0.912871 
S..............................................................1.0 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Summary of Simulations of the Control Group and the 5 Treatment Groups 
MC Procedure: Dunnett’s M.C. Test 
 
  Group Total       
 Any- Smpl. Smpl. All- S.D. of S.D. of    
Sim. Pairs Size Size Pairs Means Data Actual Target  
No. Power n N Power Sm|H1 SD|H1 FWER  FWER  M0 M1 S    
1 0.795 16.0 96 0.795 0.4 1.0 0.095 0.100 -0.2 0.9 1.0    
 (0.018) [0.777 0.812] (0.018) [0.777 0.812] (0.013) [0.082 0.107]     
 
2 0.894 21.0 126 0.894 0.4 1.0 0.112 0.100 -0.2 0.9 1.0    
 (0.014) [0.880 0.907] (0.014) [0.880 0.907] (0.014) [0.098 0.125]     
 
Pool Size: 10000. Simulations: 1000. Run Time: 4.28 seconds. 

 
For the first case when n = 16, PASS obtained a power of 0.795 which is very close to the value 
of 0.80 found by Muterjee et al. (1987). Indeed, 0.80 is within the confidence limits of 0.777 to 
0.812. Similarly, the power for the second case when n = 21 is found as 0.894 which is very close 
to the article’s value of 0.90. 
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Chapter 590 

Multiple Contrasts 
(Simulation) 
Introduction 
This procedure uses simulation to analyze the power and significance level of two multiple-
comparison procedures that perform two-sided hypothesis tests of contrasts of the group means. 
These are the Dunn-Bonferroni test and the Dunn-Welch test. For each scenario, two simulations 
are run: one estimates the significance level and the other estimates the power.  

The term contrast refers to a user-defined comparison of the group means. The term multiple 
contrasts refers to a set of such comparisons. An additional restriction imposed is that the contrast 
coefficients to sum to zero. 

When several contrasts are tested, the interpretation of the results is more complex because of the 
problem of multiplicity. Multiplicity here refers to the fact that the probability of making at least 
one incorrect decision increases as the number of statistical tests increases. Methods for testing 
multiple contrasts have been developed to account for this multiplicity.  

Error Rates 
When dealing with several simultaneous statistical tests, both individual-wise and experiment 
wise error rates should be considered.      

1. Comparison-wise error rate. This is the probability of a type-I error (rejecting a true 
H0) for a particular test. In the case of the five-group design, there are ten possible 
comparison-wise error rates, one for each of the ten possible pairs. We will denote this 
error rate αc . 

2. Experiment-wise (or family-wise) error rate. This is the probability of making one or 
more type-I errors in the set (family) of comparisons. We will denote this error rate α f .  

The relationship between these two error rates when the tests are independent is given by 

α αf c
C= − −1 1( )  

where C is the total number of contrasts. For example, if αc is 0.05 and C is 10, α f is 0.401. 
There is about a 40% chance that at least one of the ten contrasts will be concluded to be non-zero 
when in fact they are not. When the tests are correlated, as they might be among a set of contrasts, 
the above formula provides an upper bound to the family-wise error rate. 

The techniques described below provide control for α f  rather than αc . 
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Technical Details 

The One-Way Analysis of Variance Design 
The discussion that follows is based on the common one-way analysis of variance design which 
may be summarized as follows. Suppose the responses Y  in k groups each follow a normal 

distribution with means
ij

μ μ μ1 2, , ,L k  and unknown variance . Let n n  denote the 
number of subjects in each group. The control group is assumed to be group one. 
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The F test is the usual method of analysis of the data from such a design, testing whether all of 
the means are equal. However, a significant F test does not indicate which of the groups are 
different, only that at least one is different. The analyst is left with the problem of determining 
which of the groups are different and by how much.  

To determine the mean differences that are most importance, the researcher may specify a set of 
contrasts. These contrasts, called a priori, or, planned, contrasts should be specified before the 
experimental results are viewed.  

The Dunn-Bonferroni procedure and the Dunn-Welch procedure have been developed to test 
these planned contrasts. The calculations associated with each of these tests are given below. 

Contrasts 
A contrast of the means is a stated difference among the means. The difference is constructed so 
that it represents a useful hypothesis. For example, suppose there are four groups, the first of 
which is a control group. It might be of interest to determine which treatments are statistically 
different from the control. That is, the differences μ μ2 1− , μ μ3 1− , and μ μ4 1−  would be 
tested to determine if they are non-zero.  

Contrasts are often simple differences between two means. However, they may involve more than 
just two means. For example, suppose the first two groups receive one treatment and the second 
two groups receive another treatment. The contrast (difference) that would be tested is 
( ) ( )μ μ μ μ1 2 3 4+ − + .  

Every contrast can be represented by the list of contrast coefficients: the values by which the  
means are multiplied. Here are some examples of contrasts that might be of interest when the 
experiment involves four groups. 
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Difference Coefficients 
μ μ2 1−  -1, 1, 0, 0 
μ μ3 1−  -1, 0, 1, 0 
( ) ( )μ μ μ μ1 2 3 4+ − +  1, 1, -1, -1 

( ) ( )μ μ μ μ μ μ1 1 1 2 3 4+ + − + +  3, -1, -1, -1 

( ) ( )μ μ μ μ4 4 2 3+ − +  0, -1, -1, 2 
 

Note that in each case, the coefficients sum to zero. This makes it possible to test whether the 
quantity is different from zero. 

A lot is written about orthogonal contrasts which have the property that the sum of the products 
of corresponding coefficients is zero. For example, the sum of the products of the last two 
contrasts given above is 0(3) + (-1)(-1) + (-1)(-1) + (2)(-1) = 0 + 1 + 1 – 2 = 0, so these two 
contrasts are orthogonal. However, the first two contrasts are not orthogonal since (-1)(-1) + 
(1)(0) + (0)(1) + (0)(0) = 1 + 0 + 0 + 0 = 1 (not zero). Orthogonal contrasts have nice properties 
when the sample sizes are equal. Unfortunately, they lose those properties when the group sample 
sizes are unequal or when the data are not normally distributed. 

The procedures described in this chapter do not require that the contrasts be orthogonal. Instead, 
you should focus on defining a set of contrasts that answer the research questions of interest.  

Dunn-Bonferroni Test 
Dunn (1964) developed a procedure for simultaneously testing several contrasts. This method is 
also discussed in Kirk (1982) pages 106 to 109. The method consists of testing each contrast with 
Student’s t distribution with degrees of freedom equal to N-k with a Bonferroni adjustment of the 
alpha value. That is, the alpha value is divided by C, the number of contrasts simultaneously 
tested.  

The test rejects H0 if  
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Dunn-Welch Test 
Dunn (1964) developed a procedure for simultaneously testing several contrasts. This method, 
using Welch’s (1947) modification for the unequal variances, is discussed in Kirk (1982) pages 
100, 101, 106 - 109. The method consists of testing each contrast with Student’s t distribution 
with degrees of freedom given below with a Bonferroni adjustment of the alpha value. That is, the 
alpha value is divided by C, the number of contrasts simultaneously tested. 
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The two-sided test statistic rejects H0 if  
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Definition of Power for Multiple Contrasts 
The notion of power is well-defined for individual tests. Power is the probability of rejecting a 
false null hypothesis. However, this definition does not extend directly when there are a number 
of simultaneous tests. The two definitions that we emphasize in PASS where recommended by 
Ramsey (1978). They are any-contrast power and all-contrasts power. Other design 
characteristics, such as average-contrast power and false-discovery rate, are important to 
consider. However, our review of the statistical literature resulted in our focus on these two 
definitions of power.  

Any-Contrast Power 
Any-contrast power is the probability of detecting at least one of the contrasts that are actually 
non-zero.  

All-Contrasts Power 
All-contrast power is the probability of detecting all of the contrasts that are actually non-zero.  

Simulation Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify how each test is to be carried out. This includes indicating how the test statistic is 
calculated and how the significance level is specified. 

2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. The number rejected is used to calculate the power of each test.  
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3. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. The number rejected is used to calculate the significance level of each test.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draws the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%! 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data, Reports, and Options tabs. To find out more about using the other tabs such as 
Axes/Legend, Plot Text, or Template, go to the Procedure Window chapter. 

Data 1 Tab 
The Data 1 tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for: power or sample size (n). If you choose to 
solve for n, you must choose the type of power you want to solve for: any-contrast power or all-
contrasts power. The value of the option Power will then represent this type of power. 

Any-contrast power is the probability of detecting at least one of the non-zero contrasts. All-
contrast power is the probability of detecting all non-zero contrasts. 

Note that the search for n may take several minutes because a separate simulation must be run for 
each trial value of n. You may find it quicker and more informative to solve for the Power for a 
range of sample sizes. 
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Error Rates 

Power or Beta 
This option is only used when Find (Solve For) is set to n (All-Contrast) or n (Any-Contrast).   

Power is defined differently with multiple contrasts. Although many definitions are possible, two 
are adopted here. Any-contrast power is the probability of detecting at least one non-zero contrast. 
All-contrasts power is the probability of detecting all non-zero contrasts. As the number of 
contrasts is increased, these power probabilities will decrease because more tests are being 
conducted. 

Since this is a probability, the range is between 0 and 1. Most researchers would like to have the 
power at least at 0.8. However, this may require extremely large sample sizes when the number of 
tests is large.  

FWER (Alpha) 
This option specifies one or more values of the family-wise error rate (FWER) which is the 
analog of alpha for multiple contrasts. FWER is the probability of falsely detecting (concluding 
that the means are different) at least one comparison for which the true means are the same. For 
independent tests, the relationship between the individual-comparison error rate (ICER) and 
FWER is given by the formulas 

FWER = 1 - (1 - ICER)^C 

or 

ICER = 1 - (1 - FWER)^(1/C) 

where '^' represents exponentiation (as in 4^2 = 16) and C represents the number of comparisons. 
For example, if C = 5 and FWER = 0.05, then ICER = 0.0102. Thus, the individual comparison 
tests must be conducted using a Type-1 error rate of 0.0102, which is much lower than the 
family-wise rate of 0.05. 

The popular value for FWER remains at 0.05. However, if you have a large number of 
comparisons, you might decide that a larger value, such as 0.10, is appropriate. 

Sample Size 

n (Sample Size Multiplier) 
This is the base, per group, sample size. One or more values separated by blanks or commas may 
be entered. A separate analysis is performed for each value listed here. 

The group samples sizes are determined by multiplying this number by each of the Group Sample 
Size Pattern numbers. If the Group Sample Size Pattern numbers are represented by m1, m2, m3, 
…, mk and this value is represented by n, the group sample sizes N1, N2, N3, ..., Nk are calculated 
as follows: 

N1=[n(m1)] 

N2=[n(m2)] 

N3=[n(m3)] 

etc. 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. 
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For example, suppose there are three groups and the Group Sample Size Pattern is set to 1,2,3. If 
n is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10, five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 

As a second example, suppose there are three groups and the Group Sample Size Pattern is 
0.2,0.3,0.5. When the fractional Pattern values sum to one, n can be interpreted as the total 
sample size of all groups and the Pattern values as the proportion of the total in each group.  

If n is 10, the three group sample sizes would be 2, 3, and 5. 

If n is 20, the three group sample sizes would be 4, 6, and 10. 

If n is 12, the three group sample sizes would be 

(0.2)12 = 2.4 which is rounded up to the next whole integer, 3. 

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4. 

(0.5)12 = 6.  

Note that in this case, 3+4+6 does not equal n (which is 12). This can happen because of 
rounding. 

Group Sample Size Pattern 
The purpose of the group sample size pattern is to allow several groups with the same sample size 
to be generated without having to type each individually. 

A set of positive, numeric values (one for each row of distributions) is entered here. Each item 
specified in this list applies to the whole row of distributions. For example, suppose the entry is 1 
2 1 and Grps 1 = 3, Grps 2 = 1, Grps 3 = 2. The sample size pattern used would be 1 1 1 2 1 1. 

The sample size of group i is found by multiplying the ith number from this list by the value of n 
and rounding up to the next whole number. The number of values must match the number of 
groups, g. When too few numbers are entered, 1’s are added. When too many numbers are 
entered, the extras are ignored. 

• Equal 
If all sample sizes are to be equal, enter Equal here and the desired sample size in n. A set of 
g 1's will be used. This will result in n1 = n2 = … = ng = n. That is, all sample sizes are equal 
to n.  

Test 

MC Procedure 
Specify which multiple contrast procedure is to be reported from the simulations. The choices are 

• Dunn-Bonferroni Test 
This is the most popular and most often recommended. 
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• Dunn-Welch Test 
This is recommended when the group variances are very different. 

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the running time and accuracy are increased as well. 

The precision of the simulated power estimates are calculated using the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Effect Size 
These options specify the distributions to be used in the two simulations. The first option 
specifies the number of groups represented by the two distributions that follow. The second 
option specifies the distribution to be used in simulating the null hypothesis to determine the 
significance level (alpha). The third option specifies the distribution to be used in simulating the 
alternative hypothesis to determine the power.  

Grps [1 – 3] (Grps 4 – 9 are found on the Data 2 tab) 
This value specifies the number of groups specified by the H0 and H1 distribution statements to 
the right. Usually, you will enter ‘1’ to specify a single H0 and a single H1 distribution, or you 
will enter ‘0’ to indicate that the distributions specified on this line are to be ignored. This option 
lets you easily specify many identical distributions with a single phrase. 

The total number of groups g is equal to the sum of the values for the three rows of distributions 
shown under the Data1 tab and the six rows of distributions shown under the Data2 tab. 

Note that each item specified in the Group Sample Size Pattern option applies to the whole row 
of entries here. For example, suppose the Group Sample Size Pattern was 1 2 1 and Grps 1 = 3, 
Grps 2 = 1, and Grps 3 = 2. The sample size pattern would be 1 1 1 2 1 1.  
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Group Distribution(s)|H0 
This entry specifies the distribution of one or more groups under the null hypothesis, H0. The 
magnitude of the differences of the means of these distributions, which is often summarized as 
the standard deviation of the means, represents the magnitude of the mean differences specified 
under H0. Usually, the means are assumed to be equal under H0, so their standard deviation 
should be zero except for rounding.  

These distributions are used in the simulations that estimate the actual significance level. They 
also specify the value of the mean under the null hypothesis, H0. Usually, these distributions will 
be identical. The parameters of each distribution are specified using numbers or letters. If letters 
are used, their values are specified in the boxes below. The value M0 is reserved for the value of 
the mean under the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 

Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Group Distribution(s)|H1 
Specify the distribution of this group under the alternative hypothesis, H1. This distribution is 
used in the simulation that determines the power. A fundamental quantity in a power analysis is 
the amount of variation among the group means. In fact, classical power analysis formulas, this 
variation is summarized as the standard deviation of the means.  
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The important point to realize is that you must pay particular attention to the values you give to 
the means of these distributions because they are fundamental to the interpretation of the 
simulation. 

For convenience in specifying a range of values, the parameters of the distribution can be 
specified using numbers or letters. If letters are used, their values are specified in the boxes 
below. The value M1 is reserved for the value of the mean under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Equivalence Margin 
Specify the largest difference for which means from different groups will be considered equal. 
When specifying group distributions, it is possible to end up with scenarios where some means 
are slightly different from each other, even though they are intended to be equivalent. This often 
happens when specifying distributions of different forms (e.g. normal and gamma) for different 
groups, where the means are intended to be the same. The parameters used to specify different 
distributions do not always result in means that are EXACTLY equal. This value lets you control 
how different means can be and still be considered equal. 

This value is not used to specify the hypothesized mean differences of interest. The hypothesized 
differences are specified using the means (or parameters used to calculate means) for the null and 
alternative distributions. 

This value should be MUCH smaller than the hypothesized mean differences. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 
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M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B, C) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values for each letter using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Contrasts Tab 

Contrasts 

Contrasts 
These options specify the contrasts. You can specify as many contrasts as are necessary, but a 
penalty is paid in terms of reduced power for each additional contrast. Thus, the number of 
contrasts should be limited to those that are most important to the study.  

A contrast is a weighted average of the k (k = number of groups) group means in which the 
weights (coefficients) sum to zero. Each successive coefficient is applied to the corresponding 
group mean. For example, suppose k = 3 and the first group is a control group. Two contrasts that 
might be of interest are -1 1 0 and -1 0 1. These are interpreted as (-1)Mean1 + (1)Mean2 + 
(0)Mean3 and (-1)Mean1 + (0)Mean2 + (1)Mean3, respectively. Notice that the coefficients in 
each set sum to zero.  

Several predefined sets of contrasts are available or you can specify your own. There is no set 
number of contrasts that must (or may) be specified, but fewer contrasts result in higher power 
and smaller required samples sizes.  

Possible entries are given next. 

• Individual Contrasts  
Enter a set of numbers, separated by blanks. One coefficient must be entered for each group 
with one set per box. Examples of valid contrasts are 

-1 1 
-1 0 1 
0 1 -2 1 
-4 1 1 2   
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• Each With First 
This option generates k-1 contrasts appropriate for comparing each of the remaining groups 
with the first group. This might be used when the first group is a control group. If k = 4, the 3 
contrasts are 

-1 1 0 0   
-1 0 1 0   
-1 0 0 1  

• Each With Last 
This option generates k-1 contrasts appropriate for comparing each of the first k-1 groups 
with the last group. This might be used when the last group is a control group. If k = 4, the 3 
contrasts are 

-1 0 0 1   
0 -1 0 1   
0 0 -1 1   

• Each With Next 
This option generates k-1 contrasts appropriate for comparing each group with the next 
group. If k = 4, the 3 contrasts are 

-1 1 0 0   
0 -1 1 0   
0 0 -1 1   

• Each With Remaining 
Each group mean is compared with the average of those remaining to the right. Suppose k=4, 
the 3 contrasts are 

-3 1 1 1  
0 -2 1 1  
0 0 -1 1  

• Each With All Others 
Each group mean is compared with the average of the other groups. Suppose k=4, the 4 
contrasts are 

-3 1 1 1  
1 -3 1 1  
1 1 -3 1 
1 1 1 -3 

• Progressive Split 
The first groups are compared to the last groups. The dividing point moves from left to right. 
Suppose k=5, the 4 contrasts are 

-4 1 1 1 1 
-3 -3 2 2 2  
-2 -2 -2 3 3 
-1 -1 -1 -1 4. 
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Reports Tab 
The Reports tab contains settings about the format of the output. 

Select Output – Numeric Reports 

Show Various Reports & Plots 
These options let you specify whether you want to generate the standard reports and plots. 

Show Inc’s & 95% C.I. 
Checking this option causes an additional line to be printed showing a 95% confidence interval 
for both the power and actual alpha and half the width of the confidence interval (the increment). 

Select Output – Plots 

Show Comparative Reports & Plots 
These options let you specify whether you want to generate reports and plots that compare the test 
statistics that are available. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size is aborted. When 
the maximum number of iterations is reached without convergence, the sample size is left blank. 
We recommend a value of at least 500. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of values from which the random samples will be drawn. Pools should 
be at least the maximum of 10,000 and twice the number of simulations. You can enter Automatic 
and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 
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Example 1 – Power at Various Sample Sizes 
A study is being planned to find the threshold level of a certain drug. Below this threshold level, 
the response has little change. Once the threshold level is reached, there is a sizeable jump in the 
mean response rate. Little change in the response occurs as the drug level is increased above the 
threshold. Scientists believe that the threshold level is between 3 and 7—their best estimate, 
based on previous studies, is 5. Previous studies have shown that the standard deviation within a 
group is 3.0.   

In order to find the threshold, they design a study with five levels: 3.0, 4.0, 5.0, 6.0, and 7.0. 
Since there is no trend in the mean value (only a sudden shift) as the dose level is increased, they 
decide to test the following hypotheses:  
 

Difference Coefficients 
μ μ2 1−  -1, 1, 0, 0, 0 
μ μ3 2−  0, -1, 1, 0, 0 
μ μ4 3−  0, 0, -1, 1, 0 
μ μ5 4−  0, 0, 0, -1, 1 

 

Notice that this set of hypotheses answers the question directly. An overall F-test would test the 
hypothesis that at least one mean is different, but it would not indicate which is different. The 
question might be settled by considering all possible pairs, but there are ten pairs, so ten 
hypothesis tests would have to be considered instead of only four—decreasing the power.  

Researchers want to detect a shift in the mean as small as 2.0. Hence, they want to study the 
power when the means are 0.0, 0.0, 2.0, 2.0, 2.0. They want to investigate sample sizes of 10, 30, 
50, and 70 subjects per group. 

They have no reason to assume that the variance will change a great deal from group to group, so 
they decide to analyze the data using the Dunn-Bonferroni procedure. They set the FWER to 
0.05. Note that, based on these means, only the second of the four contrasts will be significant, so 
the any-contrast power will be the same as the all-contrast power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Contrasts (Simulation) procedure window by 
clicking on Means, then Multiple Comparisons, then Multiple Contrasts (Simulation). You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
FWER (Alpha) .........................................0.05 
n (Sample Size Multiplier) .......................10 30 50 70 
Group Sample Size Pattern ....................Equal 
MC Procedure .........................................Dunn-Bonferroni 
Simulations..............................................2000 
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Data Tab (continued) 
Grps 1......................................................2 
Control Distribution | H0 ..........................N(M0 S) 
Control Distribution | H1 ..........................N(M0 S) 
Grps 2......................................................3 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M1 S) 
Minimum Difference ................................0.1 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................2 
S ..............................................................3 

Contrasts Tab 
Contrasts.................................................Each With Next 

Reports Tab 
All reports except Comparative...............checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Simulation Summary Report  
 

Summary of Simulations for Testing Multiple Contrasts of 5 Groups 
MC Procedure: Dunn-Bonferroni Test 
 
  Group Total       
 Any- Smpl. Smpl. All- S.D. of S.D. of    
Sim. Cont. Size Size Cont. Means Data Actual Target  
No. Power n N Power Sm|H1 SD|H1 FWER  FWER  M0 M1 S    
1 0.136 10.0 50 0.136 1.0 3.0 0.048 0.050 0.0 2.0 3.0    
 (0.015) [0.121 0.151] (0.015) [0.121 0.151] (0.009) [0.038 0.057]     
 
2 0.509 30.0 150 0.509 1.0 3.0 0.038 0.050 0.0 2.0 3.0    
 (0.022) [0.487 0.530] (0.022) [0.487 0.530] (0.008) [0.030 0.046]     
 
3 0.796 50.0 250 0.796 1.0 3.0 0.048 0.050 0.0 2.0 3.0    
 (0.018) [0.778 0.813] (0.018) [0.778 0.813] (0.009) [0.038 0.057]     
 
4 0.924 70.0 350 0.924 1.0 3.0 0.041 0.050 0.0 2.0 3.0    
 (0.012) [0.912 0.936] (0.012) [0.912 0.936] (0.009) [0.032 0.050]     
Pool Size: 10000. Simulations: 2000. Run Time: 56.58 seconds. 
 
Summary of Simulations Report Definitions 
H0: the null hypothesis that the contrast of the means is zero. 
H1: the alternative hypothesis that the contrast of the means is not zero. 
Cont.: abbreviates 'Contrast'. Refers to a weighted average of the means whose weights sum to zero. 
All-Cont. Power: the estimated probability of detecting all unequal contrasts. 
Any-Cont. Power: the estimated probability of detecting at least one unequal contrasts. 
n: the average of the group sample sizes. 
N: the combined sample size of all groups. 
Family-Wise Error Rate (FWER): the probability of detecting at least one zero contrast assuming H0.  
Target FWER: the user-specified FWE.  
Actual FWER: the FWER estimated by the alpha simulation.  
Sm|H1: the standard deviation of the group means under H1. 
SD|H1: the pooled, within-group standard deviation under H1. 
Second Row: provides the precision and a confidence interval based on the size of the simulation for  
Any-Contrast Power, All-Contrasts Power, and FWER. The format is (Precision) [95% LCL and UCL Alpha]. 
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Summary Statements 
A one-way design with 5 groups has an average group sample size of 10.0 for a total sample size 
of 50. This design achieved an any-contrast power of 0.136 and an all-contrast power of 0.136 
using the Dunn-Bonferroni Test procedure for comparing each contrast of the group means with 
zero. The target family-wise error rate was 0.050 and the actual family-wise error rate was 
0.048. The average within group standard deviation assuming the alternative distribution is 
3.0. These results are based on 2000 Monte Carlo samples from the null distributions: N(M0 S); 
N(M0 S); N(M0 S); N(M0 S); and N(M0 S) and the alternative distributions: N(M0 S); N(M0 S); 
N(M1 S); N(M1 S); and N(M1 S). Other parameters used in the simulation were: M0 = 0.0, M1 = 
2.0, and S = 3.0. 
 

This report shows that a group sample size of about 50 will be needed to achieve 80% power or 
about 70 for 90% power. 

Any-Cont. Power 
This is the probability of detecting any of the significant contrasts. This value is estimated by the 
simulation using the H1 distributions. 

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values provide the precision of the estimated power. 

All- Cont. Power 
This is the probability of detecting all of the significant contrasts. This value is estimated by the 
simulation using the H1 distributions. 

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values provide the precision of the estimated power. 

Group Sample Size n 
This is the average of the individual group sample sizes. 

Total Sample Size N 
This is the total sample size of the study. 

S.D. of Means Sm|H1 
This is the standard deviation of the hypothesized means of the alternative distributions. Under 
the null hypothesis this value is zero. It represents the magnitude of the difference among the 
means. It is roughly equal to the average difference between the group means and the overall 
mean.  

Note that the effect size is the ratio of Sm|H1 and SD|H1. 

S.D. of Data SD|H1 
This is the within-group standard deviation calculated from samples from the alternative 
distributions.  

Actual FWER 
This is the value of FWER (family-wise error rate) estimated by the simulation using the H0 
distributions. It should be compared with the Target FWER to determine if the test procedure is 
accurate.  

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values provide the precision of the Actual FWER. 
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Target FWER 
This is the target value of FWER that was set by the user. 

M0 
This is the value entered for M0, the group means under H0. 

M1 
This is the value entered for M1, the group means under H1. 

S 
This is the value entered for S, the standard deviation. 

Error-Rate Summary for H0 Simulation  
 

Error Rate Summary from H0 (Alpha) Simulation of 5 Groups 
MC Procedure: Dunn-Bonferroni Test 
    Prop.     
    (No. of     
  Mean  Type-1     
 No. of No. of Prop. Errors  Mean Min Max 
Sim. Zero Type-1 Type-1 > 0) Target Cont. Cont. Cont. 
No. Cont. Errors Errors FWER FWER Alpha Alpha Alpha 
1 4 0.053 0.013 0.048 0.050 0.013 0.010 0.016 
2 4 0.042 0.010 0.038 0.050 0.010 0.009 0.012 
3 4 0.056 0.014 0.048 0.050 0.014 0.012 0.016 
4 4 0.047 0.012 0.041 0.050 0.012 0.010 0.014 
 

This report shows the results of the H0 simulation. This simulation uses the H0 settings for each 
group. Its main purpose is to provide an estimate of the FWER. 

No. of Zero Cont. 
Since under H0 all means are equal, this is the number of contrasts.  

Mean No. of Type-1 Errors 
This is the average number of type-1 errors (false detections) per set (family). 

Prop. Type-1 Errors 
This is the proportion of type-1 errors (false detections) among all tests that were conducted. 

Prop. (No. of Type-1 Errors>0) FWER 
This is the proportion of the H0 simulations in which at least one type-1 error occurred. This is 
called the family-wise error rate. 

Target FWER 
This is the target value of FWER that was set by the user. 

Mean Cont. Alpha 
Alpha is the probability of rejecting H0 when H0 is true. It is a characteristic of an individual test. 
This is the average individual alpha value over all of the contrasts. 

Min Cont. Alpha 
This is the minimum of all contrast alphas. 
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Max Cont. Alpha 
This is the maximum of all contrast alphas. 

Error-Rate Summary for H1 Simulation  
 

Error-Rate Summary from H1 (Power) Simulation of 5 Groups 
MC Procedure: Dunn-Bonferroni Test 
       (FDR)       
     Prop. Prop. Prop. Prop.      
 No. of Mean Mean  Zero Non-0. Detect. Undet. All Any    
 Zero/ No. of No. of  that that that that Non-0 Non-0 Mean Min Max 
Sim. Non-0 False False Prop. were were were were Cont. Cont. Cont. Cont. Cont. 
No. Cont. Pos. Neg. Errors Detect. Undet. Zero Non-0 Power Power Power Power Power 
1 3/1 0.04 0.86 0.226 0.013 0.864 0.223 0.226 0.136 0.136 0.044 0.010 0.136 
2 3/1 0.03 0.49 0.131 0.011 0.492 0.061 0.142 0.509 0.509 0.135 0.009 0.509 
3 3/1 0.04 0.20 0.062 0.014 0.205 0.050 0.065 0.796 0.796 0.209 0.009 0.796 
4 3/1 0.03 0.08 0.027 0.010 0.076 0.031 0.025 0.924 0.924 0.239 0.008 0.924 
 

This report shows the results of the H1 simulation. This simulation uses the H1 settings for each 
group. Its main purpose is to provide an estimate of the power. 

No. of Zero/Non-0 Cont. 
The first value is the number of contrasts that were zero under H1. The second value is the 
number of contrasts that were non-zero under H1. 

Mean No. False Positives 
This is the average number of zero contrasts that were declared as being non-zero by the testing 
procedure. A false positive is a type-1 (alpha) error. 

Mean No. False Negatives 
This is the average number of non-zero contrasts that were not declared as being non-zero by the 
testing procedure. A false negative is a type-2 (beta) error. 

Prop. Errors 
This is the proportion of type-1 and type-2 errors. 

Prop. Equal that were Detect. 
This is the proportion of the zero contrasts in the H1 simulations that were declared as non-zero. 

Prop. Uneq. that were Undet. 
This is the proportion of non-zero contrasts in the H1 simulations that were not declared as being 
non-zero. 

Prop. Detect. that were Zero (FDR) 
This is the proportion of all detected contrasts in the H1 simulations that were actually zero. This 
is often called the false discovery rate. 

Prop. Undet. that were Non-0. 
This is the proportion of undetected contrasts in the H1 simulations that were actually non-zero.  

All Non-0 Cont. Power 
This is the probability of detecting all non-zero contrasts in the H1 simulation. 
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Any Non-0 Cont. Power 
This is the probability of detecting any non-zero contrasts in the H1 simulation. 

Mean, Min, and Max Cont. Power 
These items give the average, the minimum, and the maximum of the contrast powers from the 
H1 simulation. 

Detail Model Report 
 

Detailed Model Report for Simulation No. 1 
Target FWER = 0.050, M0 = 0.0, M1 = 2.0, S = 3.0 
MC Procedure: Dunn-Bonferroni Test 
 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1-2 A1-A2 10/50 0.0 3.1 N(M0 S) 
H0 3-5 B1-B3 10/50 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1-2 A1-A2 10/50 0.0 3.0 N(M0 S) 
H1 3-5 B1-B3 10/50 2.0 3.0 N(M1 S) 
H1 All   Sm=1.0 3.0  
 
Detailed Model Report for Simulation No. 2 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1-2 A1-A2 30/150 0.0 3.0 N(M0 S) 
H0 3-5 B1-B3 30/150 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1-2 A1-A2 30/150 0.0 3.0 N(M0 S) 
H1 3-5 B1-B3 30/150 2.0 3.0 N(M1 S) 
H1 All   Sm=1.0 3.0  
 
Detailed Model Report for Simulation No. 3 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1-2 A1-A2 30/150 0.0 3.0 N(M0 S) 
H0 3-5 B1-B3 30/150 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1-2 A1-A2 30/150 0.0 3.0 N(M0 S) 
H1 3-5 B1-B3 30/150 2.0 3.0 N(M1 S) 
H1 All   Sm=1.0 3.0  
 
Detailed Model Report for Simulation No. 4 
Hypo.  Group  Group Ave. Simulation 
Type Groups Labels n/N Mean S.D. Model 
H0 1-2 A1-A2 70/350 0.0 3.0 N(M0 S) 
H0 3-5 B1-B3 70/350 0.0 3.0 N(M0 S) 
H0 All   Sm=0.0 3.0  
 
H1 1-2 A1-A2 70/350 0.0 3.0 N(M0 S) 
H1 3-5 B1-B3 70/350 2.0 3.0 N(M1 S) 
H1 All   Sm=1.0 3.0  
 

This report shows details of each row of the previous reports. 

Hypo. Type 
This indicates which simulation is being reported on each row. H0 represents the null simulation 
and H1 represents the alternative simulation. 
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Groups 
Each group in the simulation is assigned a number. This item shows the arbitrary group number 
that was assigned. 

Group Labels 
These are the labels that were used in the individual alpha-level reports.  

n/N 
n is the average sample size of the groups. N is the total sample size across all groups. 

Group Mean 
These are the means of the individual groups as specified for the H0 and H1 simulations. 

Ave. S.D. 
This is the average standard deviation of all groups reported on each line. Note that it is 
calculated from the simulated data. 

Simulation Model 
This is the distribution that was used to simulate data for the groups reported on each line. 

List of Contrast Coefficients 
 

List of Contrast Coefficients 
 
 Groups     
Contrasts A1 A2 B1 B2 B3 
Con1 -1.0 1.0 0.0 0.0 0.0 
Con2 0.0 -1.0 1.0 0.0 0.0 
Con3 0.0 0.0 -1.0 1.0 0.0 
Con4 0.0 0.0 0.0 -1.0 1.0 
The contrasts are shown down the rows. The groups are shown across the columns. 
The coefficients (weights) are shown as the body of the table. 
 

This report shows values of the contrast coefficients so you can double-check that they are what 
was intended. 

Probability of Rejecting Individual Contrasts  
 

Probability of Rejecting Individual Contrasts.  Simulation No. 1 
 
Contrasts Alpha Power 
Con1 0.013 0.010 
Con2 0.016 0.136 
Con3 0.010 0.016 
Con4 0.014 0.014 
Alpha: probability of rejecting hypothesis that contrast is zero under alpha (H0) simulation. 
Power: probability of rejecting hypothesis that contrast is zero under power (H1) simulation. 
 
Probability of Rejecting Individual Contrasts.  Simulation No. 2 
 
Contrasts Alpha Power 
Con1 0.010 0.009 
Con2 0.011 0.509 
Con3 0.012 0.013 
Con4 0.009 0.012 
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Probability of Rejecting Individual Contrasts.  Simulation No. 3 
 
Contrasts Alpha Power 
Con1 0.013 0.014 
Con2 0.015 0.796 
Con3 0.016 0.019 
Con4 0.012 0.009 
  
Probability of Rejecting Individual Contrasts.  Simulation No. 4 
 
Contrasts Alpha Power 
Con1 0.010 0.012 
Con2 0.014 0.924 
Con3 0.011 0.011 
Con4 0.012 0.008 
 

This report shows alpha and individual power for each contrast for each simulation that was run.   
In this example, only the second contrast was non-zero, so that is the only one which has large 
values for the power. 

Plots Section 
 

All-Contrast Power vs n with M0=0.0 M1=2.0 S=3.0
Alpha=0.05 Dunn Test
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Any-Contrast Power vs n with M0=0.0 M1=2.0 S=3.0
Alpha=0.05 Dunn Test
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These plots give a visual presentation of the all-contrasts power values and the any-contrast 
power values. 
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Example 2 – Comparative Results 
Continuing with Example 1, the researchers want to study the characteristics of alternative 
multiple contrast procedures.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Contrasts (Simulation) procedure window by 
clicking on Means, then Multiple Comparisons, then Multiple Contrasts (Simulation). You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ...................................................Power 
Power ...................................................................Ignored since this is the Find setting 
FWER (Alpha) ......................................................0.05 
n (Sample Size Multiplier) ....................................10 30 50 70 

Data Tab (continued) 
Group Sample Size Pattern .................................Equal 
MC Procedure ......................................................Dunn-Bonferroni 
Simulations...........................................................2000 
Grps 1...................................................................2 
Control Distribution | H0 .......................................N(M0 S) 
Control Distribution | H1 .......................................N(M0 S) 
Grps 2...................................................................3 
Group 2 Distribution(s) | H0 .................................N(M0 S) 
Group 2 Distribution(s) | H1 .................................N(M1 S) 
Minimum Difference .............................................0.1 
M0 (Mean|H0) ......................................................0 
M1 (Mean|H1) ......................................................2 
S ...........................................................................3 

Contrasts Tab 
Contrasts ..............................................................Each With Next 
Reports Tab 
Comparative Reports ...........................................Checked 
Comparative Any-Contrast Power Plot ................Checked 
Comparative All-Contrast Power Plot ..................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Power Comparison for Simultaneously Testing Multiple Contrasts of 5 Groups 
   Dunn Dunn Dunn Dunn   
 Total  Bonferroni Welch Bonferroni Welch   
Sim. Sample Target All-Cont. All-Cont. Any-Cont. Any-Cont.   
No. Size Alpha Power Power Power Power   
1 50 0.050 0.145 0.129 0.145 0.129   
2 150 0.050 0.535 0.519 0.535 0.519   
3 250 0.050 0.806 0.785 0.806 0.785   
4 350 0.050 0.928 0.924 0.928 0.924   
Pool Size: 10000. Simulations: 2000. Run Time: 5.53 minutes. 
 
Family-Wise Error-Rate Comparison for Simultaneously Testing Multiple Contrasts of 5 Groups 
 
 Total  Dunn Dunn 
Sim. Sample Target Bonferroni Welch 
No. Size FWER FWER FWER 
1 50 0.050 0.039 0.039 
2 150 0.050 0.041 0.046 
3 250 0.050 0.050 0.047 
4 350 0.050 0.051 0.044 
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These reports show the power and FWER of both multiple contrast procedures. In these 
simulations of groups from the normal distributions with equal variances, there is little difference 
in the power of the two procedures. 
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Example 3 – Validation 
We could not find an article that gives power values for this test, so we decided to validate the 
procedure by comparing its results to those of the one-way ANOVA procedure which allows a 
single contrast to be tested. Using the settings of Example 1 and using the contrast ‘0, -1, 1, 0, 0’, 
we obtained the following powers: 0.3085, 0.7274, 0.9131, and 0.9758.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Contrasts (Simulation) procedure window by 
clicking on Means, then Multiple Comparisons, then Multiple Contrasts (Simulation). You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Power ......................................................Ignored since this is the Find setting 
FWER (Alpha) .........................................0.05 
n (Sample Size Multiplier) .......................10 30 50 70 
Group Sample Size Pattern ....................Equal 
MC Procedure .........................................Dunn-Bonferroni 
Simulations..............................................2000 
Grps 1......................................................2 
Control Distribution | H0 ..........................N(M0 S) 
Control Distribution | H1 ..........................N(M0 S) 
Grps 2......................................................3 
Group 2 Distribution(s) | H0 ....................N(M0 S) 
Group 2 Distribution(s) | H1 ....................N(M1 S) 
Minimum Difference ................................0.1 

Data Tab (continued) 
M0 (Mean|H0) .........................................0 
M1 (Mean|H1) .........................................2 
S ..............................................................3 

Contrasts Tab 
Contrasts .................................................0 -1 1 0 0 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Summary of Simulations for Testing Multiple Contrasts of 5 Groups 
MC Procedure: Dunn-Bonferroni Test 
 
  Group Total       
 Any- Smpl. Smpl. All- S.D. of S.D. of    
Sim. Cont. Size Size Cont. Means Data Actual Target  
No. Power n N Power Sm|H1 SD|H1 FWER  FWER  M0 M1 S    
1 0.297 10.0 50 0.297 1.0 3.0 0.050 0.050 0.0 2.0 3.0    
 (0.020) [0.276 0.317] (0.020) [0.276 0.317] (0.010) [0.040 0.059]     
 
2 0.741 30.0 150 0.741 1.0 3.0 0.050 0.050 0.0 2.0 3.0    
 (0.019) [0.721 0.760] (0.019) [0.721 0.760] (0.010) [0.040 0.060]     
 
3 0.914 50.0 250 0.914 1.0 3.0 0.061 0.050 0.0 2.0 3.0    
 (0.012) [0.901 0.926] (0.012) [0.901 0.926] (0.010) [0.050 0.071]     
 
4 0.974 70.0 350 0.974 1.0 3.0 0.055 0.050 0.0 2.0 3.0    
 (0.007) [0.967 0.981] (0.007) [0.967 0.981] (0.010) [0.045 0.065]     
 
Pool Size: 10000. Simulations: 2000. Run Time: 56.58 seconds. 

 
In each case, the confidence interval includes the actual value. That is, 0.3085 is between 0.276 
and 0.317, 0.7274 is between 0.721 and 0.760, 0.9131 is between 0.901 and 0.926, and 0.9758 is 
between 0.967 and 0.981. This validates the procedure. 
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Chapter 600 

Hotelling’s T2 
Introduction 
This module calculates power for Hotelling’s one-group, and two-group, T-squared (T2) test 
statistics. Hotelling’s T2 is an extension of the univariate t-tests in which the number of response 
variables is greater than one. In the two-group case, these results may also be obtained using 
PASS’s MANOVA test. 

Assumptions 
The following assumptions are made when using Hotelling’s T2 to analyze one or two groups of 
data.  

1.  The response variables are continuous. 

2.  The residuals follow the multivariate normal probability distribution with mean zero and 
constant variance-covariance matrix. 

3.  The subjects are independent. 

Technical Details 
The formulas used to perform a Hotelling’s T2 power analysis provide exact answers if the above 
assumptions are met. These formulas can be found in many places. We use the results in Rencher 
(1998). We refer you to that reference for more details. 

One-Group Case 
In this case, a set of N observations is available on p response variables. We assume that all N 
observations have the same multivariate normal distribution with mean vector μ and variance 
covariance matrix Σ  and that Hotelling’s T2 is used for testing the null hypothesis that μ μ= 0  
versus the alternative that μ μ= A where at least one component of  μA  is different from the 
corresponding component of μ0 . Usually, the vector μ0  is a vector of zeros.  

The value of T2 is computed using the formula 

( ) ( )T N y S yp N, −
−= − ′ −1

2
0

1
0μ μ  

where y  is the vector of sample means and S is the sample variance-covariance matrix. 
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To calculate power we need the non-centrality parameter for this distribution. This non-centrality 
parameter is defined as follows 

( ) (λ μ μ μ μ= − )′ −

=

−N

N
A A0

1
0

2

Σ

Δ
 

where 

( ) ( )Δ Σ= − ′ −−μ μ μ μA A0
1

0  
We define Δ  as effect size because it provides a expression for the magnitude of the standardized 
difference between the null and alternative means. 

Using this non-centrality parameter, the power of the Hotelling’s T2 may be calculated for any 
value of the means and standard deviations. Since there is a simple relationship between the non-
central T2 and the non-central F, calculations are actually based on the non-central F using the 
formula 

( )β α λ= ′ < ′Pr , , ,F F df df1 2  

where 

df p
df N p

1
2
=
= −  

Two-Group Case 
In this case, sets of N1 observations from group 1 and N2 observations from group 2 are available 
on p response variables. We assume that all observations have the multivariate normal 
distribution with common variance covariance matrix Σ . The mean vectors of the two groups are 
assumed to be μ1 and μ2 under the alternative hypothesis. Under the null hypothesis, these mean 
vectors are assumed to be equal. 

The value of T2 is computed using the formula 

( ) ( )T N N
N N

y y S y yp N N sp, 1 2 2
2

1 2
1

1 2
1 2

1 2+ −
−=

+
− ′ −  

where y1  and y2  are the vectors sample mean vectors of the two groups and  is the pooled 
sample variance-covariance matrix. 

Spl

To calculate power we need the non-centrality parameter for this distribution. This non-centrality 
parameter is defined as follows 

( ) ( )λ μ μ μ=
+

− μ′ −

=
+

−N N
N N
N N

N N

1 2
1 2
1 2

1 2

1 2
1

1 2

2

Σ

Δ
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where 

( ) ( )Δ Σ= − ′ −−μ μ μ μ1 2
1

1 2  
We define Δ  as effect size because it provides a expression for the magnitude of the standardized 
difference between the null and alternative means. 

Using this non-centrality parameter, the power of the Hotelling’s T2 may be calculated for any 
value of the means and standard deviations. Since there is a simple relationship between the non-
central T2 and the non-central F, calculations are actually based on the non-central F using the 
formula 

( )β α λ= ′ < ′Pr , , ,F F df df1 2  

where 

df p
df N N p

1
2 1 2
=
= + − −1

 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data and Covariance tabs. To find out more about using the other tabs such as Axes/Legend/Grid, 
Plot Text, or Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains many of the options that you will be primarily concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for.  

When you choose to solve for N (one-group) or N1 (two-group), the program searches for the 
lowest sample size that meets the alpha and power criterion you have specified.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 
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A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group one. For the one-group case, this is 
the value of N. For the two-group case, this is the value of N1.  

You may enter a range of values such as ‘10 to 100 by 10’. 

N2 (Sample Size Group 2) 
In the two-group case, enter the value (or range of values) for the sample size of group two. In the 
one-group case, this value is ignored. 

• Use R 
Enter ‘Use R’ if you want N2 to be calculated using the formula: N2=[R x N1] where R is the 
Sample Allocation Ratio and [Y] is the first integer >= Y. For example, if you want N1=N2, 
select ‘Use R’ here and set R equal to one. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between sample sizes. This value is 
only used when N2 is set to 'Use R'. When used, N2 is calculated from N1 using the formula: 
N2=[R x N1] where [Y] is the next integer >= Y. Note that setting R = 1.0 forces N2 = N1. 

Note that this value is only used in the two-group case. 

Groups 

Number of Groups 
Specify whether the analysis is for one group or two groups. If ‘1’ is selected, N1 is used as the 
sample size (N) and the values of N2 and R are ignored. 

Effect Size – Response Variables 

Number of Response Variables 
Enter the number of response (dependent or Y) variables. For a true multivariate test, this value 
will be greater than one. 
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The number of mean differences entered in the Mean Differences box or in the Means column 
must equal this value. If you read-in the covariance matrix from the spreadsheet, the number of 
columns specified must equal this value. 

Effect Size – Mean Differences 

Mean Differences (= # of Response Vars) 
Enter a list of values representing the mean differences under the alternative hypothesis. Under 
the null hypothesis, these values are all zero. The values entered here represent the differences 
that you want the experiment (study) to be able to detect. 

Note that the number of values must match the number of Response Variables. 

If you like, you can enter these values in a column on the spreadsheet. This column is specified 
using the ‘Means Column’ option. When that option is specified, any values entered here are 
ignored. 

Means Differences Column 
Use this option to specify the spreadsheet column containing the hypothesized mean differences. 
The response variables are represented down the rows. The number of rows with data must equal 
the number of response variables. When this option is used, the 'Mean Differences' box is 
ignored. 

You can obtain the spreadsheet by selecting ‘Window’, then ‘Data’, from the menus. 

Effect Size – Mean Multiplier 

K (Means Multipliers) 
These values are multiplied times the mean differences to give you various effect sizes. A 
separate power calculation is generated for each value of K. If you want to ignore this setting, 
enter ‘1’. 

Covariance Tab 
This tab specifies the covariance matrix. 

Covariance Matrix Specification 

Specify Which Covariance Matrix Input Method to Use 
This option specifies which method will be used to define the covariance matrix. 

• Standard Deviation and Correlation 
This option generates a covariance matrix based on the settings for the standard deviation 
(SD) and the pattern of correlations as specified in the Correlation Pattern and R options. 

• Covariance Matrix Variables 
When this option is selected, the covariance matrix is read in from the columns of the 
spreadsheet. This is the most flexible method, but specifying a covariance matrix is tedious. 
You will usually only use this method when a specific covariance is given to you.  
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Note that the spreadsheet is shown by selecting the menus: ‘Window’ and then ‘Data’. 

Covariance Matrix Specification- 
Input Method = ‘Standard Deviation 
and Correlation’ 
The parameters in this section provide a flexible way to specify Σ , the covariance matrix. 
Because the covariance matrix is symmetric, it can be represented as 

Σ =
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where p is the number of response variables. 

Thus, the covariance matrix can be represented with complete generality by specifying the 
standard deviations σ σ σ1 2, , ,L p  and the correlation matrix 

R
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SD (Common Standard Deviation) 
This value is used to generate the covariance matrix. This option specifies a single standard 
deviation to be used for all response variables. The square of this value becomes the diagonal 
elements of the covariance matrix. Since this is a standard deviation, it must be greater than zero. 

This option is only used when the first Covariance Matrix Input Method is selected. 

R (Correlation) 
Specify a correlation to be used in calculating the off-diagonal elements of the covariance matrix. 
Since this is a correlation, it must be between -1 and 1. This option is only used when the first 
Covariance Matrix Input Method is selected. 
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Specify Correlation Pattern 
This option specifies the pattern of the correlations in the variance-covariance matrix. Two 
options are available: 

• Constant 
The value of R is used as the constant correlation. For example, if R = 0.6 and p = 6, the 
correlation matrix would appear as 

R =

⎡

⎣
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⎢
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⎢
⎢
⎢

⎤

⎦
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1 0 600 0 600 0 600 0 600 0 600
0 600 1 0 600 0 600 0 600 0 600
0 600 0 600 1 0 600 0 600 0 600
0 600 0 600 0 600 1 0 600 0 600
0 600 0 600 0 600 0 600 1 0 600
0 600 0 600 0 600 0 600 0 600 1

. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

 

• 1st-Order Autocorrelation 
The value of R is used as the base autocorrelation in a first-order, serial correlation pattern. 
For example, R = 0.6 and p = 6, the correlation matrix would appear as 

R =

⎡
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⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 600 0 360 0 216 0130 0 078
0 600 1 0 600 0 360 0 216 0130
0 360 0 600 1 0 600 0 360 0 216
0 216 0 360 0 600 1 0 600 0 360
0130 0 216 0 360 0 600 1 0 600
0 078 0130 0 216 0 360 0 600 1

. . . . .
. . . .
. . . . .
. . . . .
. . . . .
. . . . .

.

 

This pattern is often chosen as the most realistic when little is known about the correlation 
pattern and the responses variables are measured across time. 

Covariance Matrix Specification- 
Input Method = ‘Covariance Matrix 
Variables’ 
This option instructs the program to read the covariance matrix from the spreadsheet. 

Spreadsheet Columns Containing the Covariance Matrix 
This option designates the columns on the current spreadsheet holding the covariance matrix. It is 
used when the ‘Specify Which Covariance Matrix Input Method to Use’ option is set to 
Covariance Matrix Variables. The number of columns and number of rows must match the 
number of response variable at which the subjects are measured. 
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Example 1 – Power in the One-Group Case and 
Validation 
Rencher (1998) page 106 presents an example of power calculations for the one-group case in 
which the mean differences are both 1.88 and the covariance matrix is 

Σ =
⎡

⎣
⎢

⎤

⎦
⎥

56 78 1198
1198 2928

. .

. .
 

When N is 25 and the significance level is 0.05, Rencher calculated the power to be 0.3397.  

To allow for a nice chart, we will calculate the power for several samples sizes and for K equal 
1.0 and 1.5.  

For your convenience, the covariance matrix has been stored in a spreadsheet called 
RENCHER2.S0. You must open that spreadsheet to run this example.   

Setup 
In order to run this example the Rencher2.S0 data must be loaded into the spreadsheet. To open 
the spreadsheet window from the PASS Home Window, click on the Tools menu and select 
Spreadsheet. Once the spreadsheet is open, the Rencher2.S0 data is loaded by clicking the File 
menu and selecting Open. The Rencher2.S0 file is then selected from the DATA folder (the 
default location for this folder is C:\...\[My] Documents\NCSS\PASS2008). Then click Open. 

This section presents the values of each of the parameters needed to run this example. From the 
PASS Home window, load the Hotelling’s T2 procedure window by clicking on Means, then 
Multivariate Means, then Hotelling’s T-Squared. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................5 15 25 35 50 75 100 150 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Number of Groups...................................1  
Number of Response Variables ..............2 
Mean Differences ....................................1.88  1.88 
Mean Differences Column.......................blank  
K (Means Multiplier) ................................1.0 1.5 

Covariance Tab 
Specify Covariance Method ....................2) Covariance Matrix Variables  
Spreadsheet Columns.............................VC1-VC2 
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Reports Tab 
Show Numeric Reports ...........................Checked 
Show Means Matrix.................................Checked 
Show Covariance Matrix .........................Checked 
Show Definitions .....................................Checked 
Number of Summary Statements............1 
Show Plot ................................................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Report 
 

  Multiply    Number  
  Means   Effect of Y's  
Power N By Alpha Beta Size (DF1) DF2 
0.0737 5 1.0000 0.0500 0.9263 0.38 2 3 
0.1996 15 1.0000 0.0500 0.8004 0.38 2 13 
0.3379 25 1.0000 0.0500 0.6621 0.38 2 23 
0.4707 35 1.0000 0.0500 0.5293 0.38 2 33 
0.6409 50 1.0000 0.0500 0.3591 0.38 2 48 
0.8311 75 1.0000 0.0500 0.1689 0.38 2 73 
0.9282 100 1.0000 0.0500 0.0718 0.38 2 98 
0.9895 150 1.0000 0.0500 0.0105 0.38 2 148 
0.1040 5 1.5000 0.0500 0.8960 0.38 2 3 
0.4033 15 1.5000 0.0500 0.5967 0.38 2 13 
0.6635 25 1.5000 0.0500 0.3365 0.38 2 23 
0.8302 35 1.5000 0.0500 0.1698 0.38 2 33 
0.9475 50 1.5000 0.0500 0.0525 0.38 2 48 
0.9943 75 1.5000 0.0500 0.0057 0.38 2 73 
0.9995 100 1.5000 0.0500 0.0005 0.38 2 98 
1.0000 150 1.5000 0.0500 0.0000 0.38 2 148 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Note that Power = 1 - Beta. 
N is the sample size, the number of subjects in the experiment or study. 
K is a constant by which all means are multiplied. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. Note that Beta = 1 - Power. 
Effect Size is a standardized version of T2 under the alternative hypothesis. 
DF1 is the first degrees of freedom of T2. It is the number of response variables. 
DF2 is the second degrees of freedom of T2. 
 
Summary Statements 
A sample size of 5 achieves 7% power to detect an effect size of 0.38 which represents the 
differences between the null and alternative means of the 2 response variables, adjusted by the 
variance-covariance matrix. The one-sample Hotelling's T-squared test statistic is used with a 
significance level of 0.0500. 
  

This report gives the power for each value of N and K. Notice that the power for K = 1 and N = 25 
is 0.3379. This is slightly different than the 0.3397 obtained by interpolation by Rencher.  
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Means Matrix 
 

Means Matrix Section 
Name Mean 
Y1 1.8800 
Y2 1.8800 
 

This report shows the mean differences that were read in. When a Means Multiplier, K, is used, 
each value of K is multiplied times each of these values. 

Variance-Covariance Matrix Section 
 

Variance-Covariance Matrix Section 
 

Response Y1 Y2 
Y1 7.5353 0.2938 
Y2 0.2938 5.4111 

 

This report shows the variance-covariance matrix that was read in from the spreadsheet or 
generated by the settings of on the Covariance tab. The standard deviations are given on the 
diagonal and the correlations are given off the diagonal. 

Chart Section 
 

Power vs N1 by K with Alpha=0.05
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This chart shows the relationship between power and N for each value of K.  
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Example 2 – Power in the Two-Group Case and 
Validation 
Rencher (1998) pages 107-108 presents an example of power calculations for the two-group case 
in which the mean differences and covariance matrix are 
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When N1 = N2 =  10, 12, 14, 16 and the significance level is 0.05, Rencher calculated the power 
to be 0.6438, 0.7520, 0.8329, 0.8936, respectively.  

For your convenience, the mean differences and covariance matrix have been stored in a 
spreadsheet called RENCHER2.S0. You must open that spreadsheet to run this example. 

Setup 
In order to run this example the Rencher2.S0 data must be loaded into the spreadsheet. To open 
the spreadsheet window from the PASS Home Window, click on the Tools menu and select 
Spreadsheet. Once the spreadsheet is open, the Rencher2.S0 data is loaded by clicking the File 
menu and selecting Open. The Rencher2.S0 file is then selected from the DATA folder (the 
default location for this folder is C:\...\[My] Documents\NCSS\PASS2008). Then click Open. 

This section presents the values of each of the parameters needed to run this example. From the 
PASS Home window, load the Hotelling’s T2 procedure window by clicking on Means, then 
Multivariate Means, then Hotelling’s T-Squared. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................10 12 14 16 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Number of Groups...................................2  
Number of Response Variables ..............3 
Mean Differences ....................................blank 
Mean Differences Column ......................Differences  
K (Means Multiplier) ................................1.0 

Covariance Tab 
Specify Covariance Method ....................2) Covariance Matrix Variables  
Spreadsheet Columns.............................VC_1-VC_3 
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Reports Tab 
Show Numeric Results............................Checked 
Show Means Matrix.................................Checked 
Show Covariance Matrix .........................Checked 
Show Definitions .....................................Checked 
Number of Summary Statements............1 
Show Plot ................................................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Report 
 

  Multiply    Number  
  Means   Effect of Y's  
Power N By Alpha Beta Size (DF1) DF2 
0.6442 10 10 1.0000 0.0500 0.3558 1.41 3 16 
0.7546 12 12 1.0000 0.0500 0.2454 1.41 3 20 
0.8361 14 14 1.0000 0.0500 0.1639 1.41 3 24 
0.8936 16 16 1.0000 0.0500 0.1064 1.41 3 28 
  

Note that the power values obtained here are very close to those obtained by Rencher. We feel 
that our results are more accurate since Rencher’s results were obtained by interpolation from 
Tang’s tables.  
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Chapter 605 

Multivariate 
Analysis of 
Variance 
(MANOVA) 
Introduction 
This module calculates power for multivariate analysis of variance (MANOVA) designs having 
up to three factors. It computes power for three MANOVA test statistics: Wilks’ lambda, Pillai-
Bartlett trace, and Hotelling-Lawley trace.   

MANOVA is an extension of common analysis of variance (ANOVA). In ANOVA, differences 
among various group means on a single-response variable are studied. In MANOVA, the number 
of response variables is increased to two or more. The hypothesis concerns a comparison of 
vectors of group means. The multivariate extension of the F-test is not completely direct. Instead, 
several test statistics are available. The actual distributions of these statistics are difficult to 
calculate, so we rely on approximations based on the F-distribution. 

Assumptions 
The following assumptions are made when using MANOVA to analyze a factorial experimental 
design.  

1.  The response variables are continuous. 

2.  The residuals follow the multivariate normal probability distribution with mean zero and 
constant variance-covariance matrix. 

3.  The subjects are independent. 
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Technical Details 

General Linear Multivariate Model 
This section provides the technical details of the MANOVA designs that can be analyzed by 
PASS. The approximate power calculations outlined in Muller, LaVange, Ramey, and Ramey 
(1992) are used. Using their notation, for N subjects, the usual general linear multivariate model 
is 

( ) ( ) ( )
Y XM R

N p N q p N p× × × ×
= +  

where each row of the residual matrix R is distributed as a multivariate normal 

( ) ( )row R Nk p~ ,0 Σ  

Note that p is the number of response variables and q is the number of design variables, Y is the 
matrix of responses, X is the design matrix, M is the matrix of regression parameters (means), and 
R is the matrix of residuals. 

Hypotheses about various sets of regression parameters are tested using  

H
a p0 0: Θ Θ
×
=  

CM
a q p× ×

=Θ  

where C is an orthonormal contrast matrix and Θ0  is a matrix of hypothesized values, usually 
zeros. Note that C defines contrasts among the factor levels. Tests of the various main effects and 
interactions may be constructed with suitable choices of C. These tests are based on  

( )$ ' 'M X X X= − Y  

$ $Θ = CM  

( ) ( )[ ] ( )H C X X C
p p×

− −
= −

′
−$ ' ' $Θ Θ Θ Θ0

1

0  

( )E N
p p×

= ⋅ −$Σ r  

T H E
p p×

= +  

where r is the rank of X.  

Wilks’ Lambda Approximate F Test 
The hypothesis  may be tested using Wilks’ likelihood ratio statistic W. This statistic 
is computed using 

H0:Θ Θ= 0

W ET= −1  
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An F approximation to the distribution of W is given by 

( )
F df

dfdf df1 2

1

21,
/

/
=

−
η
η

 

where 

λ = df Fdf df1 1 2,  

η = −1 1W g/  

df ap1=  

( ) ( )[ ] ( )df g N r p a ap2 1 2= − − − + − −/ /2 2  

g a p
a p

=
−

+ −
⎛
⎝
⎜

⎞
⎠
⎟

2 2

2 2

1
24

5
 

Pillai-Bartlett Trace Approximate F Test 
The hypothesis  may be tested using the Pillai-Bartlett Trace. This statistic is 
computed using 

H0:Θ Θ= 0

( )T tr HTPB =
−1  

A noncentral F approximation to the distribution of T  is given by PB

( )
F df

dfdf df1 2

1

21,
/

/
=

−
η
η

 

where 

λ = df Fdf df1 1 2,  

η =
T
s
PB

 

( )s a= min , p

0

 
df ap1=  

( )[ ]df s N r p s2 = − − +  

Hotelling-Lawley Trace Approximate F Test 
The hypothesis  may be tested using the Hotelling-Lawley Trace. This statistic is 
computed using 

H0:Θ Θ=

( )T tr HEHL =
−1  
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An F approximation to the distribution of T  is given by HL

( )
F df

dfdf df1 2

1

21,
/

/
=

−
η
η

 

where 

λ = df Fdf df1 1 2,  

η =
+

T
s
T

s

HL

HL1
 

( )s a= min , p  
df ap1=  

( )[ ]df s N r p s2 = − − +  

M (Mean) Matrix 
In the general linear multivariate model presented above, M represents a matrix of regression 
coefficients. Although other structures and interpretations of M are possible, in this module we 
assume that the elements of M are the cell means. The rows of M represent the factor categories 
and the columns of M represent the response variables. (Note that this is just the opposite of the 
orientation used when entering M into the spreadsheet.)  

The q rows of M represent the q groups into which the subjects can be classified. For example, if 
a design includes three factors with 2, 3, and 4 categories, the matrix M would have 2 x 3 x 4 = 24 
rows. That is, q = 24. 

Consider now an example in which q = 3 and p = 4. That is, there are three groups into which 
subjects can be placed. Each subject has four made. The matrix M would appear as follows. 

M =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

μ μ μ μ
μ μ μ μ
μ μ μ μ

11 12 13 14

21 22 23 24

31 32 33 34

 

For example, the element μ12  is the mean of the second response of subjects in the first group. To 
calculate the power of this design, you would need to specify appropriate values of all twelve 
means. 

C Matrix – Contrasts 
The C matrix is comprised of contrasts that are applied to the rows of M. You do not have to 
specify these contrasts. They are generated for you. You should understand that a different C 
matrix is generated for each term in the model.  
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Generating the C Matrix when there are Multiple Between Factors 
Generating the C matrix when there is more than one factor is more difficult. We use the method 
of O’Brien and Kaiser (1985) which we briefly summarize here. 

Step 1. Write a complete set of contrasts suitable for testing each factor separately. For example, 
if you have three factors with 2, 3, and 4 categories, you might use 

&&CB1
1
2

1
2

=
−⎡

⎣⎢
⎤

⎦⎥
, &&CB2

2
6

1
6

1
6

0 1
2

1
2

=

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, and &&CB3

3
12

1
12

1
12

1
12

0 2
6

1
6

1
6

0 0 1
2

1
2

=

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

. 

Step 2. Define appropriate  matrices corresponding to each factor. These matrices comprised 
of one row and k columns whose equal element is chosen so that the sum of its elements squared 
is one. In this example, we use 

Jk

J2
1
2

1
2

= ⎡

⎣⎢
⎤

⎦⎥
, J3

1
3

1
3

1
3

= ⎡

⎣⎢
⎤

⎦⎥
, J4

1
4

1
4

1
4

1
4

= ⎡

⎣⎢
⎤

⎦⎥
 

Step 3. Create the appropriate contrast matrix using a direct (Kronecker) product of either the  
matrix if the factor is included in the term or the  matrix when the factor is not in the term. 
Remember that the direct product is formed by multiplying each element of the second matrix by 
all members of the first matrix. Here is an example 

&&CBi

Ji

1 2
3 4

1 0 1
0 2 0
1 0 3

1 2 0 0 1 2
3 4 0 0 3 4
0 0 2 4 0 0
0 0 6 8 0 0
1 2 0 0 3 6
3 4 0 0 9 12

⎡

⎣
⎢

⎤

⎦
⎥ ⊗

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

− −
− −

− −
− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

As an example, we will compute the C matrix suitable for testing factor B2 

C J C JB B2 2 2= ⊗ ⊗&&
4  
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Expanding the direct product results in 
C J C JB B2 2 2 4

1
2

1
2

2
6

1
6

1
6

0 1
2

1
2

1
4

1
4

1
4

1
4

2
12

2
12

1
12

1
12

1
12

1
12

0 0 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

2
48

2
48

1
48

1
48

1
48

1
48

2
48

2
48

1
48

1
48

1
48

1
48

2

= ⊗ ⊗

= ⎡

⎣⎢
⎤

⎦⎥
⊗

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⊗ ⎡

⎣⎢
⎤

⎦⎥

=

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⊗ ⎡

⎣⎢
⎤

⎦⎥

=

− − − − −

&&

48
2

48
1
48

1
48

1
48

1
48

2
48

2
48

1
48

1
48

1
48

1
48

0 0 1
16

1
16

1
16

1
16

0 0 1
16

1
16

1
16

1
16

0 0 1
16

1
16

1
16

1
16

0 0 1
16

1
16

1
16

1
16

− − −

− − − − − − − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

Similarly, the C matrix suitable for testing interaction B2B3 is 

C J C CB B B B2 3 2 2 3= ⊗ ⊗&& &&  

We leave the expansion of this matrix PASS, but we think you have the idea. 

Power Calculations 
To calculate statistical power, we must determine distribution of the test statistic under the 
alternative hypothesis which specifies a different value for the regression parameter matrix B. The 
distribution theory in this case has not been worked out, so approximations must be used. We use 
the approximations given by Muller and Barton (1989) and Muller, LaVange, Ramey, and Ramey 
(1992). These approximations state that under the alternative hypothesis,  is distributed as a 
noncentral F random variable with degrees of freedom and noncentrality shown above. The 
calculation of the power of a particular test may be summarized as follows. 

FU

1.  Specify values of X M C, , , ,Σ Θand 0 . 

2.  Determine the critical value using ( )F FINV df dfcrit = −1 1 2α , , , where FINV( ) is the 
inverse of the central F distribution and α is the significance level.  

3.  Compute the noncentrality parameter λ . 

4.  Compute the power as  

( )Power NCFPROB F df dfcrit= −1 1, , ,2 λ  

where NCFPROB( ) is the noncentral F distribution.  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data and Covariance tabs. To find out more about using the other tabs such as Axes, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains many of the options that you will be primarily concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for. If you choose to solve for n (sample size), 
you must also specify which test statistic you want to use. 

When you choose to solve for n, the program searches for the lowest sample size that meets the 
alpha and beta criterion you have specified for each of the terms. If you do not want a term to be 
used in the search, set its alpha and beta values to 0.99. 

Also, when the ‘= n’s’ box is not checked, the search is made using unequal group sample sizes. 
The relative proportion of the sample in each group is set by the values of n given in the Subjects 
Per Group box. For example, if your design has three groups and you entered ‘1 1 2’ in the 
Subjects Per Group box, the search will only consider designs in which the size of the last group 
is twice the rest. That is, it will consider ‘2 2 4’, ‘3 3 6’, ‘4 4 8’, etc. 

Note: no plots are generated when you solve for n. 

Sample Size 

n (Subjects Per Group) 
Specify one or more values for the number of subjects per group. The total sample size is the sum 
of the individual group sizes across all groups. 

You can specify a list like ‘2 4 6’. The items in the list may be separated with commas or blanks. 
The interpretation of the list depends on the =n's check box. When the =n's box is checked, a 
separate analysis is calculated for each value of n. When the =n's box is not checked, PASS uses 
the n’s as the actual group sizes. In this case, the number of items entered must match the number 
of groups in the design. 

When you choose to solve for n and the = n’s box is not checked, the search is made using 
unequal group sample sizes. The relative proportion of the sample in each group is set by the 
values of n given in this box. For example, if your design has three groups and you enter ‘1 1 2’ 
here, the search will only consider designs in which the size of the last group is twice the rest. 
That is, it will consider ‘2 2 4’, ‘3 3 6’, ‘4 4 8’, etc. 

= n’s 
This option controls whether the number of subjects per group is to be equal for all groups or not. 
When checked, the number of subjects per group is equal for all groups. A list of values such as 
‘5 10 15’ represents three designs: one with five per group, one with ten per group, and one with 
fifteen per group.  
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When this option is not checked, the n’s are assumed to be unequal. A list of values represents the 
size of the individual groups. For example, ‘5 10 15’ represents a single, three-group design with 
five in the first group, ten in the second group, and fifteen in the third group. 

Effect Size – Response Variables 

Number of Response Variables 
Enter the number of response variables in your design. For a true MANOVA, this value must be 
greater than one. The number of rows in the means matrix must equal this value. If you specify a 
covariance matrix, the number of columns specified must equal this value. 

Effect Size – Means 

Means Matrix 
Use this option to the specify spreadsheet columns containing a hypothesized means matrix that is 
used to specify the alternative hypothesis. You can obtain the spreadsheet by selecting ‘Window’, 
then ‘Data’, from the menus. 

The factors are represented across the columns of the spreadsheet and the response variables are 
represented down the rows. The number of columns specified must equal the number of groups. 
The number of rows with data in these columns must equal the number of response variables. For 
example, suppose you are designing an experiment that is to have two factors (A and B) and two 
response variables (Y1 and Y2). Suppose each of the factors has two levels. The four columns of 
the spreadsheet would represent 

A1B1 A1B2 A2B1 A2B2. 

The two rows of the spreadsheet would represent 

Y1 

Y2 

K (Means Multipliers) 
These values are multiplied times the means matrix to give you various effect sizes. A separate 
power calculation is generated for each value of K. These values become the horizontal axis in 
the second power chart. If you want to ignore this setting, enter ‘1’. 

Effect Size – Main Effects & 
Interactions 

Labels 
Specify a label for this factor. Although we suggest that only a single letter be used, the label can 
consist of several letters. When several letters are used, the labels for the interactions may be 
extra long and confusing. Of course, you must be careful not to use the same label for two factors. 

One of the easiest sets of labels is to use A, B, and C for the factors. 

Levels 
Specify the number of levels (categories) in this factor. Typical values are from 2 to 8. Set this to 
a blank (or 0) to ignore the factor in the design. 
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Alpha 
These options specify the probability of a type-I error (alpha) for each factor and interaction. A 
type-I error occurs when you reject the null hypothesis of zero effects when in fact they are zero. 
Since they are probabilities, alpha values must be between zero and one. Historically, the value of 
0.05 has been used for alpha. This value may be interpreted as meaning that about one test in 
twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents 
the risk of a type-I error you are willing to take in your experimental situation.  

You can specify different alpha values for different terms. For example, although you have three 
terms in an experiment, you might be mainly interested in only one of them. Hence, you could 
increase the alpha level of the tests of the other terms and thereby increase their power. Also, you 
may want to increase the alpha level of the interaction terms, as these will often have poor power 
otherwise. 

Power or Beta 
These options specify the power or for beta (depending on the chosen setting) for each factor and 
interaction.   

Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Covariance Tab 
This tab specifies the covariance matrix. 

Covariance Matrix Specification 

Specify Which Covariance Matrix Input Method to Use 
This option specifies which method will be used to define the covariance matrix. 

• Standard Deviation and Correlation 
This option generates a covariance matrix based on the settings for the standard deviation 
(SD) and the pattern of correlations as specified in the Correlation Pattern and R options. 

• Covariance Matrix Variables 
When this option is selected, the covariance matrix is read in from the columns of the 
spreadsheet. This is the most flexible method, but specifying a covariance matrix is tedious. 
You will usually only use this method when a specific covariance is given to you.  

Note that the spreadsheet is shown by selecting the menus: ‘Window’ and then ‘Data’. 
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Covariance Matrix Specification- 
Input Method = ‘Standard Deviation 
and Correlation’ 
The parameters in this section provide a flexible way to specify Σ , the covariance matrix. 
Because the covariance matrix is symmetric, it can be represented as 

Σ =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
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⎥
⎥
⎥
⎥
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⎥
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where p is the number of response variables. 

Thus, the covariance matrix can be represented with complete generality by specifying the 
standard deviations σ σ σ1 2, , ,L p  and the correlation matrix 

R

p

p

p p

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1
1

1

12 1

12 2

1 2

ρ ρ
ρ ρ

ρ ρ

L

L

M M O M

L

. 

SD (Standard Deviation) 
This value is used to generate the covariance matrix. This option specifies a standard deviation to 
be used for all response variables. The square of this value becomes the diagonal elements of the 
covariance matrix. Since this is a standard deviation, it must be greater than zero. 

This option is only used when the first Covariance Matrix Input Method is selected. 

R (Correlation) 
Specify a correlation to be used in calculating the off-diagonal elements of the covariance matrix. 
Since this is a correlation, it must be between -1 and 1. This option is only used when the first 
Covariance Matrix Input Method is selected. 

Specify Correlation Pattern 
This option specifies the pattern of the correlations in the variance-covariance matrix. Two 
options are available: 
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• Constant 
The value of R is used as the constant correlation. For example, if R = 0.6 and p = 6, the 
correlation matrix would appear as 

R =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 600 0 600 0 600 0 600 0 600
0 600 1 0 600 0 600 0 600 0 600
0 600 0 600 1 0 600 0 600 0 600
0 600 0 600 0 600 1 0 600 0 600
0 600 0 600 0 600 0 600 1 0 600
0 600 0 600 0 600 0 600 0 600 1

. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

 

• 1st Order Autocorrelation 
The value of R is used as the base autocorrelation in a first-order, serial correlation pattern. 
For example, R = 0.6 and p = 6, the correlation matrix would appear as 

R =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 600 0 360 0 216 0130 0 078
0 600 1 0 600 0 360 0 216 0130
0 360 0 600 1 0 600 0 360 0 216
0 216 0 360 0 600 1 0 600 0 360
0130 0 216 0 360 0 600 1 0 600
0 078 0130 0 216 0 360 0 600 1

. . . . .
. . . .
. . . . .
. . . . .
. . . . .
. . . . .

.

 

This pattern is often chosen as the most realistic when little is known about the correlation 
pattern and the responses variables are measured across time. 

Covariance Matrix Specification- 
Input Method = ‘Covariance Matrix 
Variables’ 
This option instructs the program to read the covariance matrix from the spreadsheet. 

Spreadsheet Columns Containing the Covariance Matrix 
This option designates the columns on the current spreadsheet holding the covariance matrix. It is 
used when the ‘Specify Which Covariance Matrix Input Method to Use’ option is set to 
Covariance Matrix Variables. The number of columns and number of rows must match the 
number of response variable at which the subjects are measured. 

Reports Tab 
This tab specifies which reports and graphs are displayed as well as their format. 

Select Output – Numeric Reports 

Test in Summary Statement(s) 
Indicate the test that is to be reported on in the Summary Statements. 
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Report Options 

Maximum Term-Order Reported 
Indicate the maximum order of terms to be reported on. Occasionally, higher-order interactions 
are of little interest and so they may be omitted. For example, enter a ‘2’ to limit output to 
individual factors and two-way interactions. 

Skip Line After 
The names of the terms can be too long to fit in the space provided. If the name contains more 
characters than this, the rest of the output is placed on a separate line. Enter ‘1’ when you want 
every term’s results printed on two lines. Enter ‘100’ when you want every variable’s results 
printed on one line. 

Example 1 – Determining Power 
Researchers are planning a study of the impact of a drug. They want to evaluate the differences in 
heart rate and blood pressure among three age groups: 20-40, 41-60, and over 60. They want to be 
able to detect a 10% change in heart rate and in blood pressure among the age groups. They plan 
to analyze the data using Wilks’ lambda.   

Previous studies have found an average heart rate of 93 with a standard deviation of 4 and an 
average blood pressure of 130 with a standard deviation of 5. The correlation between the two 
responses will be set at 0.7.  

From a heart rate of 93, a 10% reduction gives 84. They want to be able to detect age-group 
heart-rate means the range from 93 to 84. From a blood pressure of 130, a 10% reduction gives 
117. The want to be able to detect age-group blood-pressure means that range from 130 to 117. 
Hence, the means matrix that they will use is 

C1 C2 C3 
93 88 84 
130 124 117 

Base on the standard deviation settings that they chose to use, the covariance matrix will be 

C4 C5  
16 14  
14 25  

In order to understand the relationship between power and sample size, they decide to calculate 
power values for sample sizes between 2 and 12, using a 0.05 significance level.  

For your convenience, the Means Matrix and Covariance Matrix have been stored in a 
spreadsheet called PASSMANOVA1.S0. You can enter the above values yourself or you can 
open that spreadsheet. 

Setup 
In order to run this example the PASSMANOVA1.S0 data must be loaded into the spreadsheet. 
To open the spreadsheet window from the PASS Home Window, click on the Tools menu and 
select Spreadsheet. Once the spreadsheet is open, the PASSMANOVA1.S0 data is loaded by 
clicking the File menu and selecting Open. The PASSMANOVA1.S0 file is then selected from 
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the DATA folder (the default location for this folder is C:\...\[My] Documents\NCSS\PASS2008). 
Then click Open. 

This section presents the values of each of the parameters needed to run this example. From the 
PASS Home window, load the Multivariate Analysis of Variance (MANOVA) procedure 
window by clicking on Means, then Multivariate Means, then Multivariate Analysis of 
Variance (MANOVA). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................2 4 6 8 10 12 
=n’s..........................................................checked  
Number of Response Variables ..............2 
Means Matrix...........................................C1-C3  
K (Means Multipliers) ..............................0.5 1 1.5 
For Factor F1 
Label........................................................A 
Levels......................................................3 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 

Covariance Tab 
Specify Covariance Method ....................2) Covariance Matrix Variables  
Spreadsheet Columns.............................C4-C5 

Reports Tab 
Numeric Results by Term........................Checked 
Numeric Results by Design.....................Not Checked  
Wilks’ Lambda.........................................Checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
Means Matrix...........................................Checked 
Covariance Matrix ...................................Checked 
Test in Summary Statement ...................Wilks Lambda 
Show Plot 1 .............................................Checked 
Show Plot 2 .............................................Checked 
Test That is Plotted .................................Wilks Lambda 
Max Term-Order Plotted .........................2 
Max Term-Order Reported......................2 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Term Report 
 

Results for Factor A (Levels = 3) 
    Multiply  Approx. 
    Means Test F  
Test Power n N By Statistic Statistic DF1|DF2 Alpha Beta  
Wilks 0.0729 2 6 0.50 0.2115 0.27 4|4 0.0500 0.9271  
Wilks 0.1291 2 6 1.00 0.4654 0.87 4|4 0.0500 0.8709  
Wilks 0.2046 2 6 1.50 0.6185 1.62 4|4 0.0500 0.7954  
Wilks 0.1888 4 12 0.50 0.1562 0.74 4|16 0.0500 0.8112  
Wilks 0.5749 4 12 1.00 0.3853 2.51 4|16 0.0500 0.4251  
Wilks 0.8722 4 12 1.50 0.5443 4.78 4|16 0.0500 0.1278  
Wilks 0.3191 6 18 0.50 0.1437 1.17 4|28 0.0500 0.6809  
Wilks 0.8548 6 18 1.00 0.3648 4.02 4|28 0.0500 0.1452  
Wilks 0.9916 6 18 1.50 0.5241 7.71 4|28 0.0500 0.0084  
Wilks 0.4488 8 24 0.50 0.1382 1.60 4|40 0.0500 0.5512  
Wilks 0.9603 8 24 1.00 0.3554 5.51 4|40 0.0500 0.0397  
Wilks 0.9997 8 24 1.50 0.5147 10.61 4|40 0.0500 0.0003  
Wilks 0.5678 10 30 0.50 0.1351 2.03 4|52 0.0500 0.4322  
Wilks 0.9907 10 30 1.00 0.3500 7.00 4|52 0.0500 0.0093  
Wilks 1.0000 10 30 1.50 0.5092 13.49 4|52 0.0500 0.0000  
Wilks 0.6704 12 36 0.50 0.1331 2.46 4|64 0.0500 0.3296  
Wilks 0.9981 12 36 1.00 0.3465 8.48 4|64 0.0500 0.0019  
Wilks 1.0000 12 36 1.50 0.5057 16.37 4|64 0.0500 0.0000 
 
Summary Statements 
A MANOVA design with 1 factor and 2 response variables has 3 groups with 2 subjects each for a 
total of 6 subjects. This design achieves 7% power to test factor A if a Wilks' Lambda 
Approximate F Test is used with a 5% significance level. 
  

This report gives the power for each value of n and K. It is useful when you want to compare the 
powers of the terms in the design at a specific sample size. 

In this example, for K = 1, the design goal of 0.95 power is achieved for n = 8. 

The definitions of each of the columns of the report are as follows. 

Test 
This column identifies the test statistic. Since the power depends on the test statistic, you should 
make sure that this is the test statistic that you will use in your analysis. 

Power 
This is the computed power for the term. 

n 
The value of n is the number of subjects per group. 

N 
The value of N is the total number of subjects in the study. 

Multiply Means By 
This is the value of the means multiplier, K.  
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Test Statistic 
This is the value of the test statistic computed at the hypothesized values. The name of the 
statistic is identified in the Test column. Possible values are Wilks’ lambda, Pillai-Bartlett trace, 
or Hotelling-Lawley trace. The actual formulas used were given earlier in the Technical Details 
section. 

Approx. F Statistic 
This is the value of the F statistic that is used to compute the probability levels. This value is 
calculated using the hypothesized values. The actual formulas used were given earlier in the 
Technical Details section. 

DF1|DF2 
These are the numerator and denominator degrees of freedom of the approximating F distribution. 

Alpha 
Alpha is the significance level of the test. 

Beta 
Beta is the probability of failing to reject the null hypothesis when the alternative hypothesis is 
true. 

Means Matrix 
 

Means Matrix Section 
Name A1 A2 A3 
Y1 93.00 88.00 84.00 
Y2 130.00 124.00 117.00 
 

This report shows the means matrix that was read in. It may be used to get an impression of the 
magnitude of the difference among the means that is being studied. When a Means Multiplier, K, 
is used, each value of K is multiplied times each value of this matrix. 

Variance-Covariance Matrix Section 
 

Variance-Covariance Matrix Section 
 

Response Y1 Y2 
Y1 4.00 0.70 
Y2 0.70 5.00 

 

This report shows the variance-covariance matrix that was read in from the spreadsheet or 
generated by the settings of on the Covariance tab. The standard deviations are given on the 
diagonal and the correlations are given off the diagonal. 
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Plots Section 
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These chart show the relationship between power and n for each value of K. Note that high-order 
interactions may be omitted from the plot by reducing the Maximum Term-Order Plotted option 
on the Reports tab. 

 
Factor A Power vs K by n using Wilks' Lambda
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These charts show the relationship between power and K for each value of n. Remember that K is 
the mean multiplier. It changes the effect size. 
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Example 2 – Validation 
In this example, we will set p = 2, q = 3, alpha = 0.05, and n = 4. The mean and covariance 
matrices are  
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The X’X  matrix is  
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The matrix H is 
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Using these matrices, we can calculate the values of the test statistics. We will only calculate the 
results for Wilks’ lambda. We have 
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For an F with 4 and 16 degrees of freedom, the 5% critical value is 3.0069172799. Finally, 
compute the power using a noncentral F with 4 and 16 degrees of freedom and noncentrality 
parameter 

( )Power f F df df= > = = =

=

Pr | , , .
.

1 24 16 196836120
01370631884

λ
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In order to run this example in PASS, the values of the means and the covariance matrix (given 
above) must be entered on a spreadsheet. We have loaded these values into the database called 
PASSMANOVA2. Either enter the values yourself, or load the PASSMANOVA2 database which 
is located in the Data directory. The instructions below assume that the means are in columns C1-
C3, while the covariance matrix is in columns C4-C5.  

Setup 
In order to run this example the PASSMANOVA2.S0 data must be loaded into the spreadsheet. 
To open the spreadsheet window from the PASS Home Window, click on the Tools menu and 
select Spreadsheet. Once the spreadsheet is open, the PASSMANOVA2.S0 data is loaded by 
clicking the File menu and selecting Open. The PASSMANOVA2.S0 file is then selected from 
the DATA folder (the default location for this folder is C:\...\[My] Documents\NCSS\PASS2008). 
Then click Open. 

This section presents the values of each of the parameters needed to run this example. From the 
PASS Home window, load the Multivariate Analysis of Variance (MANOVA) procedure 
window by clicking on Means, then Multivariate Means, then Multivariate Analysis of 
Variance (MANOVA). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta  
n (Subjects Per Group) ...........................4 
=n’s..........................................................checked  
Number of Response Variables ..............2 
Means Matrix...........................................C1-C3  
K (Means Multipliers) ..............................1 
For Factor F1 
Label........................................................A 
Levels......................................................3 
Alpha .......................................................0.05 
Power ...................................................... Ignored since this is the Find setting 

Covariance Tab 
Specify Covariance Method ....................2) Covariance Matrix Variables  
Spreadsheet Columns.............................C4-C5 

Reports Tab 
Numeric Results by Term........................Checked 
Numeric Results by Design.....................Not Checked  
Wilks’ Lambda.........................................Checked 
Pillai-Bartlett ............................................Not checked 
Hotelling-Lawley......................................Not checked 
Means Matrix...........................................Checked 
Covariance Matrix ...................................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Term Report 
 

Results for Factor A (Levels = 3) 
    Multiply  Approx. 
    Means Test F  
Test Power n N By Statistic Statistic DF1|DF2 Alpha Beta  
Wilks 0.1371 4 12 1.0000 0.7929 0.4921 4|16 0.0500 0.8629  
  

As you can see, the power computed here matches the results we computed manually. 
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Chapter 610 

One-Sample or 
Paired T-Test for 
Microarray Data 
Introduction 
This chapter describes how to estimate power and sample size (number of arrays) for paired and 
one sample microarray studies using the PASS: One-Sample or Paired T-Test for Microarray 
Data procedure. False discovery rate and experiment-wise error rate control methods are available 
in this procedure. Values that can be varied in this procedure are power, false discovery rate and 
experiment-wise error rate, sample size (number of arrays), the minimum mean difference 
detected, the standard deviation, and in the case of false discovery rate control, the number of 
genes with minimum mean difference.  

Paired Design (Two-Channel Arrays) 
The paired design is often used in two-channel experiments when the gene expression 
comparison to be made involves a natural pairing of experimental units.  

As an example, suppose 6 cell samples will be available for comparison. A portion of each of the 
6 cell samples (before treatment) is to be reserved as a control. The same treatment will then be 
given to each of the 6 remaining portions of the samples. It is of interest to determine the genes 
that are differentially expressed when the treatment is given. In this scenario there is a natural 
before/after treatment pairing for each sample. The reserved control portions of each sample will 
be labeled with Cyanine 3 (Cy3, green) dye, while the treatment portions are to be labeled with 
Cyanine 5 (Cy5, red) dye. From each sample, the labeled control and the labeled treatment 
portions will be mixed and exposed to an array. The control and treatment portions compete to 
bind at each spot. The expression of treatment and control samples for each gene will be 
measured with laser scanning. A pre-processing procedure is then used to obtain expression 
difference values for each gene. In this example, the result will be 6 relative expression values 
(e.g., Log2(Post / Pre)) for each gene represented on the arrays. 
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Paired Design, Six Arrays 
Channel 1:    
Cyanine 5     
(Cy5, red) 

Channel 2:      
Cyanine 3       

(Cy3, green) 

Sample 1 

Post-
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Pre-
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Post-
Treatment 

Pre-
Treatment 

Sample 4 
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Treatment 
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Treatment 

Pre-
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Null and Alternative Hypotheses 
The paired test null hypothesis for each gene is H0: μdiff  = μ0, where μdiff is the true mean 
difference in expression for a particular gene, and μ0  is the hypothesized difference in expression. 
The alternative hypothesis may be any one of the following: Ha: μdiff  < μ0, Ha: μdiff  > μ0, or Ha: 
μdiff  ≠ μ0. The choice of the alternative hypothesis depends upon the goals of the research. For 
example, if the goal of the experiment is to determine which genes are differentially expressed, 
without regard to direction, the alternative hypothesis would be Ha: μdiff  ≠ μ0. If, however, the 
goal is to identify only genes which have increased expression after the treatment is applied, the 
alternative hypothesis would be Ha: μdiff  > μ0. A common value for μ0  in a paired sample 
experiment is 0. 

T-Test Formula 
For testing the hypothesis H0: μdiff  = μ0, the formula for the paired T-statistic is: 

n
s

 - x
 =T

paired

opaired
paired

μ
 

where pairedx  is mean difference in expression of n replicates for a given gene, μ0 is the 
hypothesized mean, and spaired is standard deviation of the differences of the n replicates. If the 
assumptions (described below) of the test are met, the distribution of Tpaired is the standard t 
distribution with n – 1 degrees of freedom. P-values are obtained from Tpaired by finding the 
proportion of the t distribution that is more extreme than Tpaired . 
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Assumptions 
The assumptions of the paired t-test are: 

1. The data are continuous (not discrete). Because of the large range of possible intensities, 
microarray expression values can be considered continuous. 

2. The data, i.e., the expression differences for the pairs, follow a normal probability 
distribution. This assumption can be examined in microarray data only if the number of 
arrays in the experiment is reasonably large (>100). 

3. The sample of pairs is a simple random sample from its population. Each individual in 
the population has an equal probability of being selected in the sample. If the samples 
used in the microarray experiment are not random, bias may easily be introduced into the 
results. 

One-Sample Design 
The one-sample design is the simplest of all designs. A single mRNA or cDNA sample is 
obtained from each experimental unit of a single group. Each sample is exposed to a single 
microarray, resulting in a single expression value for each gene for each unit of the group. The 
goal is to determine for each gene whether there is evidence that the expression is different from 
some null value. This design may be useful for determining whether or not each gene is expressed 
at all, or for comparing expression of each gene to a hypothesized expression level. 

Null and Alternative Hypotheses 
The one-sample null hypothesis for each gene is H0: μ  = μ0, where μ is the true mean expression 
for that particular gene, and μ0  is the hypothesized mean, or the mean to be compared against. 
The alternative hypothesis may be any one of the following: Ha: μ  < μ0, Ha: μ  > μ0, or Ha: μ  ≠ 
μ0. The choice of the alternative hypothesis depends upon the goals of the research. For example, 
if the goal of the experiment is to determine which genes are expressed above a certain level, the 
alternative hypothesis would be Ha: μ  > μ0. 

T-Test Formula 
For testing the hypothesis H0: μ  = μ0, the formula for the one-sample T-statistic is: 

n
s
 - x

 =T oμ
 

where x  is mean expression of n replicates for a given gene, μ0 is the hypothesized mean, and s 
is standard deviation of the n replicates. If the assumptions (described below) of the test are met, 
the distribution of T is the standard t distribution with n – 1 degrees of freedom. P-values are 
obtained from T by finding the proportion of the t distribution that is more extreme than T. 



610-4  One-Sample or Paired T-Test for Microarray Data 

Assumptions 
The assumptions of the one-sample T-test are: 

1. The data are continuous (not discrete). Because of the large range of possible intensities, 
microarray expression values can be considered continuous. 

2. The data follow the normal probability distribution. This assumption can be examined in 
microarray data only if the number of arrays in the experiment is reasonably large (>300). 

3. The sample is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample. If the samples used in 
the microarray experiment are not random, bias may easily be introduced into the results. 

Technical Details 

Multiple Testing Adjustment 
When a one-sample/paired T-test is run for a replicated microarray experiment, the result is a list 
of P-values (Probability Level) that reflect the evidence of difference in expression. When 
hundreds or thousands of genes are investigated at the same time, many ‘small’ P-values will 
occur by chance, due to the natural variability of the process. It is therefore requisite to make an 
appropriate adjustment to the P-value (Probability Level), such that the likelihood of a false 
conclusion is controlled.  

False Discovery Rate Table 
The following table (adapted to the subject of microarray data) is found in Benjamini and 
Hochberg’s (1995) false discovery rate article. In the table, m is the total number of tests, m0 is 
the number of tests for which there is no difference in expression, R is the number of tests for 
which a difference is declared, and U, V, T, and S are defined by the combination of the 
declaration of the test and whether or not a difference exists, in truth. 
 

           Declared       Declared 
       Not Different       Different       Total 

     A true difference in  
expression does not exist  U  V         m0 

     There exists a true  
difference in expression  T  S      m – m0  

    Total         m – R  R         m 

 
In the table, the m is the total number of hypotheses tested (or total number of genes) and is 
assumed to be known in advance. Of the m null hypotheses tested, m0 is the number of tests for 
which there is no difference in expression, R is the number of tests for which a difference is 
declared, and U, V, T, and S are defined by the combination of the declaration of the test and 
whether or not a difference exists, in truth. The random variables U, V, T, and S are unobservable. 
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Need for Multiple Testing Adjustment 
Following the calculation of a raw P-value (Probability Level) for each test, P-value adjustments 
need be made to account in some way for multiplicity of tests. It is desirable that these 
adjustments minimize the number of genes that are falsely declared different (V) while 
maximizing the number of genes that are correctly declared different (S). To address this issue the 
researcher must know the comparative value of finding a gene to the price of a false positive. If a 
false positive is very expensive, a method that focuses on minimizing V should be employed. If 
the value of finding a gene is much higher than the cost of additional false positives, a method 
that focuses on maximizing S should be used.  

Error Rates – P-Value Adjustment Techniques 
Below is a brief description of three common error rates that are used for control of false positive 
declarations. The commonly used P-value adjustment technique for controlling each error rate is 
also described.  

Per-Comparison Error Rate (PCER) – No Multiple Testing Adjustment 
The per-comparison error rate (PCER) is defined as 

PCER ( ) /E V m= , 

where E(V) is the expected number of genes that are falsely declared different, and m is the total 
number of tests. Preserving the PCER is tantamount to ignoring multiple testing altogether. If a 
method is used which controls a PCER of 0.05 for 1,000 tests, approximately 50 out of 1,000 
tests will falsely be declared significant. Using a method that controls the PCER will produce a 
list of genes that includes most of the genes for which there exists a true difference in expression 
(i.e., maximizes S), but it will also include a very large number of genes which are falsely 
declared to have a true difference in expression (i.e., does not appropriately minimize V). 
Controlling the PCER should be viewed as overly weak control of Type I error. 

To obtain P-values (Probability Levels) that control the PCER, no adjustment is made to the P-
value. To determine significance, the P-value is simply compared to the designated alpha. 

Experiment-Wise Error Rate (EWER) 
The experiment-wise error rate (EWER) is defined as 

EWER = Pr(V > 0), 

where V is the number of genes that are falsely declared different. Controlling EWER is 
controlling the probability that a single null hypothesis is falsely rejected. If a method is used 
which controls a EWER of 0.05 for 1,000 tests, the probability that any of the 1,000 tests 
(collectively) is falsely rejected is 0.05. Using a method that controls the EWER will produce a 
list of genes that includes a small (depending also on sample size) number of the genes for which 
there exists a true difference in expression (i.e., limits S, unless the sample size is very large). 
However, the list of genes will include very few or no genes that are falsely declared to have a 
true difference in expression (i.e., stringently minimizes V). Controlling the EWER should be 
considered very strong control of Type I error. 

Assuming the tests are independent, the well-known Bonferroni P-value adjustment produces 
adjusted P-values (Probability Levels) for which the EWER is controlled. The Bonferroni 
adjustment is applied to all m unadjusted P-values ( jp ) as 

min( ,1)j jp mp=% . 
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That is, each P-value (Probability Level) is multiplied by the number of tests, and if the result is 
greater than one, it is set to the maximum possible P-value of one. 

False Discovery Rate (FDR) 
The false discovery rate (FDR) (Benjamini and Hochberg, 1995) is defined as 

{ 0}FDR ( 1 ) ( | 0) Pr( 0)R
V VE E R R
R R>= = > > , 

where R is the number of genes that are declared significantly different, and V is the number of 
genes that are falsely declared different. Controlling FDR is controlling the expected proportion 
of falsely declared differences (false discoveries) to declared differences (true and false 
discoveries, together). If a method is used which controls a FDR of 0.05 for 1,000 tests, and 40 
genes are declared different, it is expected that 40*0.05 = 2 of the 40 declarations are false 
declarations (false discoveries). Using a method that controls the FDR will produce a list of genes 
that includes an intermediate (depending also on sample size) number of genes for which there 
exists a true difference in expression (i.e., moderate to large S). However, the list of genes will 
include a small number of genes that are falsely declared to have a true difference in expression 
(i.e., moderately minimizes V). Controlling the FDR should be considered intermediate control of 
Type I error. 

Multiple Testing Adjustment Comparison 
The following table gives a summary of the multiple testing adjustment procedures and error rate 
control. The power to detect differences also depends heavily on sample size.  
 

 Common  
Adjustment Error Rate   Control of        Power to 
Technique Controlled Type I Error Detect Differences 

    None        PCER    Minimal           High 

Bonferroni    EWER     Strict                      Low 

          Benjamini and     FDR   Moderate            Moderate/High 
 Hochberg 

 

Type I Error: Rejection of a null hypothesis that is true. 

Calculating Power  
When the standard deviation is unknown, the power is calculated as follows for a directional 
alternative (one-tailed test) in which Diff > 0. Additional details of calculating power in the one-
sample/paired scenario are found in the PASS chapter for One Mean. 

1. Find tα  such that , where ( )1− =T tdf α α ( )T tdf α  is the area under a central-t curve to 
the left of x and df = n - 1. 

2. Calculate: .
n

t=xa
σ

α  
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3. Calculate the non-centrality parameter: .

n

Diff=a σλ  

4. Calculate: .+

n

Diff-x=t a
a

a λσ  

5. Calculate: Power = ( )1− ′T tdf a,λ , where ( )′T xdf ,λ  is the area under a noncentral-t curve 
with degrees of freedom df and noncentrality parameter λ  to the left of x. 

Adjusting Alpha 

Experiment-wise Error Rate 
When the Bonferroni method will be used to control the experiment-wise error rate, EWERα , of all 
tests, the adjusted α , ADJα , for each test is given by 

Tests ofNumber 
= EWER

ADJ
αα  

ADJα is the value that is used in the power and sample size calculations. 

False Discovery Rate 
When a false discovery rate controlling method will be used to control the false discovery rate for 
the experiment, fdr, the adjusted α , ADJα , for each test is given by Jung (2005) and Chow, 
Shao, and Wang (2008): 

( )( )( )
( )( )fdrKN

fdrK=
T

ADJ −−
−

1
1 βα  

where K is the number of genes with differential expression, β is the probability of a Type II error 
(not declaring a gene significant when it is), and NT  is the total number of tests. 

ADJα is the value that is used in the power and sample size calculations. Because ADJα  depends 
on β, ADJα  must be solved iteratively when the calculation of power is desired. 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates at the beginning of this manual. 

Data Tab 
The Data tab contains most of the parameters and options involved in the power and sample size 
calculations. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and false 
discovery rate (or alpha) error level.  

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power for each Gene 
Power is the probability of rejecting each null hypothesis when it is false. Power is equal to 1-
Beta. 

The POWER for each gene represents that probability of detecting differential expression when it 
exists. 

RANGE: The valid range is from 0 to 1. 

RECOMMENDED: Popular values for power are 0.8 and 0.9. 

NOTES: You can enter a range of values such as .70 .80 .90 or .70 to .95 by .05. 

False Discovery (Alpha) Method 
A type I error is declaring a gene to be differentially expressed when it is not. The two most 
common methods for controlling type I error in microarray expression studies are false discovery 
rate (FDR) control and Experiment-wise Error Rate (EWER) control. 

• FDR 
Controlling the false discovery rate (FDR) controls the PROPORTION of genes that are 
falsely declared differentially expressed. For example, suppose that an FDR of 0.05 is used 
for 10000 tests (on 10000 genes). If differential expression is declared for 100 of the 10000 
genes, 5 of the 100 genes are expected to be false discoveries. 
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• EWER 
Controlling the experiment-wise error rate (EWER) controls the PROBABILITY of ANY 
false declarations of differential expression, across all tests. For example, suppose that an 
EWER of 0.05 is used for 10000 tests (on 10000 genes). If differential expression is declared 
for 100 of the 10000 genes, the probability that even one of the 100 declarations is false is 
0.05. 

Recommendation: For exploratory studies where a list of candidate genes for further study is the 
goal, FDR is the recommended Type I error control method, because of its higher power. 

For confirmatory studies where final determination of differential expression is the goal, EWER 
is the recommended Type I error control method, because of its strict control of false discoveries. 

FDR or EWER Value 
Specify the value for the False Discovery (Alpha) Method selected above.  

RANGE: These levels are bounded by 0 and 1. Commonly, the chosen level is between 0.001 and 
0.250 

RECOMMENDED: FDR or EWER is often set to 0.05 for two-sided tests and to 0.025 for one-
sided tests. 

NOTE: You can enter a list of values such as .05 .10 .15 or .05 to .15 by .01. 

Sample Size 

N (Number of Arrays) 
Enter a value for the sample size (N). This is the number of arrays in the experiment. For two-
channel paired experiments, this is the number of arrays, not the number of samples. You may 
enter a range such as 10 to 100 by 10 or a list of values separated by commas or blanks.  

Effect Size 

D (Minimum Mean Difference Detected) 
Specify the true mean difference in expression (D) such that genes with true mean difference 
above D will be detected at the given power and corresponding sample size. 

In paired expression studies, it is very common that the difference in expression is measured on 
the log scale (e.g., log2(A) – log2(B)). Values of D should reflect the differences that will be used 
in testing. For example, if log2 differences are used, D = 1 implies a two-fold difference in 
expression, while D = 2 implies a four-fold difference in expression. 

When D is large, the resulting sample size will only detect the genes with extreme differential 
expression. 

When D is small, a larger sample size is required to have power sufficient to detect these small 
differences in expression. 

You can enter a range of values such as 1 2 3 or 0.2 to 2 by 0.1. 
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S (Standard Deviation of Paired Differences in Expression) 
Specify the standard deviation of paired differences. This standard deviation is assumed for all 
tests. 

S should be on the same scale as D. 

To obtain the standard deviation of paired differences from the standard deviation of expression, 
use SDpaired = (sqrt(2))*(SDexpression). 

Because the true variation in paired differences will vary from gene to gene, it is recommended 
that a range of values be entered here. 

You can enter a range of values such as 1 2 3 4 5 or 0.2 to 2 by 0.1. 

Number of Genes 

Number of Genes Tested 
Specify the number of genes for which hypothesis tests will be made. 

This number will usually be the number of genes summarized on each array minus the number of 
housekeeping genes. 

Only one number may be entered in this box. 

Number of Genes – FDR Only 

K (Number of Genes with Mean Difference > D) 
Specify the number of genes for which a true mean difference in expression greater than D is 
expected. 

K for EWER 
The choice of K has no direct effect on the calculation of power or sample size when the False 
Discovery (Alpha) Method is set to EWER. K is not used when False Discovery (Alpha) method 
is set to EWER. 

K for FDR 
The choice of K has direct effect on the calculation of power or sample size when the False 
Discovery (Alpha) Method is set to FDR. 

You can enter a range of values such as 10 20 30 40 50 or 20 to 100 by 10.  

Test 

Alternative 
Specify whether the hypothesis test for each gene is one-sided (directional) or two-sided (non-
directional). 

Recommendation: In most paired experiments, differential expression in either direction (up-
regulation or down-regulation) is of interest. Such experiments should have the Two-Sided 
alternative hypothesis. 
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For experiments for determining whether there is expression above some threshold, a One-Sided 
alternative hypothesis is recommended. Often regulations dictate that the FDR or EWER level be 
divided by 2 for One-Sided alternative tests. 

Test Type 
Select the type of test that will be used when the analysis of the gene expression data is carried 
out. 

• T 
The T-Test assumes the paired differences come from a normal distribution with 
UNKNOWN standard deviation (i.e., a standard deviation that will be estimated from the 
data). 

• Z 
The Z-Test assumes the paired differences come from a normal distribution with KNOWN 
standard deviation. 

Recommendation: Because it very rare to know the true standard deviation of paired differences 
in advance, T is the recommended test statistic. 

Options Tab 
The Options tab contains convergence and iteration options that are rarely changed. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
left blank.  

RECOMMENDED: 500 (or more) 

Convergence Options 

FDR Power Convergence 
When FDR is selected for False Discovery (Alpha) Method, and Find (Solve For) is set to Power, 
the corresponding search algorithm will converge when the search criteria is below this value. 

This value will rarely be changed from the default value. 

RECOMMENDED: 0.0000000001  



610-12  One-Sample or Paired T-Test for Microarray Data 

Example 1 – Finding Power 
This example examines the power to detect differential expression for an experiment that 
involved 22 two-channel arrays. Two samples were obtained from each of 22 individuals. One of 
the two samples was randomly assigned the treatment and the other remained as the control. 
Following treatment, the two samples were exposed to a single microarray. Each microarray 
produced intensity information for 10,000 genes. The 22 arrays were pre-processed by subtracting 
the control intensity (Log2) from the treatment intensity for each gene on each array. Thus, a 
positive value implies upward expression in the treatment, while a negative value implies down-
regulation in the treatment. In this example, the paired T-test was used to determine which genes 
were differentially expressed (upward or downward) following exposure to the treatment.   

The researchers found very few differentially expressed genes, and wish to examine the power of 
the experiment to detect two-fold differential expression (Log2-scale difference of 1). Typical 
standard deviations of the Log2 paired differences ranged from 0.2 to 2.0. 

The researchers guess the number of genes with at least 2-fold differential expression to be 
around 50, but will examine the effect of this estimate on power by trying 10 and 100 genes as 
well. A false discovery rate of 0.05 was used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Sample or Paired T-Test for Microarray Data 
procedure window by clicking on Microarray, then One-Sample or Paired Tests. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power for each Gene ..............................Ignored since this is the Find setting 
False Discovery (Alpha) Method.............FDR (False Discovery Rate) 
FDR or EWER Value...............................0.05 
N (Number of Arrays) ..............................22 
D (Difference)..........................................1.0 
S (Standard Deviation)............................0.2 to 2 by .2 
Number of Genes Tested........................10000 
K (Number > D) .......................................10 50 100 
Alternative Hypothesis ............................Two-Sided 
Test Type ................................................T 

Reports Tab 
Numeric Reports .....................................All Checked 
Number of Summary Statements............1 
Show Plots ..............................................Checked 
Interactive Format ...................................Unchecked 
Show Beta as Power...............................Checked 



One-Sample or Paired T-Test for Microarray Data  610-13 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. The 
calculations should take a few moments. 

Numeric Results 
 
 Numeric Results for One-Sample T-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 Number of Genes Tested: 10000 
 
   Minimum Std.  Number False  
  Number Mean Dev. Effect Genes Discovery  
  of Arrays Difference of Diff. Size To Detect Rate  
 Power (N) (D) (S) (ES) (K) (FDR) Beta 
 1.00000 22 1.0 0.2 5.000 10 0.0500 0.00000 
 1.00000 22 1.0 0.2 5.000 50 0.0500 0.00000 
 1.00000 22 1.0 0.2 5.000 100 0.0500 0.00000 
 1.00000 22 1.0 0.4 2.500 10 0.0500 0.00000 
 1.00000 22 1.0 0.4 2.500 50 0.0500 0.00000 
 1.00000 22 1.0 0.4 2.500 100 0.0500 0.00000 
 0.98617 22 1.0 0.6 1.667 10 0.0500 0.01383 
 0.99793 22 1.0 0.6 1.667 50 0.0500 0.00207 
 0.99924 22 1.0 0.6 1.667 100 0.0500 0.00076 
 0.71696 22 1.0 0.8 1.250 10 0.0500 0.28304 
 0.89092 22 1.0 0.8 1.250 50 0.0500 0.10908 
 0.93538 22 1.0 0.8 1.250 100 0.0500 0.06462 
 . . . . . . . . 
 . . . . . . . . 
 . . . . . . . . 
 
 References 
 Jung, S.-H. 2005. Sample size for FDR-control in microarray data analysis. Bioinformatics: Vol. 21 no. 14, pp. 
 3097-3104. Oxford University Press. 
 Machin, D., Campbell, M., Fayers, P., and Pinol, A. 1997. Sample Size Tables for Clinical Studies, 2nd 
 Edition. Blackwell Science. Malden, MA. 
 Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey. 
 
 Report Definitions 
 Power is the individual probability of detecting each gene with true mean difference > D. 
 N is the number of arrays required to achieve the corresponding power. 
 D is the smallest difference in expression for which this power and sample size are valid. 
 S is the standard deviation estimate for the paired differences used in each test. 
 ES, or D/S, is the relative magnitude of the true mean expression difference for the genes with true mean 
 difference > D. 
 K is the number of genes with true mean difference > D. 
 FDR is the expected proportion of false declarations of differential expression to total declarations of 
 differential expression. 
 Beta is the individual probability of failing to detect each gene with true mean difference > D. 
 
 Summary Statements 
 A sample size of 22 achieves 100.00% power for each gene to detect a true difference in 
 expression of at least 1.0 with an estimated standard deviation of 0.2 with a false discovery 
 rate of 0.0500 using a two-sided one-sample T-Test. Of the 10 genes with anticipated true mean 
 difference in expression > 1.0, 9 are expected to be detected. 
 

This report shows the values of each of the parameters, one scenario per row. The values of 
power and beta were calculated from the other parameters. 
The definitions of each column are given in the Report Definitions section. 
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Additional Numeric Result Detail 
 
 Additional Numeric Result Detail for One-Sample T-Test 
 Number of Genes To Be Tested: 10000 
 
   Minimum Std. Number False   
  Number Mean Dev. Genes Discovery Single Prob To 
  of Arrays Difference of Diff. To Detect Rate Gene Detect 
 Power (N) (D) (S) (K) (FDR) Alpha All K 
 1.00000 22 1.0 0.2 10 0.0500 0.0000527 1.00000 
 1.00000 22 1.0 0.2 50 0.0500 0.0002645 1.00000 
 1.00000 22 1.0 0.2 100 0.0500 0.0005316 1.00000 
 1.00000 22 1.0 0.4 10 0.0500 0.0000527 1.00000 
 1.00000 22 1.0 0.4 50 0.0500 0.0002645 1.00000 
 1.00000 22 1.0 0.4 100 0.0500 0.0005316 1.00000 
 0.98617 22 1.0 0.6 10 0.0500 0.0000520 0.86996 
 0.99793 22 1.0 0.6 50 0.0500 0.0002639 0.90158 
 0.99924 22 1.0 0.6 100 0.0500 0.0005312 0.92649 
 0.71696 22 1.0 0.8 10 0.0500 0.0000378 0.03589 
 . . . . . . . . 
 . . . . . . . . 
 . . . . . . . . 
  
 Report Definitions 
 Power is the individual probability of detecting each gene with true mean difference > D. 
 N is the number of arrays required to achieve the corresponding power. 
 D is the smallest difference in expression for which this power and sample size are valid. 
 S is the standard deviation estimate for the paired differences used in each test. 
 K is the number of genes with true mean difference > D. 
 FDR is the expected proportion of false declarations of differential expression to total declarations of 
 differential expression. 
 Single Gene Alpha is the probability of falsely declaring differential expression for an individual gene. 
 Prob to Detect All K is the probability of declaring differential expression for all K genes that have true 
 mean difference > D. 
 

This report shows additionally the single gene alpha and the probability of detecting all K 
differentially expressed genes. 
The definitions of each column are given in the Report Definitions section. 

Plots Section 
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This plot shows the relationship between power and the standard deviation of the differences for 
various three values of K.  
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Example 2 – Finding the Sample Size 
This example determines the number of two-channel arrays needed to achieve 80% power to 
detect differential expression for each gene. Two samples will be obtained from each of the 
sampled individuals. One of the two samples will be randomly assigned the treatment and the 
other will remain as the control. Following treatment, the two samples will be exposed to a single 
microarray. Each microarray will produce intensity information for 12,682 genes. The arrays will 
be pre-processed by subtracting the control intensity (Log2) from the treatment intensity for each 
gene on each array. Thus, a positive value implies upward expression in the treatment, while a 
negative value implies down-regulation in the treatment. The paired T-test will be used to 
determine which genes are differentially expressed (upward or downward) following exposure to 
the treatment. 

The researchers wish to detect differential expression that is two-fold or greater (Log2-scale 
difference of 1). Typical standard deviations of the Log2 paired differences for this experiment 
are expected to range from 0.2 to 2.0. 

The researchers guess the number of genes with at least 2-fold differential expression to be 
around 50, but will examine the effect of this estimate on sample size by trying 10 and 100 genes 
as well. A false discovery rate of 0.05 will be used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Sample or Paired T-Test for Microarray Data 
procedure window by clicking on Microarray, then One-Sample or Paired Tests. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power for each Gene ..............................0.20 
False Discovery (Alpha) Method.............FDR (False Discovery Rate) 
FDR or EWER Value...............................0.05 
N (Number of Arrays) .............................. Ignored since this is the Find setting 
D (Difference)..........................................1 
S (Standard Deviation)............................ .2 to 2 by .2 
Number of Genes Tested........................12682 
K (Number > D).......................................10 50 100 
Alternative Hypothesis ............................Two-Sided 
Test Type ................................................T 

Reports Tab 
Numeric Reports .....................................All Checked but Numeric Report Detail 
Number of Summary Statements............1 
Show Plots ..............................................Checked 
Interactive Format ...................................Unchecked 
Show Beta as Power...............................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. The 
calculations may take a few moments. 

Numeric Results 
 
 Numeric Results for One-Sample T-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 Number of Genes Tested: 12682 
 
   Minimum Std.  Number False  
  Number Mean Dev. Effect Genes Discovery  
  of Arrays Difference of Diff. Size To Detect Rate  
 Power (N) (D) (S) (ES) (K) (FDR) Beta 
 0.96741 8 1.0 0.2 5.000 10 0.0500 0.03259 
 0.97509 7 1.0 0.2 5.000 50 0.0500 0.02491 
 0.91190 6 1.0 0.2 5.000 100 0.0500 0.08810 
 0.88530 12 1.0 0.4 2.500 10 0.0500 0.11470 
 0.86231 10 1.0 0.4 2.500 50 0.0500 0.13769 
 0.83278 9 1.0 0.4 2.500 100 0.0500 0.16722 
 0.81531 17 1.0 0.6 1.667 10 0.0500 0.18469 
 0.85472 15 1.0 0.6 1.667 50 0.0500 0.14528 
 0.86398 14 1.0 0.6 1.667 100 0.0500 0.13602 
 0.83661 25 1.0 0.8 1.250 10 0.0500 0.16339 
 0.82805 21 1.0 0.8 1.250 50 0.0500 0.17195 
 . . . . . . . . 
 . . . . . . . . 
 . . . . . . . . 
 

This report shows the values of each of the parameters, one scenario per row. The sample size 
(number of arrays) estimates were calculated from the other parameters. The power is the actual 
power produced by the given sample size. 

Plots Section 
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This plot shows the relationship between sample size and the standard deviation of the differences 
for three values of K.  
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Example 3 – Finding the Minimum Detectable Difference 
This example finds the minimum difference in expression that can be detected with 90% power 
from a microarray experiment with 14 two-channel arrays. The 14 arrays permit tests on 5,438 
genes. The arrays will be pre-processed by subtracting the control intensity (Log2) from the 
treatment intensity for each gene on each array. Thus, a positive value implies upward expression 
in the treatment, while a negative value implies down-regulation in the treatment. The paired T-
test will be used to determine which genes are differentially expressed (upward or downward) 
following exposure to the treatment. Standard deviations of the Log2 paired differences for this 
experiment range from 0.2 to 1.8. 

In this example we will examine a range for K (the number of genes with mean difference greater 
than the minimum detectable difference), since this should vary with the mean difference chosen. 
A false discovery rate of 0.05 will be used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Sample or Paired T-Test for Microarray Data 
procedure window by clicking on Microarray, then One-Sample or Paired Tests. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Mean Difference 
Power for each Gene ..............................0.90 
False Discovery (Alpha) Method.............FDR (False Discovery Rate) 
FDR or EWER Value...............................0.05 
N (Number of Arrays) ..............................14 
D (Difference).......................................... Ignored since this is the Find setting 
S (Standard Deviation)............................ .2 to 1.8 by .4 
Number of Genes Tested........................5438 
K (Number > D).......................................10 to 50 by 10 
Alternative Hypothesis ............................Two-Sided 
Test Type ................................................T 

Reports Tab 
Numeric Reports .....................................All Checked but Numeric Report Detail 
Number of Summary Statements............1 
Show Plots ..............................................Checked 
Interactive Format ...................................Unchecked 
Show Beta as Power...............................Checked 
Mean Difference and SD Decimals.........4 

Output 
Click the Run button to perform the calculations and generate the following output. The 
calculations may take a few moments. 
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Numeric Results 
 
 Numeric Results for One-Sample T-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 Number of Genes Tested: 5438 
 
   Minimum Std.  Number False  
  Number Mean Dev. Effect Genes Discovery  
  of Arrays Difference of Diff. Size To Detect Rate  
 Power (N) (D) (S) (ES) (K) (FDR) Beta 
 0.90000 14 0.3951 0.2000 1.976 10 0.0500 0.10000 
 0.90000 14 0.3699 0.2000 1.849 20 0.0500 0.10000 
 0.90000 14 0.3555 0.2000 1.777 30 0.0500 0.10000 
 0.90000 14 0.3454 0.2000 1.727 40 0.0500 0.10000 
 0.90000 14 0.3377 0.2000 1.689 50 0.0500 0.10000 
 0.90000 14 1.1854 0.6000 1.976 10 0.0500 0.10000 
 0.90000 14 1.1096 0.6000 1.849 20 0.0500 0.10000 
 0.90000 14 1.0664 0.6000 1.777 30 0.0500 0.10000 
 0.90000 14 1.0363 0.6000 1.727 40 0.0500 0.10000 
 0.90000 14 1.0132 0.6000 1.689 50 0.0500 0.10000 
 0.90000 14 1.9756 1.0000 1.976 10 0.0500 0.10000 
 0.90000 14 1.8493 1.0000 1.849 20 0.0500 0.10000 
 0.90000 14 1.7774 1.0000 1.777 30 0.0500 0.10000 
 0.90000 14 1.7272 1.0000 1.727 40 0.0500 0.10000 
 0.90000 14 1.6887 1.0000 1.689 50 0.0500 0.10000 
 0.90000 14 2.7658 1.4000 1.976 10 0.0500 0.10000 
 0.90000 14 2.5890 1.4000 1.849 20 0.0500 0.10000 
 0.90000 14 2.4884 1.4000 1.777 30 0.0500 0.10000 
 0.90000 14 2.4181 1.4000 1.727 40 0.0500 0.10000 
 0.90000 14 2.3642 1.4000 1.689 50 0.0500 0.10000 
 0.90000 14 3.5561 1.8000 1.976 10 0.0500 0.10000 
 0.90000 14 3.3287 1.8000 1.849 20 0.0500 0.10000 
 0.90000 14 3.1993 1.8000 1.777 30 0.0500 0.10000 
 0.90000 14 3.1090 1.8000 1.727 40 0.0500 0.10000 
 0.90000 14 3.0397 1.8000 1.689 50 0.0500 0.10000 
 

This report shows the values of each of the parameters, one scenario per row. The Minimum 
Mean Difference (D) estimates were calculated from the other parameters. 

Plots Section 
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This plot shows the relationship between D (the minimum detectable difference on the Log2 
scale) and the standard deviation of the differences for five values of K.  
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Example 4 – Validation (EWER) using Stekel 
Stekel (2003), pp. 226-228, gives an example in which N = 20, D = 1, and S = 0.68 for a two-
sided paired T-Test. The number of genes tested is 6500. The control of false discoveries is “no 
more than one false positive.” This corresponds to an EWER value of 0.975. The power obtained 
for this example is 0.94.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Sample or Paired T-Test for Microarray Data 
procedure window by clicking on Microarray, then One-Sample or Paired Tests. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power for each Gene .............................. Ignored since this is the Find setting 
False Discovery (Alpha) Method.............EWER (Experiment-wise Error Rate) 
FDR or EWER Value...............................0.975 
N (Number of Arrays) ..............................20 
D (Difference)..........................................1 
S (Standard Deviation)............................0.68 
Number of Genes Tested........................6500 
K (Number > D).......................................Ignored since EWER is used 
Alternative Hypothesis ............................Two-Sided 
Test Type ................................................T 

Reports Tab 
Reports....................................................All Checked but Numeric Report Detail 
Mean Difference and SD Decimals.........2 

Output 
Click the Run button to perform the calculations and generate the following output.  

Numeric Results 
 
 Numeric Results for One-Sample T-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 Number of Genes Tested: 6500 
 
   Minimum Std.  Experiment   
  Number Mean Dev. Effect -Wise Single  
  of Arrays Difference of Diff. Size Error Rate Gene  
 Power (N) (D) (S) (ES) (EWER) Alpha Beta 
 0.93591 20 1.00 0.68 1.471 0.9750 0.0001500 0.06409 
 

The power of 0.93591 matches Stekel’s result. 
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Example 5 – Validation (EWER) using Lee 
Lee (2004), pp. 218-220, gives an example in which Power = 0.90, D = 1.0 1.5 2.0 2.5 and S = 
1.0 for a two-sided paired Z-Test. The number of genes tested is 1000. The control of false 
discoveries is 0.5. This corresponds to an EWER value of 0.5. This setup corresponds to the 
upper left corner of Table 14.3 on page 219. The sample sizes obtained for this setup are 23, 11, 
6, and 4, respectively. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Sample or Paired T-Test for Microarray Data 
procedure window by clicking on Microarray, then One-Sample or Paired Tests. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power for each Gene ..............................0.90 
False Discovery (Alpha) Method.............EWER (Experiment-wise Error Rate) 
FDR or EWER Value...............................0.5 
N (Number of Arrays) ..............................Ignored since this is the Find setting  
D (Difference)..........................................1.0 1.5 2.0 2.5 
S (Standard Deviation)............................1.0 
Number of Genes Tested........................1000 
K (Number > D) .......................................Ignored since EWER is used 
Alternative Hypothesis ............................Two-Sided 
Test Type ................................................Z 

Output 
Click the Run button to perform the calculations and generate the following output.  

Numeric Results 
 
 Numeric Results for One-Sample Z-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 Number of Genes Tested: 1000 
 
   Minimum Std.  Experiment   
  Number Mean Dev. Effect -Wise Single  
  of Arrays Difference of Diff. Size Error Rate Gene  
 Power (N) (D) (S) (ES) (EWER) Alpha Beta 
 0.90576 23 1.00 1.00 1.000 0.5000 0.0005000 0.09424 
 0.93244 11 1.50 1.00 1.500 0.5000 0.0005000 0.06756 
 0.92194 6 2.00 1.00 2.000 0.5000 0.0005000 0.07806 
 0.93565 4 2.50 1.00 2.500 0.5000 0.0005000 0.06435 
 

Sample sizes of 23, 11, 6, and 4 match the results shown in Lee (2004). 
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Example 6 – Validation (FDR) using Jung 
Jung (2005), page 3100, gives an example for the sample size needed to control FDR in a two-
sample Z-Test. This example is repeated in Chow, Shao, and Wang (2008). We adapt the effect 
size in this validation to correspond to a one-sample test. Namely, the effect size is reduced by 
one half. In the example, Power = 0.60 (from 24/40), D = 1.0, and S = 1.0 for a one-sided two-
sample Z-Test. We use S = 2.0 to correspond to the equivalent in the one-sample test. The 
number of genes tested is 4000. The FDR level is 1%. This setup corresponds to Example 1 on 
page 3100. The required sample size obtained for this setup is 68. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Sample or Paired T-Test for Microarray Data 
procedure window by clicking on Microarray, then One-Sample or Paired Tests. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power for each Gene ..............................0.60 
False Discovery (Alpha) Method.............FDR (False Discovery Rate) 
FDR or EWER Value...............................0.01 
N (Number of Arrays) .............................. Ignored since this is the Find setting  
D (Difference)..........................................1.0 
S (Standard Deviation)............................2.0 
Number of Genes Tested........................4000 
K (Number > D).......................................40 
Alternative Hypothesis ............................One-Sided 
Test Type ................................................Z 

Output 
Click the Run button to perform the calculations and generate the following output.  

Numeric Results 
 
 Numeric Results for One-Sample Z-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff > 0 
 Number of Genes Tested: 4000 
 
   Minimum Std.  Number False  
  Number Mean Dev. Effect Genes Discovery  
  of Arrays Difference of Diff. Size To Detect Rate  
 Power (N) (D) (S) (ES) (K) (FDR) Beta 
 0.61099 68 0.50 1.00 0.500 40 0.0100 0.38901 
 

A sample size of 68 matches the result shown in Jung (2005). For Example 3 in Jung (2005), the 
alternative hypothesis is two-sided and results in a sample size of 73. This result may be validated 
in PASS by changing Alternative to Two-Sided in this example. 
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Chapter 615 

Two-Sample T-Test 
for Microarray 
Data 
Introduction 
This chapter describes how to estimate power and sample size (number of arrays) for 2 group 
(two-sample) microarray studies using the PASS: Two-Sample T-Test for Microarray Data 
procedure. False discovery rate and experiment-wise error rate control methods are available in 
this procedure. Values that can be varied in this procedure are power, false discovery rate and 
experiment-wise error rate, sample sizes (numbers of arrays) in each group, the minimum mean 
difference detected, the standard deviations in each group, and in the case of false discovery rate 
control, the number of genes with minimum mean difference.  

Two-Sample Design 
In a two-sample design, two groups are compared, which we will call Treatment 1 and Treatment 
2. Several experimental units are randomly assigned to each of the two treatment groups. A single 
mRNA or cDNA sample is obtained from each experimental unit of both groups. Each sample is 
exposed to a single microarray, resulting in a single expression value for each gene for each unit 
of each treatment group.  The goal is to determine for each gene whether there is evidence that 
the expression is different between the two groups. 

Null and Alternative Hypotheses 
The two-sample null and alternative hypotheses are described here in terms of treatment groups: 
Treatment 1 and Treatment 2. These groups could equally be labeled Treatment A and Treatment 
B, Control and Treatment, etc. The two-sample null hypothesis for each gene is H0: μ1  = 
μ2, where μ1 is the true mean expression for that particular gene in the Treatment 1 environment, 
and μ2  is the true mean expression for that particular gene following Treatment 2. The alternative 
hypothesis may be any one of the following: Ha: μ1  < μ2, Ha: μ1  > μ2, or Ha: μ1  ≠ μ2. The choice 
of the alternative hypothesis depends upon the goals of the research. For example, if the goal of 
the experiment is only to determine which genes are up-regulated (increase in expression) over 
Treatment 1 when Treatment 2 is imposed, the alternative hypothesis would be Ha: μ1  > μ2. If the 
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goal instead is to determine which genes are differentially expressed (up-regulated or down-
regulated) when compared to the other treatment, the alternative hypothesis is Ha: μ1  ≠ μ2. 

Assumptions 
The following assumptions are made when using the two-sample T-test or the Mann-Whitney U 
test. One of the reasons for the popularity of the T-test is its robustness in the face of assumption 
violation. However, if an assumption is not met even approximately, the significance levels and 
the power of the T-test are unknown. You should take the appropriate steps to check the 
assumptions before you make important decisions based on these tests.  

Two-Sample T-Test Assumptions 
The assumptions of the two-sample T-test are: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. 

3. The variances of the two populations are equal. (If not, the Aspin-Welch Unequal-
Variance test is used.) 

4. The two samples are independent. There is no relationship between the individuals in one 
sample as compared to the other (as there is in the paired T-test).  

5. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  

Mann-Whitney U Test Assumptions 
The assumptions of the Mann-Whitney U test for difference in means are:  

1. The variable of interest is continuous (not discrete). The measurement scale is at least 
ordinal.  

2. The probability distributions of the two populations are identical, except for location. 
That is, the variances are equal.  

3. The two samples are independent. 

4. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  

Technical Details 

Multiple Testing Adjustment 
When the two-sample T-test is run for a replicated microarray experiment, the result is a list of P-
values (Probability Levels) that reflect the evidence of difference in expression. When hundreds 
or thousands of genes are investigated at the same time, many ‘small’ P-values will occur by 
chance, due to the natural variability of the process. It is therefore requisite to make an 
appropriate adjustment to the P-value (Probability Level), such that the likelihood of a false 
conclusion is controlled.  



Two-Sample T-Test for Microarray Data  615-3 

Benjamini and Hochberg’s (1995) False Discovery Rate Table 
The following table (adapted to the subject of microarray data) is found in Benjamini and 
Hochberg’s (1995) false discovery rate article. In the table, m is the total number of tests, m0 is 
the number of tests for which there is no difference in expression, R is the number of tests for 
which a difference is declared, and U, V, T, and S are defined by the combination of the 
declaration of the test and whether or not a difference exists, in truth. 
 

           Declared       Declared 
       Not Different       Different       Total 

     A true difference in  
expression does not exist  U  V         m0 

     There exists a true  
difference in expression  T  S      m – m0 

    Total         m – R  R         m 

 
In the table, the m is the total number of hypotheses tested (or total number of genes) and is 
assumed to be known in advance. Of the m null hypotheses tested, m0 is the number of tests for 
which there is no difference in expression, R is the number of tests for which a difference is 
declared, and U, V, T, and S are defined by the combination of the declaration of the test and 
whether or not a difference exists, in truth. The random variables U, V, T, and S are unobservable. 

Need for Multiple Testing Adjustment 
Following the calculation of a raw P-value (Probability Level) for each test, P-value adjustments 
need be made to account in some way for multiplicity of tests. It is desirable that these 
adjustments minimize the number of genes that are falsely declared different (V) while 
maximizing the number of genes that are correctly declared different (S). To address this issue the 
researcher must know the comparative value of finding a gene to the price of a false positive. If a 
false positive is very expensive, a method that focuses on minimizing V should be employed. If 
the value of finding a gene is much higher than the cost of additional false positives, a method 
that focuses on maximizing S should be used.  

Error Rates – P-Value Adjustment Techniques 
Below is a brief description of three common error rates that are used for control of false positive 
declarations. The commonly used P-value adjustment technique for controlling each error rate is 
also described.  

Per-Comparison Error Rate (PCER) – No Multiple Testing Adjustment 
The per-comparison error rate (PCER) is defined as 

PCER ( ) /E V m= , 

where E(V) is the expected number of genes that are falsely declared different, and m is the total 
number of tests. Preserving the PCER is tantamount to ignoring multiple testing altogether. If a 
method is used which controls a PCER of 0.05 for 1,000 tests, approximately 50 out of 1,000 
tests will falsely be declared significant. Using a method that controls the PCER will produce a 
list of genes that includes most of the genes for which there exists a true difference in expression 
(i.e., maximizes S), but it will also include a very large number of genes which are falsely 
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declared to have a true difference in expression (i.e., does not appropriately minimize V). 
Controlling the PCER should be viewed as overly weak control of Type I error. 

To obtain P-values (Probability Levels) that control the PCER, no adjustment is made to the P-
value. To determine significance, the P-value is simply compared to the designated alpha. 

Experiment-Wise Error Rate (EWER) 
The experiment-wise error rate (EWER) is defined as 

EWER = Pr(V > 0), 

where V is the number of genes that are falsely declared different. Controlling EWER is 
controlling the probability that a single null hypothesis is falsely rejected. If a method is used 
which controls a EWER of 0.05 for 1,000 tests, the probability that any of the 1,000 tests 
(collectively) is falsely rejected is 0.05. Using a method that controls the EWER will produce a 
list of genes that includes a small (depending also on sample size) number of the genes for which 
there exists a true difference in expression (i.e., limits S, unless the sample size is very large). 
However, the list of genes will include very few or no genes that are falsely declared to have a 
true difference in expression (i.e., stringently minimizes V). Controlling the EWER should be 
considered very strong control of Type I error. 

Assuming the tests are independent, the well-known Bonferroni P-value adjustment produces 
adjusted P-values (Probability Levels) for which the EWER is controlled. The Bonferroni 
adjustment is applied to all m unadjusted P-values ( jp ) as 

min( ,1)j jp mp=% . 

That is, each P-value (Probability Level) is multiplied by the number of tests, and if the result is 
greater than one, it is set to the maximum possible P-value of one. 

False Discovery Rate (FDR)  
The false discovery rate (FDR) (Benjamini and Hochberg, 1995) is defined as 

{ 0}FDR ( 1 ) ( | 0) Pr( 0)R
V VE E R R
R R>= = > > , 

where R is the number of genes that are declared significantly different, and V is the number of 
genes that are falsely declared different. Controlling FDR is controlling the expected proportion 
of falsely declared differences (false discoveries) to declared differences (true and false 
discoveries, together). If a method is used which controls a FDR of 0.05 for 1,000 tests, and 40 
genes are declared different, it is expected that 40*0.05 = 2 of the 40 declarations are false 
declarations (false discoveries). Using a method that controls the FDR will produce a list of genes 
that includes an intermediate (depending also on sample size) number of genes for which there 
exists a true difference in expression (i.e., moderate to large S). However, the list of genes will 
include a small number of genes that are falsely declared to have a true difference in expression 
(i.e., moderately minimizes V). Controlling the FDR should be considered intermediate control of 
Type I error. 

Assuming the tests are independent, the Benjamini and Hochberg P-value adjustment produces 
adjusted P-values (Probability Levels) for which the FDR is controlled. These adjusted P-values 
are found as 

,...,
min {min( ,1)}

i kr rk i m

mp p
k=

=% , 
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where 
1 2 mr r rp p≤ ≤ ≤L p are the observed ordered unadjusted P-values. The procedure is 

defined in Benjamini and Hochberg (1995). The corresponding adjusted P-value definition given 
here is found in Dudoit, Shaffer, and Boldrick (2003). 

Multiple Testing Adjustment Comparison 
The following table gives a summary of the multiple testing adjustment procedures and error rate 
control. The power to detect differences also depends heavily on sample size.  
 

 Common  
Adjustment Error Rate   Control of        Power to 
Technique Controlled Type I Error Detect Differences 

    None        PCER    Minimal           High 

Bonferroni    EWER     Strict                      Low 

          Benjamini and     FDR   Moderate            Moderate/High 
 Hochberg 

 

Type I Error: Rejection of a null hypothesis that is true. 

Calculating Power  
Additional details of calculating power in the two-group scenario are found in the PASS chapter 
for Two Means. 

There are four separate situations, each requiring different formulas. Let the means of the two 
populations be represented by μ1  and μ2 . The difference between these means will be 
represented by d. Let the standard deviations of the two populations be represented as σ1  and 
σ2 . 

Case 1 – Standard Deviations Known and Equal (Z) 
When σ σ σ1 2= =  and are known, the power of the t test is calculated as follows for a 
directional alternative (one-tailed test) in which d > 0. 

1. Find zα   such that ( )1− =Φ zα α , where ( )Φ x  is the area under the standardized 
normal curve to the left of x. 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

 

3. Calculate: p
x

x
z = z - dασ

σ
 

4. Calculate:   Power = ( )1− Φ zp  
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Case 2 – Standard Deviations Known and Unequal (Z) 
When σ σ1 ≠ 2 and are known, the power is calculated as follows for a directional alternative 
(one-tailed test) in which d > 0.  

1. Find zα   such that , where ( )1− =Φ zα α ( )Φ x  is the area under the standardized 
normal curve to the left of x. 

2. Calculate: σ
σ σ

x
1
2

1

2
2

2
=

N
+

N
 

3. Calculate: p
x

x
z =

z -α dσ
σ

 

4. Calculate:   Power =  ( )1− Φ zp

Case 3 – Standard Deviations Unknown and Equal 
When σ σ σ1 2= =  and are unknown, the power of the T-Test is calculated as follows for a 
directional alternative (one-tailed test) in which d > 0.  

1.  Find tα  such that ( )1 , where − =T tdf α α ( )T tdf α  is the area under a central-t curve to 
the left of x and df N N= + −1 2 2 . 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

 

3. Calculate the noncentrality parameter: λ
σ

=
d

x
 

4. Calculate: p
x

x
t =

t - d
+ασ

σ
λ  

5. Calculate: Power = , where ( )1− ′T tdf p,λ ( )′T xdf ,λ  is the area under a noncentral-t curve 

with degrees of freedom df and noncentrality parameter λ  to the left of x. 

Case 4 – Standard Deviations Unknown and Unequal 
When σ σ1 ≠ 2  and are unknown, the power is calculated as follows for a directional alternative 
(one-tailed test) in which d > 0. Note that in this case, an approximate T-Test is used.  

1. Calculate: σ σ σ
x

1
2

1

2
2

2
=

N
+

N
. 
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2. Calculate: f =

N ( N +1)
+

N ( N +1)

- 2x

1
4

1
2

1

2
4

2
2

2

σ
σ σ

4

 

which is the adjusted degrees of freedom. Often, this is rounded to the next highest 
integer. 

3.  Find tα  such that ( )1 , where − =T tf α α ( )T tf α  is the area to the left of x under a 
central-t curve with f degrees of freedom. 

4. Calculate: λ
σ

=
d

,
x

1 the noncentrality parameter. 

5. Calculate: p
x

x
t =

t - d
+ασ

σ
λ  

6.   Calculate: Power = ( )1− ′T tf p,λ , where ( )′T xf ,λ  is the area to the left of x under a 

noncentral-t curve with degrees of freedom f and noncentrality parameter λ . 

Adjusting Alpha 

Experiment-wise Error Rate 
When the Bonferroni method will be used to control the experiment-wise error rate, EWERα , of all 
tests, the adjusted α , ADJα , for each test is given by 

Tests ofNumber 
= EWER

ADJ
αα  

ADJα is the value that is used in the power and sample size calculations. 

False Discovery Rate 
When a false discovery rate controlling method will be used to control the false discovery rate for 
the experiment, fdr, the adjusted α , ADJα , for each test is given by Jung (2005) and Chow, 
Shao, and Wang (2008): 

( )( )( )
( )( )fdrKN

fdrK=
T

ADJ −−
−

1
1 βα  

where K is the number of genes with differential expression, β is the probability of a Type II error 
(not declaring a gene significant when it is), and NT  is the total number of tests. 

ADJα is the value that is used in the power and sample size calculations. Because ADJα  depends 
on β, ADJα  must be solved iteratively when the calculation of power is desired. 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates at the beginning of this manual. 

Data Tab 
The Data tab contains most of the parameters and options involved in the power and sample size 
calculations. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Beta and Power or N1. 

Select N1 when you want to determine the sample sizes needed in each group to achieve a given 
power and false discovery rate (or alpha) error level.  

Select Beta and Power when you want to calculate the power of an experiment.  

Error Rates 

Power for each Gene 
Power is the probability of rejecting each null hypothesis when it is false. Power is equal to 1-
Beta. 

The POWER for each gene represents that probability of detecting differential expression when it 
exists. 

RANGE: The valid range is from 0 to 1. 

RECOMMENDED: Popular values for power are 0.8 and 0.9. 

NOTES: You can enter a range of values such as .70 .80 .90 or .70 to .95 by .05. 

False Discovery (Alpha) Method 
A type I error is declaring a gene to be differentially expressed when it is not. The two most 
common methods for controlling type I error in microarray expression studies are false discovery 
rate (FDR) control and Experiment-wise Error Rate (EWER) control. 

• FDR 
Controlling the false discovery rate (FDR) controls the PROPORTION of genes that are 
falsely declared differentially expressed. For example, suppose that an FDR of 0.05 is used 
for 10000 tests (on 10000 genes). If differential expression is declared for 100 of the 10000 
genes, 5 of the 100 genes are expected to be false discoveries. 
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• EWER 
Controlling the experiment-wise error rate (EWER) controls the PROBABILITY of ANY 
false declarations of differential expression, across all tests. For example, suppose that an 
EWER of 0.05 is used for 10000 tests (on 10000 genes). If differential expression is declared 
for 100 of the 10000 genes, the probability that even one of the 100 declarations is false is 
0.05. 

Recommendation: For exploratory studies where a list of candidate genes for further study is the 
goal, FDR is the recommended Type I error control method, because of its higher power. 

For confirmatory studies where final determination of differential expression is the goal, EWER 
is the recommended Type I error control method, because of its strict control of false discoveries. 

FDR or EWER Value 
Specify the value for the False Discovery (Alpha) Method selected above.  

RANGE: These levels are bounded by 0 and 1. Commonly, the chosen level is between 0.001 and 
0.250 

RECOMMENDED: FDR or EWER is often set to 0.05 for two-sided tests and to 0.025 for one-
sided tests. 

NOTE: You can enter a list of values such as .05 .10 .15 or .05 to .15 by .01. 

Sample Size 

N1 (Number of Arrays, Group 1) 
Enter a value (or range of values) for the sample size of this group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Number of Arrays, Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Effect Size 

D (Minimum Mean Difference Detected) 
Specify the true mean difference in expression (D) such that genes with true mean difference 
above D will be detected at the given power and corresponding sample size. 

In expression studies, it is very common that the expressions are measured on the log scale. 
Values of D should reflect the differences that will be used in testing. For example, if the log2 
scale is used, D = 1 implies a two-fold difference in expression, while D = 2 implies a four-fold 
difference in expression. 

When D is large, the resulting sample size will only detect the genes with extreme differential 
expression. 

When D is small, a larger sample size is required to have power sufficient to detect these small 
differences in expression. 

You can enter a range of values such as '1 2 3' or 0.2 to 2 by 0.1. 

S1 (Standard Deviation Group 1) 
Specify the standard deviation of expression in group 1. This standard deviation is assumed for all 
tests. 

S1 and S2 should be on the the same scale as D. 

To obtain the standard deviation of expression from the standard deviation of paired differences, 
use SDexpression = SDpaired/(sqrt(2)). 

Because the true variation in paired differences will vary from gene to gene, it is recommended 
that a range of values be entered here. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

S2 (Standard Deviation Group 2) 
Enter an estimate of the standard deviation of group 2. The standard deviation must be a positive 
number.  

Enter S1 if you want to use the same value(s) as those for group 1. 

Press the Standard Deviation Estimator button to obtain help on estimating the standard deviation. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Number of Genes 

Number of Genes Tested 
Specify the number of genes for which hypothesis tests will be made. 

This number will usually be the number of genes summarized on each array minus the number of 
housekeeping genes. 

Only one number may be entered in this box. 
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Number of Genes – FDR Only 

K (Number of Genes with Mean Difference > D) 
Specify the number of genes for which a true mean difference in expression greater than D is 
expected. 

K for EWER 
The choice of K has no direct effect on the calculation of power or sample size when the False 
Discovery (Alpha) Method is set to EWER. K is not used when False Discovery (Alpha) method 
is set to EWER. 

K for FDR 
The choice of K has direct effect on the calculation of power or sample size when the False 
Discovery (Alpha) Method is set to FDR. 

You can enter a range of values such as 10 20 30 40 50 or 20 to 100 by 10.  

Test 

Alternative 
Specify whether the hypothesis test for each gene is one-sided (directional) or two-sided (non-
directional). 

Recommendation: In most two-group experiments, differential expression in either direction (up-
regulation or down-regulation) is of interest. Such experiments should have the Two-Sided 
alternative hypothesis. 

For experiments for determining only whether expression has increased (or only decreased), a 
One-Sided alternative hypothesis is recommended. Often regulations dictate that the FDR or 
EWER level be divided by 2 for One-Sided alternative tests. 

Test Type 
Select the Test Statistic that will be used when the analysis of the gene expression data is carried 
out. 

• T 
The T-Test assumes the expression values come from a normal distribution with 
UNKNOWN standard deviation (i.e., a standard deviation that will be estimated from the 
data). 

• Z 
The Z-Test assumes the expression values come from a normal distribution with KNOWN 
standard deviation. 

Recommendation: Because it very rare to know the true standard deviation of expression values 
in advance, T is the recommended test statistic. 

Nonparametric Adjustment 
Specify whether to make an adjustment for the Wilcoxon or Mann-Whitney (nonparametric) test.  

The size of the adjustment depends on the assumed distribution. Select a distribution similar in 
shape to that of your data. 
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Options Tab 
The Options tab contains convergence and iteration options that are rarely changed. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
left blank.  

RECOMMENDED: 500 (or more) 

Convergence Options 

FDR Power Convergence 
When FDR is selected for False Discovery (Alpha) Method, and Find (Solve For) is set to Power, 
the corresponding search algorithm will converge when the search criteria is below this value. 

This value will rarely be changed from the default value. 

RECOMMENDED: 0.0000000001  

Example 1 – Finding Power 
This example examines the power to detect differential expression for an experiment comparing a 
treatment group to a control group. There were 16 arrays used in each group. Each microarray 
produced intensity information for 5,000 genes. The 32 arrays were pre-processed by converting 
each expression value to the Log2 scale. In this example, the 2 Group T-Test was used to 
determine which genes were differentially expressed (upward or downward) when comparing the 
treatment group to the control group.   

The researchers found very few differentially expressed genes, and wish to examine the power of 
the experiment to detect two-fold differential expression (Log2-scale difference of 1). Typical 
standard deviations in each group ranged from 0.2 to 2.0. 

The researchers guess the number of genes with at least 2-fold differential expression to be 
around 50, but will examine the effect of this estimate on power by trying 10 and 100 genes as 
well. A false discovery rate of 0.05 was used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Two-Sample T-Test for Microarray Data procedure window 
by clicking on Microarray, then Two-Sample Tests. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
False Discovery (Alpha) Method.............FDR (False Discovery Rate) 
FDR or EWER Value...............................0.05 
N1 (Number of Arrays, Group 1).............16 
N2 (Number of Arrays, Group 2).............Use R 
R (Sample Allocation Ratio)....................1.0 
D (Difference)..........................................1.0 
S1 (Standard Deviation Group 1)............0.2 to 2 by .2 
S2 (Standard Deviation Group 2)............S1 
Number of Genes Tested........................5000 
K ..............................................................10 50 100 
Alternative Hypothesis ............................Two-Sided 
Test Statistic............................................T 
Nonparametric Adjustment ..................... Ignore 

Reports Tab 
Numeric Reports .....................................All Checked 
Number of Summary Statements............1 
Show Plots ..............................................Checked 
Interactive Format ...................................Unchecked 
Show Beta as Power...............................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. The 
calculations should take a few moments. 

Numeric Results 
 
 Numeric Results for Microarray Two-Sample T-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 The standard deviations were assumed to be unknown and equal. 
 Number of Genes Tested: 5000 
 
        Single Prob To  
        Gene Detect  
 Power N1/N2 D S1 S2 K FDR Alpha All K Beta 
 1.00000 16/16 1.0 0.2 0.2 10 0.0500 0.0001055 1.00000 0.00000 
 1.00000 16/16 1.0 0.2 0.2 50 0.0500 0.0005316 1.00000 0.00000 
 1.00000 16/16 1.0 0.2 0.2 100 0.0500 0.0010741 1.00000 0.00000 
 0.98866 16/16 1.0 0.4 0.4 10 0.0500 0.0001043 0.89217 0.01134 
 0.99795 16/16 1.0 0.4 0.4 50 0.0500 0.0005305 0.90250 0.00205 
 0.99916 16/16 1.0 0.4 0.4 100 0.0500 0.0010732 0.91949 0.00084 
 0.52073 16/16 1.0 0.6 0.6 10 0.0500 0.0000549 0.00147 0.47927 
 0.75206 16/16 1.0 0.6 0.6 50 0.0500 0.0003998 0.00000 0.24794 
 0.83005 16/16 1.0 0.6 0.6 100 0.0500 0.0008916 0.00000 0.16995 
 0.06242 16/16 1.0 0.8 0.8 10 0.0500 0.0000066 0.00000 0.93758 
 0.23537 16/16 1.0 0.8 0.8 50 0.0500 0.0001251 0.00000 0.76463 
 0.34928 16/16 1.0 0.8 0.8 100 0.0500 0.0003752 0.00000 0.65072 
 . . . . . . . . . . 
 . . . . . . . . . . 
 . . . . . . . . . . 
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 Report Definitions 
 Power is the individual probability of detecting each gene with true mean difference > D. 
 N1 and N2 are the number of arrays in groups 1 and 2 required to achieve the corresponding power. 
 D is the smallest difference in expression for which this power and sample size are valid. 
 S1 and S2 are the standard deviations for groups 1 and 2 used in each test. 
 K is the number of genes with true mean difference > D. 
 FDR is the expected proportion of false declarations of differential expression to total declarations of 
 differential expression. 
 Single Gene Alpha is the probability of falsely declaring differential expression for an individual gene. 
 Prob to Detect All K is the probability of declaring differential expression for all K genes that have true 
 mean difference > D. 
 Beta is the individual probability of failing to detect each gene with true mean difference > D. 
 
 Summary Statements 
 Group sample sizes of 16 and 16 achieve 100% power for each gene to detect a true difference in 
 expression of at least 1.0 with estimated group standard deviations of 0.2 and 0.2 and with a 
 false discovery rate (FDR) of 0.0500 using a two-sided two-sample T-Test. For a single test, 
 the individual test alpha is 0.0001055. The probability of detecting all 10 genes with true 
 mean difference in expression > 1.0, is 1.00000. 
 

This report shows the values of each of the parameters, one scenario per row. The values of 
power and beta were calculated from the other parameters. 
The definitions of each column are given in the Report Definitions section. 

Plots Section 
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This plot shows the relationship between power and the standard deviation of the differences for 
various three values of K. When the standard deviation within each group is greater than 1.0, the 
tests have very little power to detect 2-fold differences. 
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Example 2 – Finding the Sample Size 
This example determines the number of arrays needed to achieve 80% power to detect differential 
expression for each gene. Each microarray will produce intensity information for 22,452 genes. 
The arrays will be pre-processed by converting each expression value to the Log2 scale. The two-
sample T-test will be used to determine which genes are differentially expressed (upward or 
downward) following exposure to the treatment. 

The researchers wish to detect differential expression that is two-fold or greater (Log2-scale 
difference of 1). Typical standard deviations in each group are expected to range from 0.2 to 2.0. 

The researchers guess the number of genes with at least 2-fold differential expression to be 
around 50, but will examine the effect of this estimate on sample size by trying 10 and 100 genes 
as well. A false discovery rate of 0.05 will be used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Two-Sample T-Test for Microarray Data procedure window 
by clicking on Microarray, then Two-Sample Tests. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 (Group 1 Sample Size) 
Power ......................................................0.80 
False Discovery (Alpha) Method.............FDR (False Discovery Rate) 
FDR or EWER Value...............................0.05 
N1 (Number of Arrays, Group 1)............. Ignored since this is the Find setting 
N2 (Number of Arrays, Group 2).............Use R 
R (Sample Allocation Ratio)....................1.0 
D (Difference)..........................................1.0 
S1 (Standard Deviation Group 1)............0.2 to 2 by .2 
S2 (Standard Deviation Group 2)............S1 
Number of Genes Tested........................22452 
K ..............................................................10 50 100 
Alternative Hypothesis ............................Two-Sided 
Test Statistic............................................T 
Nonparametric Adjustment ..................... Ignore 

Reports Tab 
Numeric Reports .....................................All Checked 
Number of Summary Statements............1 
Show Plots ..............................................Checked 
Interactive Format ...................................Unchecked 
Show Beta as Power...............................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. The 
calculations may take a few moments. 

Numeric Results 
 
 Numeric Results for Microarray Two-Sample T-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 The standard deviations were assumed to be unknown and equal. 
 Number of Genes Tested: 22452 
 
        Single Prob To  
        Gene Detect  
 Power N1/N2 D S1 S2 K FDR Alpha All K Beta 
 0.93967 7/7 1.0 0.2 0.2 10 0.0500 0.0000188 0.53673 0.06033 
 0.92971 6/6 1.0 0.2 0.2 50 0.0500 0.0000940 0.02615 0.07029 
 0.80449 5/5 1.0 0.2 0.2 100 0.0500 0.0001884 0.00000 0.19551 
 0.81237 13/13 1.0 0.4 0.4 10 0.0500 0.0000188 0.12518 0.18763 
 0.80047 11/11 1.0 0.4 0.4 50 0.0500 0.0000940 0.00001 0.19953 
 0.86440 11/11 1.0 0.4 0.4 100 0.0500 0.0001884 0.00000 0.13560 
 0.82116 24/24 1.0 0.6 0.6 10 0.0500 0.0000188 0.13940 0.17884 
 0.83607 21/21 1.0 0.6 0.6 50 0.0500 0.0000940 0.00013 0.16393 
 0.81695 19/19 1.0 0.6 0.6 100 0.0500 0.0001884 0.00000 0.18305 
 0.81806 39/39 1.0 0.8 0.8 10 0.0500 0.0000188 0.13424 0.18194 
 0.80753 33/33 1.0 0.8 0.8 50 0.0500 0.0000940 0.00002 0.19247 
 0.81606 31/31 1.0 0.8 0.8 100 0.0500 0.0001884 0.00000 0.18394 
 . . . . . . . . . . 
 . . . . . . . . . . 
 . . . . . . . . . . 
 

This report shows the values of each of the parameters, one scenario per row. The sample size 
(number of arrays) estimates were calculated from the other parameters. The power is the actual 
power produced by the given sample size. 

Plots Section 
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This plot shows the relationship between sample size and the standard deviations within each 
group for three values of K.  



Two-Sample T-Test for Microarray Data  615-17 

Example 3 – Finding the Minimum Detectable Difference 
This example finds the minimum difference in expression that can be detected with 90% power 
from a microarray experiment with two groups of 9 arrays in each group. The 9 arrays permit 
tests on 7,228 genes. The arrays will be pre-processed by converting each expression value to the 
Log2 scale. The two-sample T-test will be used to determine which genes are differentially 
expressed (upward or downward) following exposure to the treatment. Typical standard 
deviations in each group for this experiment range from 0.2 to 1.8. 

In this example we will examine a range for K (the number of genes with mean difference greater 
than the minimum detectable difference), since this should vary with the mean difference chosen. 
A false discovery rate of 0.05 will be used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Two-Sample T-Test for Microarray Data procedure window 
by clicking on Microarray, then Two-Sample Tests. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example3 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Mean Difference 
Power ......................................................0.90 
False Discovery (Alpha) Method.............FDR (False Discovery Rate) 
FDR or EWER Value...............................0.05 
N1 (Number of Arrays, Group 1).............9 
N2 (Number of Arrays, Group 2).............Use R 
R (Sample Allocation Ratio)....................1.0 
D (Difference).......................................... Ignored since this is the Find setting 
S1 (Standard Deviation Group 1)............0.2 to 1.8 by .4 
S2 (Standard Deviation Group 2)............S1 
Number of Genes Tested........................7228 
K ..............................................................10 to 50 by 10 
Alternative Hypothesis ............................Two-Sided 
Test Statistic............................................T 
Nonparametric Adjustment ..................... Ignore 

Reports Tab 
Numeric Reports .....................................All Checked 
Number of Summary Statements............1 
Show Plots ..............................................Checked 
Interactive Format ...................................Unchecked 
Show Beta as Power...............................Checked 
Mean Difference and SD Decimals.........4 
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Output 
Click the Run button to perform the calculations and generate the following output. The 
calculations may take a few moments. 

Numeric Results 
 
 Numeric Results for Microarray Two-Sample T-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 The standard deviations were assumed to be unknown and equal. 
 Number of Genes Tested: 7228 
 
        Single Prob To  
        Gene Detect  
 Power N1/N2 D S1 S2 K FDR Alpha All K Beta 
 0.90000 9/9 0.6626 0.2000 0.2000 10 0.0500 0.0000656 0.34868 0.10000 
 0.90000 9/9 0.6253 0.2000 0.2000 20 0.0500 0.0001314 0.12158 0.10000 
 0.90000 9/9 0.6038 0.2000 0.2000 30 0.0500 0.0001974 0.04239 0.10000 
 0.90000 9/9 0.5888 0.2000 0.2000 40 0.0500 0.0002636 0.01478 0.10000 
 0.90000 9/9 0.5772 0.2000 0.2000 50 0.0500 0.0003300 0.00515 0.10000 
 0.90000 9/9 1.9879 0.6000 0.6000 10 0.0500 0.0000656 0.34868 0.10000 
 0.90000 9/9 1.8759 0.6000 0.6000 20 0.0500 0.0001314 0.12158 0.10000 
 0.90000 9/9 1.8115 0.6000 0.6000 30 0.0500 0.0001974 0.04239 0.10000 
 0.90000 9/9 1.7663 0.6000 0.6000 40 0.0500 0.0002636 0.01478 0.10000 
 0.90000 9/9 1.7315 0.6000 0.6000 50 0.0500 0.0003300 0.00515 0.10000 
 0.90000 9/9 3.3132 1.0000 1.0000 10 0.0500 0.0000656 0.34868 0.10000 
 0.90000 9/9 3.1265 1.0000 1.0000 20 0.0500 0.0001314 0.12158 0.10000 
 0.90000 9/9 3.0192 1.0000 1.0000 30 0.0500 0.0001974 0.04239 0.10000 
 . . . . . . . . . . 
 . . . . . . . . . . 
 . . . . . . . . . . 
 

This report shows the values of each of the parameters, one scenario per row. The Minimum 
Mean Difference (D) estimates were calculated from the other parameters. 

Plots Section 
 

 

D vs S1 by K with S2=1.8000 FDR=0.05 Power=0.90
N1=9 N2=N1 2-Sided T-Test

10

20

30

40

50

D K

S1

0

2

4

6

8

0.0 0.5 1.0 1.5 2.0

               
   

This plot shows the relationship between D (the minimum detectable difference on the Log2 
scale) and the standard deviations within each group for five values of K.  
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Example 4 – Validation (EWER) using Stekel 
Stekel (2003), page 228, gives an example in which Power = 0.95, D = 1, and S1 = S2 = 0.68 for 
a two-sided two-sample T-Test. The number of genes tested is 10000. The control of false 
discoveries is “at most one false positive result.” This corresponds to an EWER value of 1.0. The 
sample sizes obtained for this example are 33 per group.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Two-Sample T-Test for Microarray Data procedure window 
by clicking on Microarray, then Two-Sample Tests. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example4 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 (Group 1 Sample Size) 
Power ......................................................0.95 
False Discovery (Alpha) Method.............EWER (Experiment-Wise Error Rate) 
FDR or EWER Value...............................1.0 
N1 (Number of Arrays, Group 1)............. Ignored since this is the Find setting 
N2 (Number of Arrays, Group 2).............Use R 
R (Sample Allocation Ratio)....................1.0 
D (Difference)..........................................1.0 
S1 (Standard Deviation Group 1)............0.68 
S2 (Standard Deviation Group 2)............S1 
Number of Genes Tested........................10000 
K .............................................................. Ignored since EWER is used 
Alternative Hypothesis ............................Two-Sided 
Test Statistic............................................T 
Nonparametric Adjustment ..................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output.  

Numeric Results 
 
 Numeric Results for Microarray Two-Sample T-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 The standard deviations were assumed to be unknown and equal. 
 Number of Genes Tested: 10000 
       Single  
       Gene  
 Power N1/N2 D S1 S2 EWER Alpha Beta 
 0.95785 33/33 1.00 0.68 0.68 1.0000 0.0001000 0.04215 
 

The sample sizes of 33 per group match Stekel’s result. 



615-20  Two-Sample T-Test for Microarray Data 

Example 5 – Validation (EWER) using Lee 
Lee (2004), pp. 218-220, gives an example in which Power = 0.90, D = 1.0 1.5 2.0 2.5 and S = 
1.0 for a two-sided Z-Test. The corresponding S1 and S2 for a two-sample design is 2/0.1 = 
0.707107. The number of genes tested is 1000. The control of false discoveries is 0.5. This 
corresponds to an EWER value of 0.5. This setup corresponds to the upper left corner of Table 
14.3 on page 219. The sample sizes obtained for this setup are 23, 11, 6, and 4, respectively. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Two-Sample T-Test for Microarray Data procedure window 
by clicking on Microarray, then Two-Sample Tests. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example5 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 (Group 1 Sample Size) 
Power ......................................................0.90 
False Discovery (Alpha) Method.............EWER (Experiment-Wise Error Rate) 
FDR or EWER Value...............................0.5 
N1 (Number of Arrays, Group 1).............Ignored since this is the Find setting 
N2 (Number of Arrays, Group 2).............Use R 
R (Sample Allocation Ratio) ....................1.0 
D (Difference)..........................................1.0 1.5 2.0 2.5 
S1 (Standard Deviation Group 1)............0.707107 
S2 (Standard Deviation Group 2)............S1 
Number of Genes Tested........................1000 
K ..............................................................Ignored since EWER is used 
Alternative Hypothesis ............................Two-Sided 
Test Statistic............................................Z 
Nonparametric Adjustment......................Ignore 
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Output 
Click the Run button to perform the calculations and generate the following output.  

Numeric Results 
 
 Numeric Results for Microarray Two-Sample Z-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff <> 0 
 The standard deviations were assumed to be known and equal. 
 Number of Genes Tested: 1000 
 
       Single  
       Gene  
 Power N1/N2 D S1 S2 EWER Alpha Beta 
 0.90576 23/23 1.000000 0.707107 0.707107 0.5000 0.0005000 0.09424 
 0.93244 11/11 1.500000 0.707107 0.707107 0.5000 0.0005000 0.06756 
 0.92194 6/6 2.000000 0.707107 0.707107 0.5000 0.0005000 0.07806 
 0.93565 4/4 2.500000 0.707107 0.707107 0.5000 0.0005000 0.06435 
 

Sample sizes of 23, 11, 6, and 4 per group match the results shown in Lee (2004). 

Example 6 – Validation (FDR) using Jung 
Jung (2005), page 3100, gives an example for the sample size needed to control FDR in a two-
sample Z-Test. This example is repeated in Chow, Shao, and Wang (2008). In the example, 
Power = 0.60 (from 24/40), D = 1.0, and S = 1.0 for a one-sided two-sample Z-Test. The number 
of genes tested is 4000. The FDR level is 1%. This setup corresponds to Example 1 on page 3100. 
The required sample size obtained in each group for this setup is 34. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Two-Sample T-Test for Microarray Data procedure window 
by clicking on Microarray, then Two-Sample Tests. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example6 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 (Group 1 Sample Size) 
Power ......................................................0.60 
False Discovery (Alpha) Method.............FDR (False Discovery Rate) 
FDR or EWER Value...............................0.01 
N (Number of Arrays) .............................. Ignored since this is the Find setting  
Alternative Hypothesis ............................One-Sided 
Test Statistic............................................Z 
D (Difference)..........................................1.0 
S1 (Standard Deviation Group 1)............1.0 
S2 (Standard Deviation Group 2)............S1 
Number of Genes Tested........................4000 
K ..............................................................40 
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Output 
Click the Run button to perform the calculations and generate the following output.  

Numeric Results 
 
 Numeric Results for Microarray Two-Sample Z-Test 
 Null Hypothesis: MeanDiff = 0     Alternative Hypothesis: MeanDiff > 0 
 The standard deviations were assumed to be known and equal. 
 Number of Genes Tested: 4000 
 
        Single Prob To  
        Gene Detect  
 Power N1/N2 D S1 S2 K FDR Alpha All K Beta 
 0.61099 34/34 1.0000 1.0000 1.0000 40 0.0100 0.0000612 0.00000 0.38901 
 

A group sample size of 34 matches the result shown in Jung (2005). For Example 3 in Jung 
(2005), the alternative hypothesis is two-sided and results in a sample size of 73. This result may 
be validated in PASS by changing Alternative to Two-Sided in this example. 
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two proportions - cluster - non-inferiority, 235-7 
two proportions - cluster randomized, 230-9 
two proportions - confidence interval, 216-26 
two proportions - equivalence, 215-17 
two proportions - group sequential, 220-9 
two proportions - inequality, 200-14 
two proportions - non-inferiority, 210-17 
two proportions - offset, 205-18 
two proportions - stratified design, 225-8 
two-level designs, 881-6 
two-stage phase II trials, 125-8 
variance (one), 650-4 
variance ratio - confidence interval, 656-5 
variance ratio - relative error - confidence interval, 

657-4 
variances (two), 655-4 

Exiting PASS, 4-4 
Experiment (run) 

two-level designs, 881-2 
Experimental design, 881-1 

two-level designs, 881-2 
Experimental error 

two-level designs, 881-2 
Experimentwise error rate 

simulation, 580-1, 585-2, 590-1 
Exponential 

logrank, 705-3 
log-rank, 715-2 

Exponential distribution 
simulation, 920-6 

Exponential mean (one), 405-1 
examples, 405-8 
validation, 405-10 

Exponential means (two), 435-1 
examples, 435-5 

validation, 435-7 
Exponential test 

simulation, 410-4 
Exposure 

Poisson regression, 870-1 
Exposure probability 

matched case-control, 155-4 

F 
F distribution 

probablility calculator, 915-3 
simulation, 920-7 

Factor scaling 
D-optimal designs, 888-2 

Factorial ANOVA, 560-1 
Factorial designs 

two-level designs, 881-1, 881-2 
False discovery rate adjustment 

t-test 
two groups, 615-4 

t-test - one group, 610-6 
Familywise error rate 

simulation, 580-1, 585-2, 590-1 
Farrington-Manning confidence interval 

two proportions, 216-5 
Farrington-Manning test 

two proportions - equivalence, 215-9 
two proportions - non-inferiority, 210-10 
two proportions - offset, 205-9 

File menu 
output window, 5-2 
procedure window, 4-3 
spreadsheet, 925-1 

Finite population correction 
t test, 400-8 

Finite population size 
one mean - confidence interval, 420-2 

Fisher's exact test 
two proportions, 200-4 

Fisher-z transformation 
two correlations, 805-1 

Fixed effects ANOVA 
examples, 560-13 
validation, 560-19 

Fixed effects models 
mixed models, 571-1 

Fixed factor 
ANOVA, 560-5 

Fleiss Confidence intervals 
two proportions, 216-12, 216-16 

Fleming algorithm 
single-stage phase II trials, 120-1 

Follow-up 
logrank, 705-4 

Fonts 
changing, 5-6 

Forced points 
D-optimal designs, 888-5 
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Format 
tick labels, 4-14 

Format menu 
output window, 5-6 

Format toolbar, 5-5 
FPR 

ROC curve (one), 260-7 
ROC curves (two), 265-1 

Fractional factorial designs, 882-1 
examples, 882-4 

Freedman 
logrank, 700-1 

F-test 
Geisser-Greenhouse, 570-4 
simulation, 555-1 
two variances, 655-1 

G 
Games-Howell - simulation 

multiple comparison, 580-1 
Games-Howell test 

simulation, 580-3 
Gamma data 

simulation, 920-24 
Gamma distribution 

probablility calculator, 915-4 
simulation, 920-7 

Gart-Nam confidence interval 
two proportions, 216-7 

Gart-Nam test 
two proportions - equivalence, 215-10 
two proportions - non-inferiority, 210-11 
two proportions - offset, 205-10 

Geisser-Greenhouse 
repeated measures ANOVA, 570-1 

Geisser-Greenhouse F-test 
repeated measures ANOVA, 570-4 

General linear multivariate model 
MANOVA, 605-2 
repeated measures ANOVA, 570-3 

Generating data, 920-1 
Goodness of fit 

chi-square estimator, 900-1 
Chi-square test, 250-1 

Graeco-Latin square designs, 884-1 
Grid color, 4-12 
Grid line style, 4-12 
Grid lines, 4-12 
Group sequential test 

log-rank, 710-1 
survival, 710-1 
two means, 475-1 
two proportions, 220-1 

H 
Hazard rate 

Cox regression, 850-1 
Hazard rate parameterization 

logrank, 715-2 
Hazard rates 

logrank, 700-2 
logrank - advanced, 705-2 
time dependent, 715-22 

Hazard ratio 
group sequential, 710-2 

Help menu 
output window, 5-7 
PASS home window, 3-3 
procedure window, 4-6 
spreadsheet, 925-5 

Help system, 1-5 
contents window, 1-7 
index window, 1-6 
navigating, 1-6 
printing documentation, 1-9 
search window, 1-8 

Heterogeneous variances 
mixed models, 571-46 

Home window, 3-1 
Horizontal viewing angle, 4-17 
Hotelling’s T2, 600-1 

examples, 600-8 
validation, 600-11 

Hotelling’s T2 distribution 
probablility calculator, 915-4 

Hotelling-Lawley trace, 605-1 
MANOVA, 605-3 
repeated measures ANOVA, 570-1, 570-7 

Hypergeometric distribution 
probablility calculator, 915-4 

Hypergeometric model 
one proportion, 100-2 

Hypothesis 
equivalence, 7-9 
inequality, 7-7 
introduction, 7-1 
means, 9-1 
non-inferiority, 7-7 
superiority, 7-8 
types, 7-6 

Hypothesis testing 
introduction, 7-1 

I 
Icons 

output window, 5-7, 6-2 
PASS home window, 3-3 
procedure window, 4-6 

Incidence rate 
post-marketing surveillance, 135-2 
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Inclusion points 
D-optimal designs, 888-6 

Independence test, 250-1 
Inequality 

one proportion, 100-1 
two means ratio, 445-1 
two proportions, 200-1 
two proportions - offset, 205-1 

Inequality hypothesis, 7-7 
Installation, 1-1 

folders, 1-1 
Interaction 

two-level designs, 881-3 
Intercept 

linear regression, 855-1 
Interim analysis 

survival, 710-1 
three-stage trial, 130-1 
two means, 475-1 
two proportions, 220-1 

Intraclass correlation, 810-1 
examples, 810-4 
validation, 810-6 

Intracluster correlation 
cluster randomization - two means, 480-3 
cluster randomized - non-inferiority, 235-4 
cluster randomized design, 230-2 

Introduction to power analysis, 7-1 
Isometric, 4-17 
Iterations 

maximum, 4-20 
Iterations tab, 4-20 

K 
Kappa 

examples, 811-6 
validation, 811-11 

Kappa test for rater agreement, 811-1 
Kenward and Roger method 

mixed models, 571-11 
Kolmogorov-Smirnov test, 670-2 
Kruskal-Wallis 

multiple comparisons - simulation, 580-1 
simulation, 555-1 

Kruskal-Wallis test 
multiple comparisons - simulation, 580-3, 585-1 
simulation, 585-3 

L 
Labels of plots, 4-13 
Lachin and Foulkes 

logrank test, 705-1 
Lakatos 

logrank, 715-1 
Lan-DeMets 

survival - group sequential, 710-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Latin square 
ANOVA, 560-17 

Latin square designs, 884-1 
examples, 884-5 

Legend 
color, 4-14 
parameter, 4-12 
percent of vertical space, 4-12 
position, 4-12 

Likelihood ratio test 
two proportions, 200-7 

Likert-scale 
simulation, 410-21, 920-8 
simulation, 920-22 

Lilliefors' critical values 
normality tests, 670-2 

Line chart options, 4-16 
Linear model 

ANOVA, 560-2 
repeated measures ANOVA, 570-3 

Linear regression, 855-1 
confidence interval, 856-1 
examples, 855-5 
validation, 855-7 

Load template button, 4-4, 4-21 
Loading a procedure, 2-2 
Log file, 5-2 
Log transformation 

cross-over, 505-2 
cross-over - equivalence, 525-2 
cross-over - higher-order - equivalence, 545-4 
cross-over - higher-order - non-inferiority, 535-4 
cross-over - non-inferiority, 515-2 
mean ratio, 445-2 
mean ratio - equivalence, 470-2 
mean ratio - non-inferiority, 455-2 

Logistic regression, 860-1 
examples, 860-9 
validation, 860-14 

Logit 
logistic regression, 860-2 

Logrank 
hazard rate parameterization, 715-2 
median survival time parameterization, 715-2 
mortality parameterization, 715-2 
proportion surviving parameterization, 715-2 

Log-rank 
group sequential test, 710-1 

Logrank procedure comparison, 715-3 
Logrank test, 700-1, 715-1 

Lachin and Foulkes, 705-1 
non-inferiority, 706-1 

Logrank tests - non-inferiority 
examples, 706-7 
validation, 706-11 

Logrank tests (Lakatos) 
examples, 715-16 
validation, 715-21 
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Longitudinal data models 
mixed models, 571-2 

Longitudinal models, 571-1 

M 
Macros, 930-1 

command list, 930-19 
commands, 930-6 
examples, 930-20 
syntax, 930-2 

Mann-Whitney test, 430-1 
assumptions, 430-4 
examples, 430-16 
non-inferiority, 450-5 
simulation, 440-5 

Mann-Whitney test - equivalence 
simulation, 465-5 

Mann-Whitney test - simulation 
equivalence, 465-1 

MANOVA, 605-1 
assumptions, 605-1 
examples, 605-12 
validation, 605-17 

Mantel Haenszel test 
two proportions, 200-7 

Mantel-Haenszel, 225-1 
Many proportions - trend 

examples, 255-12 
validation, 255-19 

Map window, 6-1 
Margin of equivalence 

two means, 450-8 
two means - non-inferiority, 455-5 

Martinez-Iglewicz test, 670-3 
Matched case-control, 155-1 

post-marketing surveillance, 135-2 
Matched case-control - proportions 

examples, 155-6 
validation, 155-10 

Matrices, 925-1 
Maximum iterations, 4-20 
Maximum likelihood 

mixed models, 571-8 
Maximum on axis, 4-11 
McNemar test, 150-1 
McNemar test - two correlated proportions 

examples, 150-7 
validation, 150-9 

Mean (one) 
confidence interval, 420-1 
exponential, 405-1 
simulation, 410-1 

Mean (one) - confidence interval 
examples, 420-5 
validation, 420-7 

Mean (one) - tolerance - confidence interval 
examples, 421-6 
validation, 421-8 

Mean (one) - tolerance probability 
confidence interval, 421-1 

Mean absolute deviation 
standard deviation estimator, 905-3 

Mean ratio 
equivalence, 470-1 
inequality, 445-1 

Means 
introduction, 9-1 
one-way - simulation, 555-1 

Means - ratio - equivalence 
cross-over, 525-1 

Means - ratio - equivalence - higher-order 
cross-over, 545-1 

Means - ratio - non-inferiority 
cross-over, 515-1 

Means - ratio - non-inferiority - higher-order 
cross-over, 535-1 

Means - ratio - superiority 
cross-over, 515-1 

Means - ratio - superiority - higher-order 
cross-over, 535-1 

Means (paired) 
confidence interval, 496-1 
simulation, 490-1 

Means (paired) - confidence interval 
examples, 496-5 
validation, 496-6 

Means (paired) - equivalence 
simulation, 495-1 

Means (paired) - tolerance - confidence interval 
examples, 497-6 
validation, 497-8 

Means (paired) - tolerance probability 
confidence interval, 497-1 

Means (two) 
cluster randomized design, 480-1 
confidence interval, 471-1 
cross-over, 500-1 
equivalence, 460-1 
exponential, 435-1 
group sequential test, 475-1 
interim analysis, 475-1 
non-inferiority, 450-1 
ratio, 445-1 
simulation, 440-1 
T-test, 430-1 
t-test - equivalence, 460-1 
T-test - non-inferiority, 450-1 

Means (two) - cluster randomized design 
examples, 480-4 
validation, 480-6 

Means (two) - confidence interval 
examples, 471-5 
validation, 471-7 

Means (two) - equivalence 
cross-over, 520-1 
examples, 460-5 
validation, 460-7 

Means (two) - equivalence - higher-order 
cross-over, 540-1 
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Means (two) - equivalence - simulation 
examples, 465-12 
validation, 465-19 

Means (two) - group sequential 
examples, 475-10 
validation, 475-17 

Means (two) - non-inferiority 
cross-over, 510-1 
examples, 450-10 
validation, 450-13 

Means (two) - non-inferiority - higher-order 
cross-over, 530-1 

Means (two) - ratio 
cross-over, 505-1 
equivalence, 470-1 
non-inferiority, 455-1 
superiority, 455-1 

Means (two) - ratio - non-inferiority 
examples, 455-6 
validation, 455-8 

Means (two) - simulation 
equivalence, 465-1 
t-test - equivalence, 465-1 

Means (two) - superiority 
cross-over, 510-1 

Means (two) - superiority - higher-order 
cross-over, 530-1 

Means (two) - tolerance - confidence interval 
examples, 472-6 
validation, 472-8 

Means (two) - tolerance probability 
confidence interval, 472-1 

Means matrix 
MANOVA, 605-4 
repeated measures ANOVA, 570-7 

Measurement error 
randomized block ANOVA, 565-2 

Median survival time parameterization 
logrank, 715-2 

Menus 
output window, 5-2 
PASS home window, 3-2 
procedure window, 4-3 
spreadsheet, 925-1 

Microarray data 
one sample t-test, 610-1 
paired T-test, 610-1 
two sample t-test, 615-1 

Microarray one-sample or paired t-test 
examples, 610-12 
validation, 610-19 

Microarray two-sample t-test 
examples, 615-12 
validation, 615-19 

Miettinen-Nurminen confidence interval 
two proportions, 216-6 

Miettinen-Nurminen test 
two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 
two proportions - offset, 205-7 

Minimum detectable difference 

mixed models, 571-14 
multiple comparisons, 575-11 
one-way ANOVA, 550-17 
t-test, 400-12 
two-sample t test, 430-14 

Minimum on axis, 4-11 
Mixed model 

defined, 571-2 
Mixed models, 571-1 

differential evolution, 571-12 
examples, 571-35 
F test, 571-11 
Fisher scoring, 571-12 
fixed effects, 571-1 
G matrix, 571-5 
heterogeneous variances, 571-46 
Kenward and Roger method, 571-11 
L matrix, 571-9 
likelihood formulas, 571-8 
maximum likelihood, 571-8 
minimum detectable difference, 571-14 
MIVQUE, 571-12 
Newton-Raphson, 571-12 
pairwise contrasts, 201-6, 431-7 
R matrix, 571-5 
restricted maximum likelihood, 571-9 
simulation steps, 571-17 
types, 571-1 
validation, 571-41 

Mixture data 
simulation, 920-25 

Mixture design 
D-optimal designs, 888-20 

Monte Carlo, 9-3 
Monte Carlo simulation, 920-1 
Mortality parameterization 

logrank, 715-2 
Moving data, 925-10 
MTBF 

exponential mean (one), 405-1 
Multinomial 

chi-square estimator, 900-3 
Multinomial distribution 

simulation, 920-8 
Multiple comparisons, 575-1 

Dunnett's test - simulation, 585-1 
examples, 575-13 
Games-Howell - simulation, 580-1 
pair-wise - simulation, 580-1 
validation, 575-19 
vs control - simulation, 585-1 
with a control, 575-2 
with best, 575-5 

Multiple comparisons - simulation 
examples, 580-13 
power, 580-4 
validation, 580-22 

Multiple comparisons - vs control - simulation 
examples, 585-12 
validation, 585-21 

Multiple contrasts 
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simulation, 590-1 
Multiple contrasts - simulation 

examples, 590-14 
validation, 590-24 

Multiple regression, 865-1 
examples, 865-6 
validation, 865-10 

Multiple testing adjustment 
t-test - two groups, 615-2 
t-test -one group, 610-4 

Multivariate analysis of variance, 605-1 

N 
Navigating the help system, 1-6 
Negative binomial distribution 

probablility calculator, 915-5 
Nested factors 

design generator, 889-1 
New template, 4-3 
Noncentrality 

one-way ANOVA, 550-3 
Noncentrality parameter 

one-way ANOVA, 550-4 
Non-inferiority 

correlated proportions, 160-1 
logrank, 705-13, 706-1 
means (two), 450-1 
means (two) - ratio, 455-1 
one proportion, 105-1 
paired t-test, 415-1 
survival, 706-1 
two proportions, 210-1 

Non-inferiority - two correlated proportions 
examples, 160-10 
validation, 160-13 

Non-inferiority hypothesis, 7-7 
Non-Inferiority test (two means) 

simulation, 440-17 
Nonparametric 

t-test, 400-7 
Nonparametric tests 

Wilcoxon test, 400-1 
Normal distribution 

probablility calculator, 915-5 
simulation, 920-9, 920-19 

Normality - simulation 
examples, 670-8 
validation, 670-11 

Normality tests, 670-1 
Anderson-Darling test, 670-2 
D’Agostino kurtosis, 670-2 
D’Agostino omnibus, 670-3 
D’Agostino skewness, 670-4 
Kolmogorov-Smirnov, 670-2 
Lilliefors' critical values, 670-2 
Martinez-Iglewicz, 670-3 
range, 670-4 
Shapiro-Wilk, 670-4 

Nuisance parameter, 9-2 
Nuisance parameters, 7-6 
Null hypothesis, 7-1, 9-1 

O 
O’Brien-Fleming 

survival - group sequential, 710-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Odds ratio 
logistic regression, 860-2 
matched case-control, 155-1 
McNemar test, 150-3 
one proportion, 100-6 
proportions, 8-3 
two proportions, 200-3 

Odds ratio estimator, 910-1 
examples, 910-2 

One proportion 
equivalence, 110-1 
inequality, 100-1 
non-inferiority, 105-1 
superiority, 105-1 

One-sample t-test 
microarray data, 610-1 

One-way ANOVA, 550-1 
examples, 550-10 
simulation, 555-1 
validation, 550-19 

One-way ANOVA - simulation 
examples, 555-10 
validation, 555-16 

Open template, 4-3 
Options, 4-4 
Orthogonal arrays, 887-1 
Orthogonal sets of Latin squares, 884-2 
Outliers 

multiple comparisons - simulation, 580-23 
one-way ANOVA - simulation, 555-18 

Outliers (two means) 
simulation, 440-19 

Outline 
PASS home window, 3-4 

Output, 2-4 
Output window, 5-1 

edit menu, 5-4 
file menu, 5-2 
format menu, 5-6 
help menu, 5-7 
toolbar, 5-7, 6-2 
view menu, 5-5 
window menu, 5-6 
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P 
P value, 7-4 
Page setup 

spreadsheet, 925-2 
Paired design 

microarray data, 610-1 
Paired designs 

non-inferiority, 415-1 
Paired distributions 

simulating, 490-2 
Paired means 

simulation, 490-1 
Paired means - equivalence 

simulation, 495-1 
Paired proportions 

equivalence, 165-1 
non-inferiority, 160-1 

Paired t-test, 400-1 
assumptions, 400-3 
microarray data, 610-1 
non-inferiority, 415-1 
superiority, 415-1 

Pairwise comparisons 
multiple comparisons, 575-7 

Pair-wise comparisons 
simulation, 580-1 

Pairwise contrasts 
mixed models, 201-6 

Pairwise contrasts 
mixed models, 431-7 

Panel, 4-1 
Parameters 

3D, 4-18 
abbreviations, 4-15 
axis, 4-11 
entering, 4-7 
legend, 4-12 

PASS help system, 1-5 
PASS home window, 3-1 

help menu, 3-3 
outline, 3-4 
procedure menus, 3-2 
toolbar, 3-3 
tools menu, 3-2 
view menu, 3-2 
window menu, 3-3 

Password, 5-7 
Patient entry 

logrank, 705-3 
Perspective, 4-17, 4-18 
Phase I trials 

definition, 120-1 
Phase II clinical trials 

single-stage one proportion, 120-1 
three-stage one proportion, 130-1 
two-stage one proportion, 125-1 

Phase II trials 
definition, 120-1 

Pillai-Bartlett trace, 605-1 

MANOVA, 605-3 
repeated measures ANOVA, 570-1, 570-6 

Plackett-Burman designs, 886-1 
Planned comparisons 

one-way ANOVA, 550-1 
Plot labels, 4-13 
Plot text tab, 4-13 
Plot titles, 4-13 
Plot type, 4-15 
Plot type tab, 4-15 
Pocock 

survival - group sequential, 710-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Poisson distribution 
probablility calculator, 915-5 
simulation, 920-9 

Poisson incidence 
post-marketing surveillance, 135-1 

Poisson regression, 870-1 
examples, 870-7 
validation, 870-9 

Population size 
t-test, 400-8 

Post-marketing surveillance, 135-1 
examples, 135-6 
validation, 135-8 

Power 
calculating, 7-4 
introduction, 7-1 
means, 9-1 
multiple comparisons - simulation, 580-4 

Prevalence 
correlated proportions, 160-2, 165-2 

Printer setup 
spreadsheet, 925-2 

Printing documentation, 1-9 
Printing output, 5-4 
Probability calculator, 915-1 

Beta distribution, 915-1 
Binomial distribution, 915-2 
Bivariate normal distribution, 915-2 
Chi-square distribution, 915-2 
Correlation coefficient distribution, 915-3 
F distribution, 915-3 
Gamma distribution, 915-4 
Hotelling’s T2 distribution, 915-4 
Hypergeometric distribution, 915-4 
Negative binomial distribution, 915-5 
Normal distribution, 915-5 
Poisson distribution, 915-5 
Student’s t distribution, 915-6 
Studentized range distribution, 915-6 
Weibull distribution, 915-6 

Procedure menus 
PASS home window, 3-2 
procedure window, 4-5 

Procedure options, 4-1 
Procedure window, 4-1 

file menu, 4-3 
help menu, 4-6 
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procedure menus, 4-5 
run menu, 4-5 
tabs, 4-7 
toolbar, 4-6 
tools menu, 4-5 
window menu, 4-5 

Producer’s risk 
exponential mean (one), 405-2 

Projection method, 4-17 
Proportion (one) 

binomial model, 100-2 
confidence interval, 115-1 
continuity correction, 100-5 
equivalence, 110-1 
exact binomial test, 100-4 
examples, 100-13 
hypergeometric model, 100-2 
inequality, 100-1 
non-inferiority, 105-1 
odds ratio, 100-6 
saw-tooth power function, 100-16 
single-stage phase II trials, 120-1 
superiority, 105-1 
three-stage phase II trials, 130-1 
two-stage phase II trials, 125-1 
validation, 100-20 
Z test, 100-4 

Proportion (one) - confidence interval 
examples, 115-6 
validation, 115-9 

Proportion (one) - equivalence 
examples, 110-11 
validation, 110-17 
Z test, 110-6 

Proportion (one) - non-inferiority 
examples, 105-10 
validation, 105-16 

Proportion surviving parameterization 
logrank, 715-2 

Proportion trend test, 255-1 
Proportional hazards regression, 850-1 
Proportions 

comparing, 8-1 
difference, 8-2 
interpretation, 8-3 
introduction, 8-1 
logistic regression, 860-1 
odds ratio, 8-3 
odds ratio estimator, 910-1 
paired (equivalence), 165-1 
paired (non-inferiority), 160-1 
ratio, 8-2 

Proportions (many) 
trend, 255-1 

Proportions (many) - trend 
examples, 255-12 
validation, 255-19 

Proportions (multiple) 
Chi-square test, 250-1 

Proportions (two) 
Chi-square test, 200-5 

cluster randomized - equivalence, 240-1 
cluster randomized - non-inferiority, 235-1 
cluster randomized - superiority, 235-1 
cluster randomized design, 230-1 
confidence intervals, 216-1 
equivalence, 215-1 
Fisher's exact, 200-4 
group sequential test, 220-1 
independent, 200-1 
independent - equivalence, 215-1 
independent - non-inferiority & superiority, 210-1 
independent - offset, 205-1 
inequality, 200-1 
inequality - offset, 205-1 
interim analysis, 220-1 
matched case control, 155-1 
McNemar test, 150-1 
non-inferiority & superiority, 210-1 
stratified, 225-1 

Proportions (two) - cluster - equivalence 
examples, 240-8 
validation, 240-12 

Proportions (two) - cluster - non-inferiority 
examples, 235-7 
validation, 235-11 

Proportions (two) - cluster randomized design 
examples, 230-9 
validation, 230-17 

Proportions (two) - confidence interval 
examples, 216-26 
validation, 216-28 

Proportions (two) - equivalence 
examples, 215-17 
validation, 215-23 

Proportions (two) - group sequential 
examples, 220-9 
validation, 220-17 

Proportions (two) - inequality 
examples, 200-14 
validation, 200-19 

Proportions (two) - non-inferiority 
examples, 210-17 
validation, 210-24 

Proportions (two) - offset 
examples, 205-18 
validation, 205-24 

Proportions (two) - stratified design 
examples, 225-8 
validation, 225-11 

Proportions (two) correlated 
equivalence, 165-1 
non-inferiority, 160-1 

Proportions estimator, 910-1 
examples, 910-2 

Q 
Qualitative factors 

D-optimal designs, 888-5 
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Quick launch window, 6-1 
Quick-access buttons 

map window, 6-2 
output window, 5-9 
PASS home window, 3-3 
procedure window, 4-6 

Quitting PASS, 4-4 

R 
Random assignment, 880-1 
Random effects models, 571-1 

mixed models, 571-1 
Random factor 

ANOVA, 560-5 
Random numbers, 920-1 

multiple comparisons - simulation, 580-5 
simulation, 585-5, 590-5 

Random sorting, 880-3 
Random sorting using max % deviation, 880-5 
Randomization 

complete, 880-3 
Efron’s biased coin, 880-3 
Latin square designs, 884-2 
random sorting, 880-3 
random sorting using max % deviation, 880-5 
Smith, 880-4 
Wei’s urn, 880-4 

Randomization lists, 880-1 
examples, 880-9 

Randomized block ANOVA, 565-1 
examples, 565-9 
validation, 565-11 

Randomized block design 
design generator, 889-5 

Range on axis, 4-11 
Range test, 670-4 
Rater agreement - kappa, 811-1 
Rating data 

ROC curve (one), 260-4 
ROC curves (two), 265-3 

Ratio 
proportions, 8-2 
two means, 445-1 
two means - equivalence, 470-1 

Ratio (two means) 
non-inferiority, 455-1 

Ratio of two means 
examples, 445-6 
validation, 445-8 

Ratio of two means - equivalence 
examples, 470-7 
validation, 470-9 

Ratio -two means 
cross-over, 505-1 

Regression 
confidence interval, 856-1 
Cox, 850-1 
linear, 855-1 

logistic, 860-1 
multiple, 865-1 
Poisson, 870-1 

Regression - confidence interval 
examples, 856-7 
validation, 856-10 

Rejection region, 7-3 
Repeated measures 

mixed models, 571-1 
two means, 431-1 
two proportions, 201-1 

Repeated measures - two means 
examples, 431-13 
validation, 431-19 

Repeated measures - two proportions 
examples, 201-16 
validation, 201-24 

Repeated measures ANOVA, 570-1 
examples, 570-29 
validation, 570-49 

Repeated measures design 
design generator, 889-6 

Replication 
two-level designs, 881-3 

Reports tab, 4-8 
Resetting a template, 4-3 
Response surface designs, 885-1 

examples, 885-3 
Restricted maximum likelihood 

mixed models, 571-9 
Risk ratio 

Blackwelder, 205-26 
ROC curve (one), 260-1 

examples, 260-8 
validation, 260-12 

ROC curves (two), 265-1 
examples, 265-8 
validation, 265-13 

Row heights, 925-11 
R-squared 

logistic regression, 860-8 
multiple regression, 865-1 

RTF, 5-3 
RTF files, 5-1 
Ruler, 5-5 
Run menu 

procedure window, 4-5 
Running a procedure, 2-3 
Running PASS, 2-1 

S 
Sample size 

introduction, 7-1 
Save template, 4-4 
Save template button, 4-4, 4-22 
Saw-tooth power function 

one proportion, 100-16 
Scaling factors 
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D-optimal designs, 888-2 
Score test 

two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 
two proportions - offset, 205-7 

Screening designs, 886-1 
examples, 886-3 

Sensitivity 
correlated proportions, 160-2, 165-2 
ROC curve (one), 260-1 

Serial numbers, 1-4, 5-7 
Setting options, 4-4 
Shapiro-Wilk test, 670-4 
Show tickmarks, 4-13 
Sign test 

simulation, 410-3 
Sign test - paired means 

simulation, 490-4 
Sign test - paired means - equivalence 

simulation, 495-5 
Significance level, 7-3 

adjusting, 9-5 
Significance level - simulation 

multiple comparisons, 580-1, 585-2 
multiple contrasts, 590-1 

Simon 
two-stage phase II trials, 125-1 

Simple linear regression 
confidence interval, 856-1 

Simulation, 9-3, 920-1 
Beta distribution, 920-3 
Binomial distribution, 920-5 
Cauchy distribution, 920-5 
Constant distribution, 920-6 
contaminated normal, 920-20 
Exponential distribution, 920-6 
F distribution, 920-7 
Gamma distribution, 920-7 
Likert-scale, 920-8, 920-22 
Multinomial distribution, 920-8 
multiple comparisons, 580-1, 580-5, 585-1, 585-4 
multiple contrasts, 590-1, 590-4 
Normal distribution, 920-9, 920-19 
normality tests, 670-1 
one mean, 410-1 
one-way ANOVA, 555-1 
paired means, 490-1 
paired means - equivalence, 495-1 
Poisson distribution, 920-9 
random number generation, 580-5, 585-5, 590-5 
size, 9-3 
skewed distribution, 920-10 
Student's T distribution, 920-10 
syntax, 920-13 
T distribution, 920-10 
Tukey's lambda distribution, 920-10 
two means, 440-1 
two means - equivalence, 465-1 
Uniform distribution, 920-11 
Weibull distribution, 920-12 

Simulation steps 

mixed models, 571-17 
Single-stage design 

one proportion, 120-1 
Single-stage phase II trials 

examples, 120-3 
validation, 120-3 

Skewed data 
one-way ANOVA - simulation, 555-20 
simulation, 410-12 

Skewed data (two means) 
simulation, 440-20 

Skewed distribution 
simulation, 920-10 

Skewness test, 670-4 
Slope 

linear regression, 855-1 
Slope - simple linear regression 

confidence interval, 856-1 
Smith’s randomization, 880-4 
Specificity 

correlated proportions, 160-2, 165-2 
ROC curve (one), 260-1 

Spending functions 
survival - group sequential, 710-3 
two means - group sequential, 475-2 
two proportions - group sequential, 220-2 

Split plot analysis 
mixed models, 571-1 

Spreadsheet, 925-1 
data entry, 925-6 
edit menu, 925-3 
file menu, 925-1 
help menu, 925-5 
menus, 925-1 
navigating, 925-6 
window menu, 925-5 

Standard deviation, 9-2 
estimator, 905-1 
interpretation, 905-1 

Standard deviation (one) 
confidence interval, 640-1 

Standard deviation (one) - confidence interval 
examples, 640-5 
validation, 640-7 

Standard deviation (one) - relative error 
confidence interval, 642-1 

Standard deviation (one) - relative error - confidence 
interval 
examples, 642-4 
validation, 642-6 

Standard deviation (one) - tolerance - confidence 
interval 
examples, 641-6 
validation, 641-8 

Standard deviation (one) - tolerance probability 
confidence interval, 641-1 

Standard deviation estimator 
examples, 905-6 

Standard deviation test 
one, 650-1 
two, 655-1 
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Starting PASS, 1-3, 2-1 
Stratified designs 

two proportions, 225-1 
Student’s t distribution 

probablility calculator, 915-6 
Studentized range distribution 

probablility calculator, 915-6 
Student's T distribution 

simulation, 920-10 
Style 

grid lines, 4-12 
Superiority 

means (two), 450-1 
means (two) - ratio, 455-1 
one proportion, 105-1 
paired t-test, 415-1 
two proportions, 210-1 

Superiority hypothesis, 7-8 
Surface chart options, 4-17 
Survival 

logrank, 700-1, 715-1 
logrank - Lachin and Foulkes, 705-1 
non-inferiority, 706-1 

Survival - group sequential 
examples, 710-11 
validation, 710-18 

Survival - logrank 
examples, 700-6 
validation, 700-9 

Survival - logrank - Lachin and Foulkes 
examples, 705-8 
validation, 705-12 

Syntax 
macros, 930-2 

System requirements, 1-1 

T 
T distribution 

simulation, 920-10 
T test 

two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 

T2 
Hotelling’s, 600-1 

Tabs 
axes/legend/grid, 4-11 
data, 4-7 
iterations, 4-20 
plot text, 4-13 
plot type, 4-15 
reports, 4-8 
template, 4-21 

Tabs on the procedure window, 4-7 
Taguchi designs, 887-1 

examples, 887-4 
Technical support, 1-11 
Template tab, 4-21 
Templates, 4-1 

automatic, 4-2 
creating a new, 4-3 
default, 4-2 
definition, 4-3 
deleting, 4-4, 4-22 
file extension, 4-4, 4-22 
file name, 4-21 
loading, 4-3, 4-4, 4-21 
opening, 4-3 
saving, 4-4, 4-22 
storage location, 4-4, 4-22 
template id, 4-21 

Test statistics, 7-6 
Thin walls, 4-18 
Three-stage design 

one proportion, 130-1 
Three-stage phase II trials 

examples, 130-8 
validation, 130-8 

Tickmarks, 4-12 
show, 4-13 

Time averaged difference 
binary data, 201-1 
normal data, 431-1 
power for, 201-2, 431-2 
two means, 431-1 
two proportions, 201-1 

Titles of plots, 4-13 
Toolbar 

output window, 5-7, 6-2 
PASS home window, 3-3 
procedure window, 4-6 

Toolbars 
customizing, 3-4 
customizing using drag-and-drop, 6-3 
format, 5-5 

Tools menu 
PASS home window, 3-2 
procedure window, 4-5 

Trend in proportions, 255-1 
Trimmed t-test (two means) 

simulation, 440-4 
Trimmed t-test (two means) - equivalence 

simulation, 465-4 
T-test 

cross-over, 500-3 
microarray data, 610-1, 615-1 
one group - multiple testing adjustment, 610-4 
one mean, 400-1 
one mean - simulation, 410-1 
paired, 400-1 
paired - equivalence - simulation, 495-1 
paired - simulation, 490-1 
two groups - multiple testing adjustment, 615-2 
two means, 430-1 
two means - equivalence, 460-1 
two means - non-inferiority, 450-1 
two means - simulation, 440-1 
two proportions, 200-8 

T-test - equivalence 
cross-over, 520-3 
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T-test - simulation 
two means - equivalence, 465-1 

T-test (one mean) 
assumptions, 400-3 
examples, 400-8 
non-inferiority, 415-1 
superiority, 415-1 
validation, 400-17 

T-test (one mean) - non-inferiority 
examples, 415-9 
validation, 415-12 

T-test (one mean) - simulation 
examples, 410-10 
validation, 410-16 

T-test (paired means) - equivalence - simulation 
examples, 495-11 
validation, 495-17 

T-test (paired means) - simulation 
examples, 490-11 
validation, 490-16 

T-test (paired) 
examples, 400-13 

T-test (two means) 
examples, 430-10 
validation, 430-18 

T-test (two means) - simulation 
examples, 440-12 
validation, 440-16 

T-tests (two means) 
assumptions, 430-3 

Tukey-Kramer 
simulation, 580-1 

Tukey-Kramer test 
multiple comparisons, 575-7 
simulation, 580-3 

Tukey's lambda distribution 
simulation, 920-10 

Two correlated proportions - equivalence 
examples, 165-11 
validation, 165-14 

Two correlated proportions - non-inferiority 
examples, 160-10 
validation, 160-13 

Two means 
cluster randomized design, 480-1 
cross-over, 500-1 

Two means - cluster randomized design 
examples, 480-4 
validation, 480-6 

Two means - equivalence 
cross-over, 520-1 
examples, 460-5 
validation, 460-7 

Two means - equivalence - higher-order 
cross-over, 540-1 

Two means - equivalence - simulation 
examples, 465-12 
validation, 465-19 

Two means - group sequential 
examples, 475-10 
validation, 475-17 

Two means - non-inferiority 
cross-over, 510-1 
examples, 450-10 
validation, 450-13 

Two means - non-inferiority - higher-order 
cross-over, 530-1 

Two means - ratio 
cross-over, 505-1 
examples, 445-6 
validation, 445-8 

Two means - ratio - equivalence 
cross-over, 525-1 
examples, 470-7 
validation, 470-9 

Two means – ratio - equivalence - higher-order 
cross-over, 545-1 

Two means - ratio - non-inferiority 
cross-over, 515-1 

Two means - ratio - non-inferiority - higher-order 
cross-over, 535-1 

Two means - ratio - superiority 
cross-over, 515-1 

Two means - ratio - superiority - higher-order 
cross-over, 535-1 

Two means - superiority 
cross-over, 510-1 

Two means - superiority - higher-order 
cross-over, 530-1 

Two means (ratio) - non-inferiority 
examples, 455-6 
validation, 455-8 

Two proportions 
cluster randomized - equivalence, 240-1 
cluster randomized - non-inferiority, 235-1 
cluster randomized - superiority, 235-1 
cluster randomized design, 230-1 
equivalence, 215-1 
inequality, 200-1 
inequality - offset, 205-1 
matched case-control, 155-1 
McNemar test, 150-1 
non-inferiority & superiority, 210-1 

Two proportions - cluster - equivalence 
examples, 240-8 
validation, 240-12 

Two proportions - cluster - non-inferiority 
examples, 235-7 
validation, 235-11 

Two proportions - cluster randomized design 
examples, 230-9 
validation, 230-17 

Two proportions - equivalence 
examples, 215-17 
validation, 215-23 

Two proportions - group sequential 
examples, 220-9 
validation, 220-17 

Two proportions - inequality 
examples, 200-14 
validation, 200-19 

Two proportions - non-inferiority 
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examples, 210-17 
validation, 210-24 

Two proportions - offset 
examples, 205-18 
validation, 205-24 

Two proportions - stratified design 
examples, 225-8 
validation, 225-11 

Two-channel arrays, 610-1 
Two-level designs, 881-1 

examples, 881-6 
Two-level factorial designs, 881-1 
Two-sample t-test, 430-1 

equivalence, 460-1 
microarray data, 615-1 
non-inferiority, 450-1 
superiority, 450-1 

Two-sample t-test - simulation 
equivalence, 465-1 

Two-stage design 
one proportion, 125-1 

Two-stage phase II trials 
examples, 125-8 
validation, 125-10 

Type-I error, 7-2 
Type-II error, 7-2 

U 
Uniform distribution 

simulation, 920-11 

V 
Validation 

Chi-square test, 250-9 
Cochran-Armitage test, 255-19 
correlation (one) - confidence interval, 801-7 
Cox regression, 850-6 
cross-over - higher-order - equivalence, 540-10 
cross-over - higher-order - non-inferiority, 530-12 
cross-over - ratio - equivalence, 525-9 
cross-over - ratio - higher-order - equivalence, 545-

12 
cross-over - ratio - higher-order - non-inferiority, 

535-13 
cross-over - ratio - non-inferiority, 515-8 
cross-over (two means), 500-10 
cross-over (two means) - equivalence, 520-10 
cross-over (two means) - non-inferiority, 510-10 
cross-over (two means) - ratio, 505-8 
equivalence - two correlated proportions, 165-14 
exponential mean (one), 405-10 
exponential means (two), 435-7 
fixed effects ANOVA, 560-19 
Hotelling’s T2, 600-11 
intraclass correlation, 810-6 

kappa, 811-11 
linear regression, 855-7 
logistic regression, 860-14 
logrank tests - non-inferiority, 706-11 
logrank tests (Lakatos), 715-21 
MANOVA, 605-17 
many proportions - trend, 255-19 
matched case-control - proportions, 155-10 
McNemar test - two correlated proportions, 150-9 
mean ratio - non-inferiority, 455-8 
microarray one-sample or paired t-test, 610-19 
microarray two-sample t-test, 615-19 
mixed models, 571-41 
multiple comparisons, 575-19 
multiple comparisons - simulation, 580-22 
multiple comparisons - vs control - simulation, 

585-21 
multiple contrasts - simulation, 590-24 
multiple regression, 865-10 
non-inferiority - two correlated proportions, 160-

13 
normality - simulation, 670-11 
one coefficient alpha, 815-7 
one correlation, 800-7 
one mean - confidence interval, 420-7 
one mean - tolerance - confidence interval, 421-8 
one proportion, 100-20 
one proportion - confidence interval, 115-9 
one proportion - equivalence, 110-17 
one proportion - non-inferiority, 105-16 
one standard deviation - confidence interval, 640-7 
one standard deviation - relative error - confidence 

interval, 642-6 
one standard deviation - tolerance - confidence 

interval, 641-8 
one variance - confidence interval, 651-6 
one variance - relative error - confidence interval, 

653-6 
one variance - tolerance - confidence interval, 652-

8 
one-way ANOVA, 550-19 
one-way ANOVA - simulation, 555-16 
paired means - confidence interval, 496-6 
paired means - tolerance - confidence interval, 

497-8 
Poisson regression, 870-9 
post-marketing surveillance, 135-8 
randomized block ANOVA, 565-11 
ratio of two means, 445-8 
ratio of two means - equivalence, 470-9 
regression - confidence interval, 856-10 
repeated measures - two means, 431-19 
repeated measures - two proportions, 201-24 
repeated measures ANOVA, 570-49 
ROC curve (one), 260-12 
ROC curves (two), 265-13 
single-stage phase II trials, 120-3 
survival - group sequential, 710-18 
survival - logrank, 700-9 
survival - logrank - Lachin and Foulkes, 705-12 
three-stage phase II trials, 130-8 
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t-test (one mean), 400-17 
t-test (one mean) - non-inferiority, 415-12 
t-test (one mean) - simulation, 410-16 
t-test (paired means) - equivalence - simulation, 

495-17 
t-test (paired means) - simulation, 490-16 
t-test (two means), 430-18 
t-test (two means) - simulation, 440-16 
two coefficient alphas, 820-10 
two correlated proportions - equivalence, 165-14 
two correlated proportions - non-inferiority, 160-

13 
two correlations, 805-8 
two means - cluster randomized, 480-6 
two means - confidence interval, 471-7 
two means - equivalence, 460-7 
two means - equivalence - simulation, 465-19 
two means - group sequential, 475-17 
two means - non-inferiority, 450-13 
two means - ratio, 445-8 
two means - ratio - equivalence, 470-9 
two means - tolerance - confidence interval, 472-8 
two proportions - cluster - equivalence, 240-12 
two proportions - cluster - non-inferiority, 235-11 
two proportions - cluster randomized, 230-17 
two proportions - confidence interval, 216-28 
two proportions - equivalence, 215-23 
two proportions - group sequential, 220-17 
two proportions - inequality, 200-19 
two proportions - non-inferiority, 210-24 
two proportions - offset, 205-24 
two proportions - stratified design, 225-11 
two-stage phase II trials, 125-10 
variance (one), 650-7 
variance ratio - confidence interval, 656-8 
variance ratio - relative error - confidence interval, 

657-6 
variances (two), 655-8 

Variance (one) 
confidence interval, 651-1 
examples, 650-4 
validation, 650-7 

Variance (one) - confidence interval 
examples, 651-4 
validation, 651-6 

Variance (one) - relative error 
confidence interval, 653-1 

Variance (one) - relative error - confidence interval 
examples, 653-4 
validation, 653-6 

Variance (one) - tolerance - confidence interval 
examples, 652-6 
validation, 652-8 

Variance (one) - tolerance probability 
confidence interval, 652-1 

Variance ratio 
confidence interval, 656-1 

Variance ratio - confidence interval 
examples, 656-5 
validation, 656-8 

Variance ratio - relative error 

confidence interval, 657-1 
Variance ratio - relative error - confidence interval 

examples, 657-4 
validation, 657-6 

Variance test 
one, 650-1 
two, 655-1 

Variances (two) 
examples, 655-4 
validation, 655-8 

Vertical viewing angle, 4-18 
View menu 

output window, 5-5 
PASS home window, 3-2 

Viewing angle 
horizontal, 4-17 
vertical, 4-18 

Viewing output, 2-4 

W 
Wall color, 4-18 
Walter’s confidence intervals 

two proportions, 216-11 
Wei’s urn randomization, 880-4 
Weibull distribution 

probablility calculator, 915-6 
simulation, 920-12 

Welch test 
multiple contrasts - simulation, 590-4 

Welch's test - simulation 
equivalence, 465-1 

Welch's t-test 
non-inferiority, 450-5 
simulation, 440-3 

Wilcoxon test, 400-1, 400-7, 415-7, 450-9 
assumptions, 400-3 
non-inferiority, 415-1 
simulation, 410-3 
superiority, 415-1 

Wilcoxon test - paired means 
simulation, 490-4 

Wilcoxon test - paired means - equivalence 
simulation, 495-4 

Wilks’ Lambda, 605-1 
MANOVA, 605-2 
repeated measures ANOVA, 570-1, 570-6 

Wilson score limits 
one proportion, 115-2 

Wilson’s score confidence interval 
two proportions, 216-7 

Window menu 
output window, 5-6 
PASS home window, 3-3 
procedure window, 4-5 
spreadsheet, 925-5 

Winsorized test (two means) - equivalence 
simulation, 465-4 

Within standard deviation 
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repeated measures ANOVA, 570-15 
Within-subjects design 

repeated measures ANOVA, 570-3 
Word processor, 5-1 

Z 
Z test 

one proportion, 100-4 
one proportion - equivalence, 110-6 
two proportions - equivalence, 215-5 
two proportions - non-inferiority, 210-6 
two proportions - offset, 205-6 

 

 

 

 

 

 

 

 

 

 


	PASS UG2 Title Pages
	PASS User’s Guide II
	About This Manual

	License Agreement and Preface
	PASS License Agreement
	Preface
	Verification
	---
	License_001


	PASS UG2 TOC
	Means
	One Mean
	Two Independent Means
	Two Correlated (Paired) Means
	Two Independent Means in a 2×2 Cross-Over Design
	Two Independent Means in a Higher-Order Cross-Over Design
	Many Means (ANOVA)
	Mixed Models
	Multiple Comparisons
	Multivariate Means
	Microarrays

	References and Index
	Quick Start
	Proportions
	One Proportion
	Two Correlated Proportions
	Two Independent Proportions
	Two Independent Proportions in a Cluster-Randomized Design
	Many Proportions (Contingency Tables)

	ROC Curves
	References and Index
	Standard Deviations
	Variances
	One Variance
	Two Variances

	Normality Tests
	Survival Analysis
	Correlations
	Regression
	Design of Experiments
	Tools, Helps, and Aids
	References and Index

	Means
	One Mean
	Inequality Tests for One Mean (One-Sample or Paired T-Test)
	Introduction
	Test Procedure
	Assumptions
	One-Sample T Test Assumptions
	Paired T Test Assumptions
	Wilcoxon Signed-Rank Test Assumptions

	Limitations

	Technical Details
	Standard Deviation Known
	Standard Deviation Unknown

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Sample Size)

	Effect Size – Means
	Mean0 (Null or Baseline)
	Means1 (Alternative)

	Effect Size – Standard Deviation
	Standard Deviation
	Known Standard Deviation

	Test
	Alternative Hypothesis
	Nonparametric Adjustment
	Population Size



	Example 1 – Power after a Study
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Finding the Minimum Detectable Difference
	Setup
	Output
	Numeric Results


	Example 4 – Paired T Test
	Setup
	Output
	Numeric Results and Plots


	Example 5 – Wilcoxon Test
	Setup
	Output
	Numeric Results and Plots


	Example 6 – Validation using Zar
	Setup
	Output
	Numeric Results


	Example 7 – Validation using Machin
	Setup
	Output
	Numeric Results


	---
	P400_001
	P400_002
	P400_003
	P400_004
	P400_005
	P400_006
	P400_007


	Inequality Tests for One Exponential Mean
	Introduction
	Technical Details
	Hypothesis Test
	Fixed-Failure Sampling Plans
	Fixed-Time Sampling Plans
	With Replacement Sampling
	Without Replacement Sampling


	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta (Beta is Consumer’s Risk)
	Alpha (Producer’s Risk)

	Sample Size
	N (Sample Size)

	Test
	Alternative Hypothesis

	Effect Size
	Theta0 (Baseline Mean Life)
	Theta1 (Alternative Mean Life)

	Sampling Plan
	Replacement Method
	Termination Criterion
	r (Number of Failures)
	t0 (Test Duration Time)
	E(t0) based on Theta1



	Example 1 – Power for Several Sample Sizes
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation using Epstein
	Setup
	Output
	Numeric Results


	---
	P405_001
	P405_002
	P405_003
	P405_004
	P405_005


	Inequality Tests for One Mean (Simulation)
	Introduction
	Technical Details
	Data Distributions
	Test Statistics
	One-Sample t-Test
	Wilcoxon Signed-Rank Test
	Sign Test 
	Bootstrap Test 
	Exponential Test

	Standard Deviations

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Sample Size)

	Test
	Test Type
	Alternative Hypothesis

	Simulations
	Simulations

	Effect Size
	Distribution Assuming H0 (Null Hypothesis)
	Finding the Value of the Mean under H0
	Specifying the Mean for Paired (Matched) Data

	Distribution Assuming H1 (Alternative Hypothesis)
	Finding the Value of the Mean under H1
	Specifying the Mean for Paired (Matched) Data


	Effect Size – Distribution Parameters
	M0 (Mean|H0)
	M1 (Mean|H1)
	Parameter Values (S, A, B, C)


	Iterations Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination

	Bootstrap Iterations 
	Bootstrap Iterations



	Example 1 – Power at Various Sample Sizes
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Finding the Sample Size for Skewed Data
	Setup
	Output
	Numeric Results of Search for N
	Numeric Results of Power Search for Various N
	Numeric Results with Alpha = 0.025


	Example 3 – Comparative results with Skewed Data
	Setup
	Output
	Numeric Results


	Example 4 – Validation using Zar
	Setup
	Output
	Numeric Results


	Example 5 – Validation using Machin
	Setup
	Output
	Numeric Results


	Example 6 – Power of the Wilcoxon Test
	Setup
	Output
	Numeric Results


	Example 7 – Likert-Scale Data
	Setup
	Output
	Numeric Results


	Example 8 – Computing the Power after Completing an Experiment
	Setup
	Output
	Numeric Results for Power of Bootstrap
	Comparative Results for Power of Various Tests


	Example 9 – Comparison of Tests for Exponential Data
	Setup
	Output
	Numeric Results and Plots


	---
	P410_001
	P410_002
	P410_003
	P410_004
	P410_005
	P410_006
	P410_007
	P410_008
	P410_009


	Non-Inferiority & Superiority Tests for One Mean
	Introduction
	Paired Designs
	The Statistical Hypotheses
	Non-Inferiority and Superiority Tests
	Case 1: High Values Good, Non-Inferiority Test
	Case 2: High Values Bad, Non-Inferiority Test
	Case 3: High Values Good, Superiority Test
	Case 4: High Values Bad, Superiority Test

	Example
	Test Statistics
	One-Sample T-Test
	Wilcoxon Signed-Rank Test 


	Computing the Power
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Sample Size)

	Effect Size – Mean Difference
	|E| (Equivalence Margin)
	D (True Value)

	Effect Size – Standard Deviation
	Standard Deviation

	Test
	Test Type
	Higher is
	Nonparametric Adjustment
	Population Size



	Example 1 – Power Analysis
	Setup
	Annotated Output

	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Chow
	Setup
	Output

	Example 4 – Validation of a Cross-Over Design given in Julious
	Setup
	Output

	Example 5 – Validation of a Cross-Over Design given in Chow, Shao, and Wang
	Setup
	Output

	---
	P415_001
	P415_002
	P415_003
	P415_004


	Confidence Intervals for One Mean
	Introduction
	Technical Details
	Finite Population Size
	Confidence Level

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Confidence
	Confidence Level

	Sample Size
	N (Sample Size)

	One-Sided or Two-Sided Interval
	Interval Type

	Precision
	Distance from Mean to Limit(s)

	Standard Deviation
	S (Standard Deviation)
	Know Standard Deviation

	Population
	Population Size


	Iterations Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination



	Example 1 – Calculating Sample Size
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation using Moore and McCabe
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Ostle and Malone
	Setup
	Output
	Numeric Results


	---
	P420_001
	P420_002
	P420_003
	P420_004


	Confidence Intervals for One Mean with Tolerance Probability
	Introduction
	Technical Details
	Finite Population Size
	Confidence Level

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Confidence and Tolerance
	Confidence Level (1 – Alpha)
	Tolerance Probability

	Sample Size
	N (Sample Size)

	One-Sided or Two-Sided Interval
	Interval Type

	Precision
	Distance from Mean to Limit(s)

	Standard Deviation
	Standard Deviation Source

	Standard Deviation – S is a Population Standard Deviation
	S (Standard Deviation)

	Standard Deviation – S from a Previous Sample
	S (SD Estimated from a Previous Sample)
	Sample Size of Previous Sample

	Population
	Population Size


	Iterations Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination



	Example 1 – Calculating Sample Size
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation using Hahn and Meeker
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Zar
	Setup
	Output
	Numeric Results


	Example 4 – Validation using Harris, Horvitz, and Mood
	Setup
	Output
	Numeric Results


	---
	P421_001
	P421_002
	P421_003



	Two Independent Means
	Inequality Tests for Two Means using Differences (Two-Sample T-Test)
	Introduction
	Test Procedure
	Assumptions
	Two-Sample T Test Assumptions
	Mann-Whitney U Test Assumptions

	Limitations

	Technical Details
	Case 1 – Standard Deviations Known and Equal
	Case 2 – Standard Deviations Known and Unequal
	Case 3 – Standard Deviations Unknown and Equal
	Case 4 – Standard Deviations Unknown and Unequal

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Effect Size – Means
	Mean1 (Mean of Group 1)
	Mean2 (Mean of Group 2)

	Effect Size – Standard Deviations
	S1 and S2 (Standard Deviations)
	Known Standard Deviation

	Test
	Alternative Hypothesis
	Nonparametric Adjustment (Mann-Whitney Test)



	Example 1 – Power after a Study
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Finding the Sample Size Necessary to Reject
	Setup
	Output
	Numeric Results


	Example 3 – Minimum Detectable Difference
	Setup
	Output
	Numeric Results


	Example 4 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 5 – Mann-Whitney Test
	Setup
	Output
	Numeric Results


	Example 6 – Validation of Sample Size using Machin et al.
	Setup
	Output
	Numeric Results


	Example 7 – Validation using Zar
	Setup
	Output
	Numeric Results


	---
	P430_001
	P430_002
	P430_003
	P430_004
	P430_005
	P430_006


	Inequality Tests for Two Means in a Repeated Measures Design
	Introduction
	Technical Details
	Theory and Notation
	Covariance Pattern
	Compound Symmetry
	AR(1)
	Banded(1)
	Simple

	Model Estimation
	Hypothesis Test
	Power Calculations
	Calculating Power for Testing Pairwise Contrasts of Fixed Effects in Mixed Models
	Mixed Model Theory and Notation
	Mixed Model Estimation
	Testing Fixed Effects


	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Effect Size – Difference to Detect
	D1 (Difference|H1)

	Effect Size – Repeated Measurements
	M (Number of Time Points)

	Effect Size – Covariance Structure
	Covariance Type
	Sigma (Std Dev of a Single Observation)
	Rho (Autocorrelation)

	Test
	Alternative Hypothesis



	Example 1 – Determining Power
	Setup
	Annotated Output
	Numeric Results
	Power
	Group 1 Sample Size (N1)
	Group 2 Sample Size (N2)
	Sample Allocation Ratio (R)
	Time Points (M)
	Difference to be Detected (D1)
	Standard Deviation (Sigma)
	Autocorr. (Rho)
	Alpha
	Beta

	Plots Section


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Varying the Difference between the Means
	Setup
	Output
	Plots Section


	Example 4 – Impact of the Number of Repeated Measurements
	Setup
	Output
	Numeric Results


	Example 5 – Validation using Diggle et al.
	Setup
	Output
	Numeric Results


	Example 6 – Validation of Sample Size Calculation for Mixed Models Analysis using Brown and Prescott (2006)
	Setup
	Output
	Numeric Results for M = 4
	Numeric Results for M = 1, 10


	---
	P431_001
	P431_002
	P431_003
	P431_004
	P431_005
	P431_006
	P431_007
	P431_008


	Inequality Tests for Two Exponential Means
	Introduction
	Technical Details
	Hypothesis Test

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta (Beta is Consumer’s Risk)
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Effect Size
	Theta1 (Group 1 Mean Life)
	Theta2 (Group 2 Mean Life)

	Test
	Alternative Hypothesis



	Example 1 – Power for Several Sample Sizes
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation using Manual Calculations
	Setup
	Output
	Numeric Results


	---
	P435_001
	P435_002
	P435_003


	Inequality Tests for Two Means (Simulation)
	Introduction
	Technical Details
	Generating Random Distributions
	Test Statistics
	Two-Sample T-Test
	Welch’s T-Test
	Trimmed T-Test assuming Equal Variances
	Trimmed T-Test assuming Unequal Variances
	Mann-Whitney U Test 

	Standard Deviations

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Test
	Test Type
	Alternative Hypothesis

	Simulations
	Simulations

	Effect Size
	Group 1 (and 2) Distribution|H0
	Finding the Value of the Mean of a Specified Distribution

	Group 1 (and 2) Distribution|H1

	Effect Size – Distribution Parameters
	M0 (Mean|H0)
	M1 (Mean|H1)
	Parameter Values (S, A, B)


	Reports Tab
	Select Output – Numeric Reports
	Show Numeric Reports & Plots
	Show Inc’s & 95% C.I.

	Select Output – Plots
	Show Comparative Reports & Plots

	Comparative Report/Plot Options
	Include T-Test Results – Include Mann-Whitney-Test Results


	Options Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination

	Random Numbers
	Random Number Pool Size

	Trimmed T-Test
	Percent Trimmed at Each End



	Example 1 – Power at Various Sample Sizes
	Setup
	Annotated Output
	Numeric Results and Plots


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results of Search for N


	Example 3 – Comparative Results 
	Setup
	Output
	Numeric Results


	Example 4 – Validation using Zar
	Setup
	Output
	Numeric Results


	Example 5 – Non-Inferiority Test
	Setup
	Output
	Numeric Results


	Example 6 – Selecting a Test Statistic when the Data Contain Outliers 
	Setup
	Output
	Numeric Results


	Example 7 – Selecting a Test Statistic when the Data are Skewed 
	Setup
	Output
	Numeric Results


	---
	P440_001
	P440_002
	P440_003
	P440_004
	P440_005
	P440_006
	P440_007
	P440_008
	P440_009


	Inequality Tests for Two Means using Ratios (Two-Sample T-Test)
	Introduction
	Testing Using Ratios
	Log-Transformation
	Coefficient of Variation

	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Effect Size – Ratios
	R0 (Ratio Under H0)
	R1 (True Ratio)

	Effect Size – Coefficient of Variation
	COV (Coefficient of Variation)

	Test
	Alternative Hypothesis



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation
	Setup
	Output
	Numeric Results


	---
	P445_001
	P445_002
	P445_003
	P445_004
	P445_005


	Non-Inferiority & Superiority Tests for Two Means using Differences
	Introduction
	The Statistical Hypotheses
	Non-Inferiority and Superiority Tests
	Case 1: High Values Good, Non-Inferiority Test
	Case 2: High Values Bad, Non-Inferiority Test
	Case 3: High Values Good, Superiority Test
	Case 4: High Values Bad, Superiority Test

	Example
	Test Statistics
	Two-Sample T-Test
	Welch’s T-Test
	Mann-Whitney U Test 


	Computing the Power
	Standard Deviations Equal
	Standard Deviations Unequal
	Nonparametric Adjustment

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Effect Size – Mean Difference
	|E| (Equivalence Margin)
	D (True Difference)

	Effect Size – Standard Deviations
	S1 and S2 (Standard Deviations)

	Test
	Test Type
	Higher is
	Nonparametric Adjustment (Mann-Whitney Test)



	Example 1 – Power Analysis
	Setup
	Annotated Output
	Numeric Results and Plots


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Chow
	Setup
	Output
	Numeric Results


	Example 4 – Validation using Julious
	Setup
	Output
	Numeric Results


	---
	P450_001
	P450_002
	P450_003
	P450_004
	P450_005
	P450_006


	Non-Inferiority & Superiority Tests for Two Means using Ratios
	Introduction
	Non-Inferiority Testing Using Ratios
	Log-Transformation
	Coefficient of Variation

	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Group 2)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Effect Size – Ratios
	E (Equivalence Margin)
	R1 (True Ratio)

	Effect Size – Coefficient of Variation
	COV (Coefficient of Variation)

	Test
	Test Type
	Higher is



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation
	Setup
	Output
	Numeric Results


	---
	P455_001
	P455_002
	P455_003
	P455_004
	P455_005
	P455_006


	Equivalence Tests for Two Means using Differences
	Introduction
	Parallel-Group Design

	Outline of an Equivalence Test
	Two-Sample T-Test

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Reference Group)
	N2 (Sample Size Treatment Group)
	R (Sample Allocation Ratio)

	Effect Size – Equivalence Limits
	|EU| Upper Equivalence Limit
	-|EL| Lower Equivalence Limit

	Effect Size – True Mean Difference
	D (True Difference)

	Effect Size – Standard Deviation
	S (Standard Deviation)



	Example 1 – Parallel-Group Design
	Setup
	Annotated Output
	Numeric Results
	Plot Section


	Example 2 – Parallel-Group Validation using Machin
	Setup
	Output
	Numeric Results


	---
	P460_001
	P460_002
	P460_003


	Equivalence Tests for Two Means (Simulation)
	Introduction
	Technical Details
	Generating Random Distributions
	Simulating Data for an Equivalence Test
	Test Statistics
	Two-Sample T-Test
	Welch’s T-Test
	Trimmed T-Test assuming Equal Variances
	Trimmed T-Test assuming Unequal Variances
	Mann-Whitney U Test 

	Standard Deviations

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Test
	Test Type
	Equivalence Limit

	Simulations
	Simulations

	Effect Size
	Group 1 (and 2) Distribution | H0
	Finding the Value of the Mean of a Specified Distribution

	Group 1 (and 2) Distribution|H1

	Effect Size – Distribution Parameters
	M0 (Mean|H0)
	M1 (Mean|H1)
	Parameter Values (S, A, B)


	Options Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination

	Random Numbers
	Random Number Pool Size

	Trimmed T-Test
	Percent Trimmed at Each End



	Example 1 – Power at Various Sample Sizes
	Setup
	Annotated Output
	Numeric Results and Plots


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Comparative Results when the Data Contain Outliers 
	Setup
	Output

	Example 4 – Selecting a Test Statistic when the Data Are Skewed 
	Setup
	Output

	Example 5 – Validation using Machin
	Setup
	Output

	---
	P465_001
	P465_002
	P465_003
	P465_004
	P465_005
	P465_006


	Equivalence Tests for Two Means using Ratios
	Introduction
	Equivalence Testing Using Ratios
	Log-Transformation
	Coefficient of Variation
	Power Calculation

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Reference Group)
	N2 (Sample Size Treatment Group)
	R (Sample Allocation Ratio)

	Effect Size – Equivalence Limits
	RU (Upper Equivalence Limit)
	RL (Lower Equivalence Limit)

	Effect Size – True Ratio
	R1 (True Ratio)

	Effect Size – Coefficient of Variation
	COV (Coefficient of Variation)



	Example 1 – Finding Power
	Setup
	Annotated Output
	Plot Section


	Example 2 – Validation using Julious
	Setup
	Output
	Numeric Results


	---
	P470_001
	P470_002
	P470_003
	P470_004
	P470_005


	Confidence Intervals for the Difference Between Two Means
	Introduction
	Technical Details
	Case 1 – Standard Deviations Assumed Equal
	Case 2 – Standard Deviations Assumed Unequal
	Confidence Level

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Confidence
	Confidence Level (1 – Alpha)

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	One-Sided or Two-Sided Interval
	Interval Type

	Precision
	Distance from Mean Difference to Limit(s)

	Standard Deviations
	S1 and S2 (Standard Deviations)
	Standard Deviation Equality Assumption


	Iterations Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination



	Example 1 – Calculating Sample Size
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation using Ostle and Malone
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Zar
	Setup
	Output
	Numeric Results


	---
	P471_001
	P471_002
	P471_003


	Confidence Intervals for the Difference Between Two Means with Tolerance Probability
	Introduction
	Technical Details
	Confidence Level

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Confidence and Tolerance
	Confidence Level (1 – Alpha)
	Tolerance Probability

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	One-Sided or Two-Sided Interval
	Interval Type

	Precision
	Distance from Mean Difference to Limit(s)

	Pooled Standard Deviation
	Standard Deviation Source

	Pooled Standard Deviation – S is a Population Standard Deviation
	S (Standard Deviation)

	Pooled Standard Deviation – S from a Previous Sample
	S (Standard Deviation)
	Total Sample Size of Previous Sample


	Iterations Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination



	Example 1 – Calculating Sample Size
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation using Zar
	Setup
	Output
	Numeric Results


	---
	P472_001
	P472_002
	P472_003


	Group-Sequential Tests for Two Means
	Introduction
	Technical Details
	Spending Functions
	Theory

	Procedure Tabs
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Test
	Alternative Hypothesis

	Effect Size
	Mean1
	Mean2
	S1 (SD, Group 1)
	S2 (SD, Group 2)

	Look Details
	Number of Looks
	Boundary Truncation
	Spending Function
	Max Time
	Times
	Informations
	Upper and Lower Boundaries (Spending = User)


	Bnd Plot Axes Tab
	Options Tab
	Maximum Iterations
	Maximum Iterations Before Search Termination
	Maximum Iterations (Lan-Demets algorithm)

	Tolerance
	Probability Tolerance
	Power Tolerance
	Alpha Tolerance



	Example 1 – Finding the Sample Size
	Setup
	Annotated Output
	Numeric Results
	Plots Section
	Details Section
	Look
	Time
	Lower and Upper Boundary
	Nominal Alpha
	Inc Alpha
	Total Alpha
	Inc Power
	Total Power
	Drift

	Boundary Plots


	Example 2 – Finding the Power
	Setup
	Output
	Numeric Results


	Example 3 – Effect of Number of Looks
	Setup
	Output
	Numeric Results


	Example 4 – Studying a Boundary Set
	Setup
	Output
	Numeric Results


	Example 5 – Validation using O’Brien-Fleming Boundaries
	Setup
	Output
	Numeric Results


	Example 6 – Validation with Pocock Boundaries
	Setup
	Output
	Numeric Results


	---
	P475_001
	P475_002
	P475_003
	P475_004
	P475_005


	Inequality Tests for Two Means in a Cluster-Randomized Design
	Introduction
	Technical Details
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	M (Number of Clusters)
	N (Individuals Per Cluster)

	Effect Size – Mean Difference
	D (Difference Between Means)

	Effect Size – Standard Deviation
	S (Standard Deviation)

	Effect Size – Intracluster Correlation
	R (Intracluster Correlation)

	Test
	Alternative Hypothesis


	Iterations Tab
	Maximum Iterations
	Maximum Iterations Before Search Termination



	Example 1 – Calculating Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation using Donner and Klar
	Setup
	Output
	Numeric Results


	---
	P480_001
	P480_002
	P480_003
	P480_004



	Two Correlated (Paired) Means
	Inequality Tests for Paired Means (Simulation)
	Introduction
	Technical Details
	Simulating Paired Distributions
	Test Statistics
	One-Sample t-Test
	Wilcoxon Signed-Rank Test 
	Sign Test 
	Bootstrap Test 

	The Problem of Differing Standard Deviations

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Sample Size)

	Test
	Test Type
	Alternative Hypothesis

	Simulations
	Simulations

	Effect Size
	Item A (and B) Distribution|H0
	Finding the Value of the Mean of a Specified Distribution

	Item A (and B) Distribution|H1

	Effect Size – Distribution Parameters
	M0 (Mean|H0)
	M1 (Mean|H1)
	Parameter Values (S, A, B)

	Effect Size – Distribution Parameters
	R (Correlation of Items A & B)


	Options Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination

	Bootstrap Iterations 
	Bootstrap Iterations

	Random Numbers
	Random Number Pool Size

	Correlation
	Maximum Switches
	Correlation Tolerance



	Example 1 – Power at Various Sample Sizes
	Setup
	Annotated Output
	Numeric Results


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results of Search for N


	Example 3 – Comparative Results 
	Setup
	Output
	Numeric Results


	Example 4 – Validation
	Setup
	Output
	Numeric Results


	Example 5 – Non-Inferiority Test
	Setup
	Output
	Numeric Results


	---
	P490_001
	P490_002
	P490_003
	P490_004
	P490_005
	P490_006
	P490_007


	Equivalence Tests for Paired Means (Simulation)
	Introduction
	Technical Details
	Simulating Paired Distributions
	Simulating Data for an Equivalence Test
	Test Statistics
	One-Sample t-Test
	Wilcoxon Signed-Rank Test 
	Sign Test 
	Bootstrap Test 

	The Problem of Differing Standard Deviations

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Sample Size)

	Test
	Test Type
	Equivalence Limit

	Simulations
	Simulations

	Effect Size
	Item A (and B) Distribution|H0
	Finding the Value of the Mean of a Specified Distribution

	Item A (and B) Distribution|H1

	Effect Size – Distribution Parameters
	M0 (Mean|H0)
	M1 (Mean|H1)
	R (Correlation of Items A & B)
	Parameter Values (S, A, B)


	Options Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination

	Bootstrap Iterations 
	Bootstrap Iterations

	Random Numbers
	Random Number Pool Size

	Correlation
	Maximum Switches
	Correlation Tolerance



	Example 1 – Power at Various Sample Sizes
	Setup
	Annotated Output
	Numeric Results


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Comparing Test Statistics 
	Setup
	Output
	Numeric Results


	Example 4 – Validation using Chow et al.
	Setup
	Output
	Numeric Results


	---
	P495_001
	P495_002
	P495_003
	P495_004
	P495_005
	P495_006
	P495_007
	P495_008


	Confidence Intervals for Paired Means
	Introduction
	Technical Details
	Finite Population Size
	Confidence Level

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Confidence
	Confidence Level

	Sample Size (Number of Pairs)
	N (Sample Size)

	One-Sided or Two-Sided Interval
	Interval Type

	Precision
	Distance from Mean Difference to Limit(s)

	Standard Deviation of Paired Differences
	S (Standard Deviation)
	Know Standard Deviation

	Population
	Population Size


	Iterations Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination



	Example 1 – Calculating Sample Size
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation
	---
	P496_001
	P496_002
	P496_003


	Confidence Intervals for Paired Means with Tolerance Probability
	Introduction
	Technical Details
	Finite Population Size
	Confidence Level

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Confidence and Tolerance
	Confidence Level (1 – Alpha)
	Tolerance Probability

	Sample Size (Number of Pairs)
	N (Sample Size or Number of Pairs)

	One-Sided or Two-Sided Interval
	Interval Type

	Precision
	Distance from Mean Difference to Limit(s)

	Standard Deviation of Paired Differences
	Standard Deviation Source

	Standard Deviation of Paired Differences– S is a Population Standard Deviation
	S (Standard Deviation)

	Standard Deviation of Paired Differences – S from a Previous Sample
	S (SD Estimated from a Previous Sample)
	Sample Size (# of Pairs) of Previous Sample

	Population
	Population Size


	Iterations Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination



	Example 1 – Calculating Sample Size
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation
	---
	P497_001
	P497_002
	P497_003



	Two Independent Means in a 2x2 Cross-Over Design
	Inequality Tests for Two Means in a 2x2 Cross-Over Design using Differences
	Introduction
	Advantages of Cross-Over Designs
	Disadvantages of Cross-Over Designs

	Technical Details
	Cross-Over Analysis
	Test Statistic 


	Computing the Power
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Mean Differences
	Diff0 (Mean Difference|H0)
	Diff1 (Mean Difference|H1)

	Effect Size – Standard Deviation
	Specify S as Sw or Sd
	S (Value of Sw or Sd)

	Test
	Alternative Hypothesis



	Example 1 – Power Analysis
	Setup
	Annotated Output
	Numeric Results
	Plots Sections


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Julious
	Setup
	Output
	Numeric Results


	---
	P500_001
	P500_002
	P500_003
	P500_004


	Inequality Tests for Two Means in a 2x2 Cross-Over Design using Ratios
	Introduction
	Testing Using Ratios
	Log Transformation
	Coefficient of Variation

	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Ratios
	R0 (Ratio Under H0)
	R1 (True Ratio)

	Effect Size – Coefficient of Variation
	COV (Coefficient of Variation)

	Test
	Alternative Hypothesis



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation
	Setup
	Output
	Numeric Results


	---
	P505_001
	P505_002
	P505_003
	P505_004
	P505_005


	Non-Inferiority & Superiority Tests for Two Means in a 2x2 Cross-Over Design using Differences
	Introduction
	Cross-Over Designs
	The Statistical Hypotheses
	Non-Inferiority and Superiority Tests
	Case 1: High Values Good, Non-Inferiority Test
	Case 2: High Values Bad, Non-Inferiority Test
	Case 3: High Values Good, Superiority Test
	Case 4: High Values Bad, Superiority Test

	Test Statistics
	T-Test


	Computing the Power
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Mean Difference
	|E| (Equivalence Margin)
	D (True Value)

	Effect Size – Standard Deviation
	Specify S as Sw or Sd
	S (Value of Sw or Sd)

	Test
	Test Type
	Higher is



	Example 1 – Power Analysis
	Setup
	Annotated Output
	Numeric Results and Plots


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Julious
	Setup
	Output
	Numeric Results


	---
	P510_001
	P510_002
	P510_003


	Non-Inferiority & Superiority Tests for Two Means in a 2x2 Cross-Over Design using Ratios
	Introduction
	Non-Inferiority Testing Using Ratios
	Log Transformation
	Coefficient of Variation

	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Ratios
	E (Equivalence Margin)
	R1 (True Ratio)

	Effect Size – Coefficient of Variation
	COV (Coefficient of Variation)

	Test
	Test Type
	Higher is



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plot Section


	Example 2 – Validation
	Setup
	Output
	Numeric Results


	---
	P515_001
	P515_002
	P515_003
	P515_004
	P515_005


	Equivalence Tests for Two Means in a 2x2 Cross-Over Design using Differences
	Introduction
	Cross-Over Designs
	Advantages of Cross-Over Designs
	Disadvantages of Cross-Over Designs

	Outline of an Equivalence Test
	Test Statistics
	T-Test


	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Equivalence Limits
	|EU| (Upper Equivalence Limit)
	-|EL| (Lower Equivalence Limit)

	Effect Size – True Mean Difference
	D (True Difference)

	Effect Size – Standard Deviation
	Specify S as Sw or Sd
	S (Value of Sw or Sd)



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Finding Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Phillips
	Setup
	Output
	Numeric Results


	Example 4 – Validation using Machin
	Setup
	Output
	Numeric Results


	Example 5 – Validation using Chow and Liu
	Setup
	Output
	Numeric Results


	Example 6 – Validation using Senn
	Setup
	Output
	Numeric Results


	---
	P520_001
	P520_002
	P520_003
	P520_004


	Equivalence Tests for Two Means in a 2x2 Cross-Over Design using Ratios
	Introduction
	Equivalence Testing Using Ratios
	Log-Transformation
	Coefficient of Variation

	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Equivalence Limits
	RU (Upper Equivalence Limit)
	RL (Lower Equivalence Limit)

	Effect Size – True Ratio
	R1 (True Ratio)

	Effect Size – Coefficient of Variation
	COV (Coefficient of Variation)



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Validation using Julious
	Setup
	Output
	Numeric Results


	---
	P525_001
	P525_002
	P525_003
	P525_004
	P525_005



	Two Independent Means in a Higher-Order Cross-Over Design
	Non-Inferiority & Superiority Tests for Two Means in a Higher-Order Cross-Over Design using Differences
	Introduction
	Cross-Over Designs
	Higher-Order Cross-Over Designs
	Balaam’s Design
	Two-Sequence Dual Design
	Four-Period Design with Two Sequences
	Four-Period Design with Four Sequences

	Advantages of Cross-Over Designs
	Disadvantages of Cross-Over Designs

	The Statistical Hypotheses
	Non-Inferiority and Superiority Tests
	Case 1: High Values Good, Non-Inferiority Test
	Case 2: High Values Bad, Non-Inferiority Test
	Case 3: High Values Good, Superiority Test
	Case 4: High Values Bad, Superiority Test

	Test Statistics

	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Mean Difference
	|E| (Equivalence Margin)
	D (True Difference)

	Effect Size – Standard Deviation
	Sw (Within Standard Error)

	Test
	Design Type
	Test Type
	Higher is



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Finding Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Validation
	Setup
	Output
	Numeric Results


	---
	P530_001
	P530_002
	P530_003


	Non-Inferiority & Superiority Tests for Two Means in a Higher-Order Cross-Over Design using Ratios
	Introduction
	Cross-Over Designs
	Higher-Order Cross-Over Designs
	Balaam’s Design
	Two-Sequence Dual Design
	Four-Period Design with Two Sequences
	Four-Period Design with Four Sequences

	Advantages of Cross-Over Designs
	Disadvantages of Cross-Over Designs

	The Statistical Hypotheses
	Log-Transformation
	Coefficient of Variation
	Non-Inferiority and Superiority Tests
	Case 1: High Values Good, Non-Inferiority Test
	Case 2: High Values Bad, Non-Inferiority Test
	Case 3: High Values Good, Superiority Test
	Case 4: High Values Bad, Superiority Test

	Test Statistics

	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Ratios
	E (Equivalence Margin)
	R1 (True Ratio)

	Effect Size – Coefficient of Variation
	COV (Coefficient of Variation)

	Test
	Design Type
	Test Type
	Higher is



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Finding Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Validation
	Setup
	Output
	Numeric Results


	---
	P535_001
	P535_002
	P535_003
	P535_004
	P535_005


	Equivalence Tests for Two Means in a Higher-Order Cross-Over Design using Differences
	Introduction
	Cross-Over Designs
	Higher-Order Cross-Over Designs
	Balaam’s Design
	Two-Sequence Dual Design
	Four-Period Design with Two Sequences
	Four-Period Design with Four Sequences

	Advantages of Cross-Over Designs
	Disadvantages of Cross-Over Designs
	Outline of an Equivalence Test
	Test Statistics

	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Equivalence Limits
	|EU| (Upper Equivalence Limit)
	-|EL| (Lower Equivalence Limit)

	Effect Size – True Mean Difference
	D (True Difference)

	Effect Size – Standard Deviation
	Sw (Within Standard Error)

	Test
	Design Type



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Finding Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Chen
	Setup
	Output
	Numeric Results


	---
	P540_001
	P540_002
	P540_003


	Equivalence Tests for Two Means in a Higher-Order Cross-Over Design using Ratios
	Introduction
	Cross-Over Designs
	Higher-Order Cross-Over Designs
	Balaam’s Design
	Two-Sequence Dual Design
	Four-Period Design with Two Sequences
	Four-Period Design with Four Sequences

	Advantages of Cross-Over Designs
	Disadvantages of Cross-Over Designs
	Outline of an Equivalence Test
	Log-Transformation
	Coefficient of Variation
	Test Statistics

	Power Calculation
	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N (Total Sample Size)

	Effect Size – Equivalence Limits
	RU (Upper Equivalence Limit)
	RL (Lower Equivalence Limit)

	Effect Size – True Ratio
	R1 (True Ratio)

	Effect Size – Coefficient of Variation
	COV (Coefficient of Variation)

	Test
	Design Type



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Finding Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Chen
	Setup
	Output
	Numeric Results


	---
	P545_001
	P545_002
	P545_003
	P545_004
	P545_005



	Many Means (ANOVA)
	One-Way Analysis of Variance
	Introduction
	Planned Comparisons
	Assumptions
	Technical Details for the One-Way ANOVA
	Power Calculations for One-Way ANOVA

	Technical Details for a Planned Comparison
	Power Calculations for Planned Comparisons

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size / Groups – Sample Size Multiplier
	n (Sample Size Multiplier)

	Sample Size / Groups – Groups
	k (Number of Groups)
	Group Sample Size Pattern

	Effect Size – Means
	Hypothesized Means
	Entering a List of Means
	S Option


	Effect Size – Planned Comparisons
	Contrast Coefficients

	Effect Size – Standard Deviation
	S (Standard Deviation of Subjects)



	Example 1 – Finding the Statistical Power
	Setup
	Annotated Output
	Numeric Results
	Power
	Average n
	k
	Total N
	Alpha
	Beta
	Std Dev of Means (Sm)
	Standard Deviation (S)
	Effect Size

	Detailed Results Report
	Group
	Ni
	Percent Ni of Total Ni
	Mean
	Deviation From Mean
	Ni Times Deviation

	Plots Section


	Example 2 – Power after a Study
	Setup
	Output
	Numeric Results


	Example 3 – Finding the Sample Size Necessary to Reject
	Setup
	Output
	Numeric Results


	Example 4 – Using Unequal Sample Sizes
	Setup
	Output
	Numeric Results


	Example 5 – Minimum Detectable Difference
	Setup
	Output
	Numeric Results and Plots


	Example 6 – Validation using Fleiss
	Setup
	Output
	Numeric Results


	Example 7 – Validation using Desu
	Setup
	Output
	Numeric Results


	Example 8 – Validation using Kirk
	Setup
	Output
	Numeric Results


	Example 9 – Power of a Planned Comparison
	Setup
	Annotated Output
	Numeric Results Report
	Std Dev of Means (Sm)
	Effect Size

	Details Report
	Plots Section


	---
	P550_001
	P550_002
	P550_003
	P550_004
	P550_005
	P550_006
	P550_007
	P550_008


	One-Way Analysis of Variance (Simulation)
	Introduction
	Technical Details
	Generating Random Distributions
	Test Statistics
	F-Test
	Kruskal-Wallis Test


	Procedure Options
	Data 1 Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	n (Sample Size Multiplier)
	Group Sample Size Pattern

	Test
	Test Statistic

	Simulations
	Simulations

	Effect Size
	Grps [1 – 3] (Grps 4 – 9 are found on the Data 2 tab)
	Group Distribution(s)|H0
	Finding the Value of the Mean of a Specified Distribution

	Group Distribution(s)|H1

	Effect Size – Distribution Parameters
	M0 (Mean|H0)
	M1 (Mean|H1)
	Parameter Values (S, A, B, C)


	Reports Tab
	Select Output – Numeric Reports
	Show Numeric Reports & Plots
	Show Inc’s & 95% C.I.

	Select Output – Plots
	Show Comparative Reports & Plots


	Options Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination

	Random Numbers
	Random Number Pool Size



	Example 1 – Power at Various Sample Sizes
	Setup
	Annotated Output
	Numeric Results Report
	Power
	Average Group Size n
	Total Sample Size N
	Target Alpha
	Actual Alpha
	Beta
	S.D. of Means Sm|H1
	S.D. of Data SD|H1
	M0
	M1
	S

	Detailed Results Report
	Group
	Ni
	Percent Ni of N
	H0 and H1 Means
	H0 and H1 S.D.’s
	H0 and H1 Sm’s

	Plots Section


	Example 2 – Comparative Results
	Setup
	Output
	Numeric Results and Plots


	Example 3 – Validation using Fleiss
	Setup
	Output
	Numeric Results


	Example 4 – Selecting a Test Statistic when the Data Contain Outliers
	Setup
	Output
	Numeric Results


	Example 5 – Selecting a Test Statistic when the Data are Skewed
	Setup
	Output
	Numeric Results and Plots


	---
	P555_001
	P555_002
	P555_003
	P555_004
	P555_005


	Fixed Effects Analysis of Variance
	Introduction
	The Linear Model
	Calculating the Effects
	Step 1 – Remove the Grand Mean
	Step 2 – Remove the Effects of Factor B (Diet)
	Step 3 – Remove the Effects of Factor A (Drug Dose)

	Analysis of Variance Hypotheses

	Definition of Terms
	Power Calculations
	Example
	Change in Calculation from PASS 6.0

	Standard Deviation of Effects (of Means)
	Procedure Options
	Data Tab
	Sample Size
	N per Cell

	Effect Size – Main Effects & Interactions
	Factors (A, B, C) & Interactions (AB, …, ABC)

	Effect Size – Main Effects
	Categories (A, B, and C)
	Hypothesized Means (A, B, C)
	Entering a List of Means
	S Option


	Effect Size – Interactions
	Hypothesized Effects
	Entering a List of Effects
	S Option
	Enter a Term Followed by a Percentage
	Discussion

	Alpha 

	Effect Size – Standard Deviation
	S (Standard Deviation of Subjects)



	Example 1 – Power after a Study
	Setup
	Annotated Output
	Numeric Results
	Term
	Power
	n
	Total N
	df1
	df2
	Std Dev of Means (Sm)
	Effect Size
	Alpha
	Beta



	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results


	Example 3 – Latin Square Design
	Setup
	Output
	Numeric Results


	Example 4 – Validation using Winer
	Setup
	Output
	Numeric Results


	Example 5 – Validation using Prihoda
	Setup
	Output
	Numeric Results


	Example 6 – Validation using Neter, Kutner, Nachtsheim, and Wasserman
	Setup
	Output
	Numeric Results


	---
	P560_001
	P560_002
	P560_003
	P560_004
	P560_005
	P560_006
	P560_007
	P560_008
	P560_009


	Randomized Block Analysis of Variance
	Introduction
	The Randomized Block Design
	RBD Reduces Random Error
	Measurement of Random Error
	Treatment Effects
	An Example
	Analysis of Variance Hypotheses
	Single-Factor Repeated Measures Designs

	Procedure Options
	Data Tab
	Sample Size
	Number of Blocks

	Effect Size – Main Effects & Interactions
	Factors (A, B, and AB)

	Effect Size – Main Effects
	Categories (A and B)
	Hypothesized Means (A and B)
	Entering a List of Means
	S Option


	Effect Size – Interactions
	Hypothesized Effects
	Entering a List of Effects
	S Option
	Enter a Term Followed by a Percentage
	Discussion

	Alpha
	S (Standard Deviation)



	Example 1 – Power after a Study
	Setup
	Annotated Output
	Numeric Results
	Term
	Power
	Blocks
	Units
	df1
	df2
	Std Dev of Means (Sm)
	Effect Size
	Alpha
	Beta



	Example 2 – Validation using Prihoda
	Output
	Numeric Results


	---
	P565_001
	P565_002
	P565_003
	P565_004
	P565_005


	Repeated Measures Analysis of Variance
	Introduction
	Assumptions
	Advantages of Within-Subjects Designs
	Disadvantages of Within-Subjects Designs

	Technical Details
	General Linear Multivariate Model
	Geisser-Greenhouse F Test
	Wilks’ Lambda Approximate F Test
	Pillai-Bartlett Trace Approximate F Test
	Hotelling-Lawley Trace Approximate F Test

	The M (Mean) Matrix
	Specifying the M Matrix
	Step 1 – Remove the Overall Mean
	Step 2 – Remove the Group Effect
	Step 3 – Remove the Time Effect

	Entering This Information into PASS

	The C Matrix for Between-Subject Contrasts
	Generating the C Matrix when There are Multiple Between Factors

	The D Matrix for Within-Subject Contrasts
	Interactions of Between-Subject and Within-Subject Factors
	Power Calculations
	Covariance Matrix Assumptions
	Between-Subject Standard Deviation
	Within-Subject Standard Deviation
	Estimating Sigma and Rho from Existing Data

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Sample Size
	n (Subjects Per Group)
	= n’s

	Effect Size – Means
	Means Matrix
	Example
	Discussion

	K (Means Multipliers)

	Effect Size – Between- and Within-Subject Factors
	Label
	Levels
	Alpha
	Power or Beta
	Sm (Standard Deviation of Effects)


	Interactions Tab
	Covariance Tab
	Covariance Matrix Specification
	Specify Which Covariance Matrix Input Method to Use
	Time Metric
	Entering a List of Times
	Using the RANGE Command
	Using the STEP Command


	Covariance Matrix Specification – Within-Subject Standard Deviation Pattern
	Specify How the Standard Deviations Change Across Time
	SD1 (Standard Deviation 1)
	Specify How the Standard Deviations Change Across Time = Constant 
	Specify How the Standard Deviations Change Across Time = List of Standard Deviations 
	Specify How the Standard Deviations Change Across Time = Range from SD1 to SD2 using the Time Metric

	SD2 (Standard Deviation 2)

	Covariance Matrix Specification – Autocorrelation Pattern
	Specify How the Autocorrelations Change Across Time
	R1 (Autocorrelation)
	R2 (Second AC)
	Max Time Diff
	A, V

	Covariance Matrix Specification – Covariance Matrix Variables
	Spreadsheet Columns Containing the Covariance Matrix


	Reports Tab
	Select Output – Numeric Reports
	Test in Summary Statement(s)

	Select Output – Report Options
	Maximum Term-Order Reported
	Skip Line After



	Example 1 – Determining Sample Size
	Setup
	Annotated Output
	Design Report
	Term
	Test
	Power
	n
	N
	Multiply Means By
	SD of Effects (Sm)
	Standard Deviation
	Effect Size
	Alpha
	Beta

	Term Reports
	Geisser-Greenhouse Correction Detail Report
	Term
	Power
	Alpha
	Critical F
	Lambda
	df1|df2
	Epsilon
	E(Epsilon)
	G1

	Summary Statements
	Means Matrix
	Variance-Covariance Matrix Section
	Plots Section


	Example 2 – Varying the Difference Between the Means
	Setup
	Output
	Plots Section


	Example 3 – Impact of the Number of Repeated Measurements
	Setup
	Output
	Design Report


	Example 4 – Power after a Study
	Setup
	Output
	Numeric Results


	Example 5 – Cross-over Design
	Setup
	Output
	Numeric Results


	Example 6 – Power of a Completed Cross-over Design
	Setup
	Output
	Numeric Results


	Example 7 – Validation using O’Brien and Muller
	Setup
	Output
	Numeric Results


	Example 8 – Unequal Group Sizes
	Setup
	Output
	Numeric Results


	Example 9 – Designs with More Than Two Factors
	Setup
	Output
	Numeric Results
	Plots Section


	---
	P570_001
	P570_002
	P570_003
	P570_004
	P570_005
	P570_006
	P570_007
	P570_008
	P570_009
	P570_010
	P570_011
	P570_012
	P570_013
	P570_014
	P570_015
	P570_016
	P570_017
	P570_018
	P570_019



	Mixed Models
	Mixed Models
	Introduction
	Types of Linear Mixed Models
	Fixed Effects Models
	Random Effects Models
	Longitudinal Data Models

	Types of Factors
	Between-Subject Factors
	Within-Subject Factors


	Technical Details
	What is a Mixed Model?
	The Linear Mixed Model (LMM)
	Individual Subject Formulation
	Structure of the Variance-Covariance Matrix
	The G Matrix
	Structures of Gsub

	The R Matrix
	Structures of R
	Diagonal
	Compound Symmetry
	AR(1)
	Toeplitz
	Toeplitz(2)
	Banded(2)
	Banded(3)
	Unstructured


	Partitioning the Variance-Covariance Structure with Groups

	Likelihood Formulas
	Maximum Likelihood
	Restricted Maximum Likelihood


	Estimating and Testing Fixed Effects Parameters
	L Matrix Details
	L Matrix for Testing a Single Factor (Food with 4 levels) in a Single-Factor Model
	L Matrix for a Single Mean (LowIron) of a Single Factor (4 levels) in a Single-Factor Model
	L Matrix for Testing a Single Factor (Drug – 3 levels) in a Two-Factor Model with Interaction

	Kenward and Roger Fixed Effects Hypothesis Tests

	Solution Algorithms
	Methods for Finding Likelihood Solutions (Newton-Raphson, Fisher Scoring, MIVQUE, and Differential Evolution) 
	Newton-Raphson and Fisher Scoring
	Definitons
	Likelihoods
	First Derivatives
	Second Derivatives

	MIVQUE 
	Differential Evolution 


	Specifying the Minimum Detectable Difference
	The Effect Pattern for Factors
	The Effect Pattern for Interactions

	Specifying the Simulated Variance-Covariance Matrix
	ZGZ'
	R
	ZGZ' + R

	Power Calculations using Computer Simulation
	The Simulation
	Data Tab
	Covariance Tab
	Fitted Model Tab

	Steps in Conducting a Simulation Analysis
	Simulation Steps
	Saving Simulation Time
	Generating the Random Numbers


	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Sample Size
	n (Subjects Per Group)
	= n’s

	Error Rates
	Alpha

	Simulations
	Simulations
	Step 1
	Step 2
	Step 3 (Optional)


	Effect Size 
	Specify Effects Using
	Means in Spreadsheet Columns
	Example


	Effect Size – Factors Separating Subjects into Groups (Between)
	Levels
	Effects Pattern
	Detectable Difference
	Example

	List of Means
	Using Columns in the Spreadsheet


	Effect Size – Factors with Multiple Levels Within a Subject (Within)
	Levels

	Effect Size – Interactions
	Interaction Check Box
	Detectable Difference


	Covariance Tab
	Random Component
	Specify Using

	Random Component – Random Effects (Subjects) Parameter
	Subject Variance

	Residual Component
	Specify Using

	Residual Component – Variance (Diagonal) Pattern
	Specify Variances
	V1
	V2
	Variance List

	Residual Component – Autocorrelation (Off-Diagonal) Pattern
	Specify Autocorrelations
	AC (Autocorrelation)
	If Time Greater Than
	 Then AC Becomes
	Autocorrelation List

	Residual Component – Covariance Matrix in Spreadsheet
	Covariance Matrix in Spreadsheet

	Miscellaneous Options
	Grouping Factor
	Time Values


	Fitted Model Tab
	Fitted Variance-Covariance Model – Random Effects Component 
	Random Model
	Groups

	Fitted Variance-Covariance Model – Residual Component 
	Pattern
	Force Positive Covariances

	Solution Options
	Likelihood Type
	Solution Method

	Solution Options – Newton-Raphson / Fisher Scoring Options
	Fisher Scoring Iter’s
	Newton-Raphson Iter’s
	Lambda
	Convergence Criterion
	Zero (Rounding)
	Variance Zero
	Correlation Zero
	Max Retries

	Solution Options – Differential Evolution Options
	Crossover Rate
	Mutation Rate
	Max Iter’s
	Min Relative Change
	Solutions/Iter’n



	Example 1 – Determining Power for Given Sample Size
	Setup
	Annotated Output
	Power Report for Each Design
	Model Term
	Power
	Lower and Upper 95% C.L. of Power
	N(1)
	N
	Minimum Detectable Difference
	Alpha
	Number of Simulation Samples
	Factor Pattern

	Term Reports
	Whole Design Power Plots
	Confidence Interval Power Plots
	Individual Term Power Plots
	Detectable Differences for Each Term
	Effect Pattern Section
	Expanded Effect Pattern Section
	Hypothesized Means Matrix for Detectable Differences Combination 1
	Variance-Covariance Matrix 
	Variance and Autocorrelations


	Example 2 – Validation using Brown and Prescott
	Setup
	Output
	Power Report for Each Design


	Example 3 – Validation using Repeated Measures ANOVA
	Setup
	Output
	Power Report for Each Design
	Power Report for RMANOVA
	Comparing LMM and RMANOVA Power


	Example 4 – Heterogeneous Variances
	Setup
	Output
	Power Report for Each Design


	---
	P571_001
	P571_002
	P571_003
	P571_004
	P571_005
	P571_006
	P571_007
	P571_008
	P571_009
	P571_010
	P571_011
	P571_012
	P571_013
	P571_014
	P571_015
	P571_016
	P571_017
	P571_018



	Multiple Comparisons
	Multiple Comparisons
	Introduction
	Technical Details
	The One-Way Analysis of Variance Design
	Power Calculations for Multiple Comparisons
	Multiple Comparisons with a Control (MCC)
	Interpretation of Dunnett’s Simultaneous Confidence Intervals
	Sample Size and Power – Balanced Case
	Sample Size and Power – Unbalanced Case


	Multiple Comparisons with the Best (MCB)
	Sample Size and Power – Balanced Case 
	Sample Size and Power – Unbalanced Case

	All-Pairwise Comparisons (MCA)
	Balanced Case 
	Sample Size and Power 

	Unbalanced Case
	Sample Size and Power 



	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha

	Sample Size / Groups – Sample Size Multiplier
	n (Sample Size Multiplier)

	Sample Size / Groups – Groups
	k (Number of Groups)
	Group Sample Size Pattern

	Effect Size
	Minimum Detectable Difference
	S (Standard Deviation of Subjects)

	Test
	Type of Multiple Comparison


	Iterations/Precision Tab
	Maximum Iterations
	Maximum Iterations Before Search Termination

	Precision
	Search Precision



	Example 1 – Calculating Power
	Setup
	Annotated Output
	Numeric Results Report
	Power
	Average n
	k
	Total N
	Alpha
	Beta
	Minimum Detectable Difference
	Standard Deviation (S)
	Diff / S

	Detailed Results Report
	Group
	n
	Percent n of Total N
	Alpha
	Power
	Minimum Detectable Difference
	Standard Deviation (S)

	Plots Section


	Example 2 – Power after Dunnett’s Test
	Setup
	Output
	Numeric Results


	Example 3 – Using Unequal Sample Sizes
	Setup
	Output
	Numeric Results


	Example 4 – Validation using Hsu
	Setup
	Output
	Numeric Results for Tukey-Kramer Test
	Numeric Results for Hsu’s Test
	Numeric Results for Dunnett’s Test


	Example 5 – Validation using Pan and Kupper
	Setup
	Output
	Numeric Results for Dunnett’s Test
	Numeric Results for Tukey-Kramer Test


	---
	P575_001
	P575_002
	P575_003
	P575_004
	P575_005
	P575_006
	P575_007
	P575_008


	Pair-Wise Multiple Comparisons (Simulation)
	Introduction
	Error Rates

	Technical Details
	The One-Way Analysis of Variance Design
	Tukey-Kramer
	Kruskal-Wallis
	Games-Howell
	Definition of Power for Multiple Comparisons
	Any-Pair Power
	All-Pairs Power


	Simulation Details
	Generating Random Distributions

	Procedure Options
	Data 1 Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	FWER (Alpha)

	Sample Size
	n (Sample Size Multiplier)
	Group Sample Size Pattern

	Test
	MC Procedure

	Simulations
	Simulations

	Effect Size
	Grps [1 – 3] (Grps 4 – 9 are found on the Data 2 tab)
	Group Distribution(s)|H0
	Finding the Value of the Mean of a Specified Distribution

	Group Distribution(s)|H1
	Equivalence Margin

	Effect Size – Distribution Parameters
	M0 (Mean|H0)
	M1 (Mean|H1)
	Parameter Values (S, A, B, C)


	Reports Tab
	Select Output – Numeric Reports
	Show Various Reports & Plots
	Show Inc’s & 95% C.I.

	Select Output – Plots
	Show Comparative Reports & Plots


	Options Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination

	Random Numbers
	Random Number Pool Size



	Example 1 – Power at Various Sample Sizes
	Setup
	Annotated Output
	Simulation Summary Report 
	Any-Pairs Power
	All-Pairs Power
	Group Sample Size n
	Total Sample Size N
	S.D. of Means Sm|H1
	S.D. of Data SD|H1
	Actual FWER
	Target FWER
	M0
	M1
	S

	Error-Rate Summary for H0 Simulation 
	No. of Equal Pairs
	Mean No. of Type-1 Errors
	Prop. Type-1 Errors
	Prop. (No. of Type-1 Errors>0) FWER
	Target FWER
	Mean Pairs Alpha
	Min Pairs Alpha
	Max Pairs Alpha

	Error-Rate Summary for H1 Simulation 
	No. of Equal Pairs/Unequal Pairs
	Mean No. False Positives
	Mean No. False Negatives
	Prop. Errors
	Prop. Equal that were Detect.
	Prop. Uneq. that were Undet.
	Prop. Detect. that were Equal (FDR)
	Prop. Undet. that were Uneq.
	All Uneq. Pairs Power
	Any Uneq. Pairs Power
	Mean, Min, and Max Pairs Power

	Detail Model Report
	Hypo. Type
	Groups
	Group Labels
	n/N
	Group Mean
	Ave. S.D.
	Simulation Model

	Probability of Rejecting Equality 
	Plots Section


	Example 2 – Comparative Results
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Ramsey
	Setup
	Output
	Numeric Results


	Example 4 – Selecting a Multiple Comparison Procedure when the Data Contain Outliers
	Setup
	Output
	Numeric Results


	---
	P580_001
	P580_002
	P580_003
	P580_004
	P580_005
	P580_006
	P580_007
	P580_008
	P580_009
	P580_010
	P580_011
	P580_012
	P580_013
	P580_014


	Multiple Comparisons of Treatments vs a Control (Simulation)
	Introduction
	Error Rates

	Technical Details
	The One-Way Analysis of Variance Design
	Dunnett’s Test
	Kruskal-Wallis Test
	Definition of Power for Multiple Comparisons
	Any-Pair Power
	All-Pairs Power


	Simulation Details
	Generating Random Distributions

	Procedure Options
	Data 1 Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	FWER (Alpha)

	Sample Size
	n (Sample Size Multiplier)
	Group Sample Size Pattern

	Test
	MC Procedure

	Simulations
	Simulations

	Effect Size
	Grps [1 – 3] (Grps 4 – 9 are found on the Data 2 tab)
	Group Distribution(s)|H0
	Finding the Value of the Mean of a Specified Distribution

	Group Distribution(s)|H1
	Equivalence Margin

	Effect Size – Distribution Parameters
	M0 (Mean|H0)
	M1 (Mean|H1)
	Parameter Values (S, A, B, C)


	Reports Tab
	Select Output – Numeric Reports
	Show Various Reports & Plots
	Show Inc’s & 95% C.I.

	Select Output – Plots
	Show Comparative Reports & Plots


	Options Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination

	Random Numbers
	Random Number Pool Size



	Example 1 – Power at Various Sample Sizes
	Setup
	Annotated Output
	Simulation Summary Report 
	Any-Pairs Power
	All-Pairs Power
	Group Sample Size n
	Total Sample Size N
	S.D. of Means Sm|H1
	S.D. of Data SD|H1
	Actual FWER
	Target FWER
	M0
	M1
	S

	Error-Rate Summary for H0 Simulation 
	No. of Equal Pairs
	Mean No. of Type-1 Errors
	Prop. Type-1 Errors
	Prop. (No. of Type-1 Errors>0) FWER
	Target FWER
	Mean Pairs Alpha
	Min Pairs Alpha
	Max Pairs Alpha

	Error-Rate Summary for H1 Simulation 
	No. of Equal Pairs/Unequal Pairs
	Mean No. False Positives
	Mean No. False Negatives
	Prop. Errors
	Prop. Equal that were Detect.
	Prop. Uneq. that were Undet.
	Prop. Detect. that were Equal (FDR)
	Prop. Undet. that were Uneq.
	All Uneq. Pairs Power
	Any Uneq. Pairs Power
	Mean, Min, and Max Pairs Power

	Detail Model Report
	Hypo. Type
	Groups
	Group Labels
	n/N
	Group Mean
	Ave. S.D.
	Simulation Model

	Probability of Rejecting Equality 
	Plots Section


	Example 2 – Comparative Results
	Setup
	Output
	Numeric Results


	Example 3 – Validation using Dunnett
	Setup
	Output
	Numeric Results


	---
	P585_001
	P585_002
	P585_003
	P585_004
	P585_005
	P585_006
	P585_007
	P585_008
	P585_009
	P585_010


	Multiple Contrasts (Simulation)
	Introduction
	Error Rates

	Technical Details
	The One-Way Analysis of Variance Design
	Contrasts
	Dunn-Bonferroni Test
	Dunn-Welch Test
	Definition of Power for Multiple Contrasts
	Any-Contrast Power
	All-Contrasts Power


	Simulation Details
	Generating Random Distributions

	Procedure Options
	Data 1 Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	FWER (Alpha)

	Sample Size
	n (Sample Size Multiplier)
	Group Sample Size Pattern

	Test
	MC Procedure

	Simulations
	Simulations

	Effect Size
	Grps [1 – 3] (Grps 4 – 9 are found on the Data 2 tab)
	Group Distribution(s)|H0
	Finding the Value of the Mean of a Specified Distribution

	Group Distribution(s)|H1
	Equivalence Margin

	Effect Size – Distribution Parameters
	M0 (Mean|H0)
	M1 (Mean|H1)
	Parameter Values (S, A, B, C)


	Contrasts Tab
	Contrasts
	Contrasts


	Reports Tab
	Select Output – Numeric Reports
	Show Various Reports & Plots
	Show Inc’s & 95% C.I.

	Select Output – Plots
	Show Comparative Reports & Plots


	Options Tab
	Maximum Iterations 
	Maximum Iterations Before Search Termination

	Random Numbers
	Random Number Pool Size



	Example 1 – Power at Various Sample Sizes
	Setup
	Annotated Output
	Simulation Summary Report 
	Any-Cont. Power
	All- Cont. Power
	Group Sample Size n
	Total Sample Size N
	S.D. of Means Sm|H1
	S.D. of Data SD|H1
	Actual FWER
	Target FWER
	M0
	M1
	S

	Error-Rate Summary for H0 Simulation 
	No. of Zero Cont.
	Mean No. of Type-1 Errors
	Prop. Type-1 Errors
	Prop. (No. of Type-1 Errors>0) FWER
	Target FWER
	Mean Cont. Alpha
	Min Cont. Alpha
	Max Cont. Alpha

	Error-Rate Summary for H1 Simulation 
	No. of Zero/Non-0 Cont.
	Mean No. False Positives
	Mean No. False Negatives
	Prop. Errors
	Prop. Equal that were Detect.
	Prop. Uneq. that were Undet.
	Prop. Detect. that were Zero (FDR)
	Prop. Undet. that were Non-0.
	All Non-0 Cont. Power
	Any Non-0 Cont. Power
	Mean, Min, and Max Cont. Power

	Detail Model Report
	Hypo. Type
	Groups
	Group Labels
	n/N
	Group Mean
	Ave. S.D.
	Simulation Model

	List of Contrast Coefficients
	Probability of Rejecting Individual Contrasts 
	Plots Section


	Example 2 – Comparative Results
	Setup
	Output
	Numeric Results and Plots


	Example 3 – Validation
	Setup
	Output
	Numeric Results


	---
	P590_001
	P590_002
	P590_003
	P590_004
	P590_005
	P590_006
	P590_007
	P590_008
	P590_009
	P590_010
	P590_011



	Multivariate Means
	Hotelling's T2
	Introduction
	Assumptions

	Technical Details
	One-Group Case
	Two-Group Case

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power or Beta
	Alpha (Significance Level)

	Sample Size
	N1 (Sample Size Group 1)
	N2 (Sample Size Group 2)
	R (Sample Allocation Ratio)

	Groups
	Number of Groups

	Effect Size – Response Variables
	Number of Response Variables

	Effect Size – Mean Differences
	Mean Differences (= # of Response Vars)
	Means Differences Column

	Effect Size – Mean Multiplier
	K (Means Multipliers)


	Covariance Tab
	Covariance Matrix Specification
	Specify Which Covariance Matrix Input Method to Use

	Covariance Matrix Specification- Input Method = ‘Standard Deviation and Correlation’
	SD (Common Standard Deviation)
	R (Correlation)
	Specify Correlation Pattern

	Covariance Matrix Specification- Input Method = ‘Covariance Matrix Variables’
	Spreadsheet Columns Containing the Covariance Matrix



	Example 1 – Power in the One-Group Case and Validation
	Setup
	Annotated Output
	Numeric Report
	Means Matrix
	Variance-Covariance Matrix Section
	Chart Section


	Example 2 – Power in the Two-Group Case and Validation
	Setup
	Output
	Numeric Report


	---
	P600_001
	P600_002
	P600_003


	Multivariate Analysis of Variance (MANOVA)
	Introduction
	Assumptions

	Technical Details
	General Linear Multivariate Model
	Wilks’ Lambda Approximate F Test
	Pillai-Bartlett Trace Approximate F Test
	Hotelling-Lawley Trace Approximate F Test

	M (Mean) Matrix
	C Matrix – Contrasts
	Generating the C Matrix when there are Multiple Between Factors

	Power Calculations

	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Sample Size
	n (Subjects Per Group)
	= n’s

	Effect Size – Response Variables
	Number of Response Variables

	Effect Size – Means
	Means Matrix
	K (Means Multipliers)

	Effect Size – Main Effects & Interactions
	Labels
	Levels
	Alpha
	Power or Beta


	Covariance Tab
	Covariance Matrix Specification
	Specify Which Covariance Matrix Input Method to Use

	Covariance Matrix Specification- Input Method = ‘Standard Deviation and Correlation’
	SD (Standard Deviation)
	R (Correlation)
	Specify Correlation Pattern

	Covariance Matrix Specification- Input Method = ‘Covariance Matrix Variables’
	Spreadsheet Columns Containing the Covariance Matrix


	Reports Tab
	Select Output – Numeric Reports
	Test in Summary Statement(s)

	Report Options
	Maximum Term-Order Reported
	Skip Line After



	Example 1 – Determining Power
	Setup
	Annotated Output
	Term Report
	Test
	Power
	n
	N
	Multiply Means By
	Test Statistic
	Approx. F Statistic
	DF1|DF2
	Alpha
	Beta

	Means Matrix
	Variance-Covariance Matrix Section
	Plots Section


	Example 2 – Validation
	Setup
	Output
	Term Report


	---
	P605_001
	P605_002
	P605_003
	P605_004
	P605_005
	P605_006
	P605_007
	P605_008
	P605_009
	P605_010



	Microarrays
	One-Sample or Paired T-Test for Microarray Data
	Introduction
	Paired Design (Two-Channel Arrays)
	Paired Design, Six Arrays
	Null and Alternative Hypotheses
	T-Test Formula
	Assumptions

	One-Sample Design
	Null and Alternative Hypotheses
	T-Test Formula
	Assumptions

	Technical Details
	Multiple Testing Adjustment
	False Discovery Rate Table
	Need for Multiple Testing Adjustment
	Error Rates – P-Value Adjustment Techniques
	Per-Comparison Error Rate (PCER) – No Multiple Testing Adjustment
	Experiment-Wise Error Rate (EWER)
	False Discovery Rate (FDR)

	Multiple Testing Adjustment Comparison

	Calculating Power 
	Adjusting Alpha
	Experiment-wise Error Rate
	False Discovery Rate


	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power for each Gene
	False Discovery (Alpha) Method
	FDR or EWER Value

	Sample Size
	N (Number of Arrays)

	Effect Size
	D (Minimum Mean Difference Detected)
	S (Standard Deviation of Paired Differences in Expression)

	Number of Genes
	Number of Genes Tested

	Number of Genes – FDR Only
	K (Number of Genes with Mean Difference > D)
	K for EWER
	K for FDR


	Test
	Alternative
	Test Type


	Options Tab
	Maximum Iterations
	Maximum Iterations Before Search Termination

	Convergence Options
	FDR Power Convergence



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Additional Numeric Result Detail
	Plots Section


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results
	Plots Section


	Example 3 – Finding the Minimum Detectable Difference
	Setup
	Output
	Numeric Results
	Plots Section


	Example 4 – Validation (EWER) using Stekel
	Setup
	Output
	Numeric Results


	Example 5 – Validation (EWER) using Lee
	Setup
	Output
	Numeric Results


	Example 6 – Validation (FDR) using Jung
	Setup
	Output
	Numeric Results


	---
	P610_001
	P610_002
	P610_003
	P610_004
	P610_005
	P610_006
	P610_007


	Two-Sample T-Test for Microarray Data
	Introduction
	Two-Sample Design
	Null and Alternative Hypotheses
	Assumptions
	Two-Sample T-Test Assumptions
	Mann-Whitney U Test Assumptions


	Technical Details
	Multiple Testing Adjustment
	Benjamini and Hochberg’s (1995) False Discovery Rate Table
	Need for Multiple Testing Adjustment
	Error Rates – P-Value Adjustment Techniques
	Per-Comparison Error Rate (PCER) – No Multiple Testing Adjustment
	Experiment-Wise Error Rate (EWER)
	False Discovery Rate (FDR) 

	Multiple Testing Adjustment Comparison

	Calculating Power 
	Case 1 – Standard Deviations Known and Equal (Z)
	Case 2 – Standard Deviations Known and Unequal (Z)
	Case 3 – Standard Deviations Unknown and Equal
	Case 4 – Standard Deviations Unknown and Unequal

	Adjusting Alpha
	Experiment-wise Error Rate
	False Discovery Rate


	Procedure Options
	Data Tab
	Solve For
	Find (Solve For)

	Error Rates
	Power for each Gene
	False Discovery (Alpha) Method
	FDR or EWER Value

	Sample Size
	N1 (Number of Arrays, Group 1)
	N2 (Number of Arrays, Group 2)
	R (Sample Allocation Ratio)

	Effect Size
	D (Minimum Mean Difference Detected)
	S1 (Standard Deviation Group 1)
	S2 (Standard Deviation Group 2)

	Number of Genes
	Number of Genes Tested

	Number of Genes – FDR Only
	K (Number of Genes with Mean Difference > D)
	K for EWER
	K for FDR


	Test
	Alternative
	Test Type
	Nonparametric Adjustment


	Options Tab
	Maximum Iterations
	Maximum Iterations Before Search Termination

	Convergence Options
	FDR Power Convergence



	Example 1 – Finding Power
	Setup
	Annotated Output
	Numeric Results
	Plots Section


	Example 2 – Finding the Sample Size
	Setup
	Output
	Numeric Results
	Plots Section


	Example 3 – Finding the Minimum Detectable Difference
	Setup
	Output
	Numeric Results
	Plots Section


	Example 4 – Validation (EWER) using Stekel
	Setup
	Output
	Numeric Results


	Example 5 – Validation (EWER) using Lee
	Setup
	Output
	Numeric Results


	Example 6 – Validation (FDR) using Jung
	Setup
	Output
	Numeric Results


	---
	P615_001
	P615_002
	P615_003
	P615_004
	P615_005
	P615_006




	References
	A
	B
	C
	D
	E
	F
	G
	H
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Y
	Z
	---
	Refs_001


	Index
	3
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	---
	Index_001



