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About this manual 
Congratulations on your purchase of the PASS package! PASS offers: 

• Easy parameter entry. 
• A comprehensive list of power analysis routines that are accurate and verified, yet are 

quick and easy to learn and use. 
• Straightforward procedures for creating paper printouts and file copies of both the 

numerical and graphical reports. 
Our goal is that with the help of these user's guides, you will be up and running on PASS 
quickly. After reading the quick start manual (at the front of User's Guide I) you will only 
need to refer to the chapters corresponding to the procedures you want to use. The 
discussion of each procedure includes one or more tutorials that will take you step-by-
step through the tasks necessary to run the procedure. 

I believe you will find that these user’s guides provides a quick, easy, efficient, and 
effective way for first-time PASS users to get up and running.  

I look forward to any suggestions you have to improve the usefulness of this manual 
and/or the PASS system. Meanwhile, good computing! 

        Jerry Hintze, Author 
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Preface 
PASS (Power Analysis and Sample Size) is an advanced, easy-to-use statistical analysis software 
package. The system was designed and written by Dr. Jerry L. Hintze over the last fifteen years. 
Dr. Hintze drew upon his experience both in teaching statistics at the university level and in 
various types of statistical consulting. 

The present version, written for 32-bit versions of Microsoft Windows (98, 2000, ME, NT, XP, 
etc.) computer systems, is the result of several iterations. Experience over the years with several 
different types of users has helped the program evolve into its present form. 

NCSS maintains a website at WWW.NCSS.COM where we make the latest edition of PASS 
available for free downloading. The software is password protected, so only users with valid 
serial numbers may use this downloaded edition. We hope that you will download the latest 
edition routinely and thus avoid any bugs that have been corrected since you purchased your 
copy. 

We believe PASS to be an accurate, exciting, easy-to-use program. If you find any portion which 
you feel needs to be changed, please let us know. Also, we openly welcome suggestions for 
additions and enhancements. 

Verification 
All calculations used in this program have been extensively tested and verified. First, they have 
been verified against the original journal article or textbook that contained the formulas. Second, 
they have been verified against second and third sources when these exist. 
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Chapter 400  

One Mean 
Introduction 
The one-sample t test is used to test whether the mean of a population is greater than, less than, or 
not equal to a specific value. Because the t distribution is used to calculate critical values for the test, 
this test is often called the one-sample t test. If the standard deviation is known, the normal 
distribution is used instead of the t distribution and the test is officially known as the z test. 

When the data are differences between paired values, this test is known as the paired t test. 

This module also calculates the power of the nonparametric analog of the t test, the Wilcoxon test.  

Test Procedure 
1.  Find the critical value. Assume that the true mean is M0. Choose a value  so that the 

probability of rejecting  when  is true is equal to a specified value called 
Ta

H0 H0 α . Using the t 
distribution, select T  so that a ( )Pr t Ta> = α . This value is found using a t probability table or 
a computer program (like PASS).  

2. Select a sample of n items from the population and compute the t statistic. Call this value T. If 
 reject the null hypothesis that the mean equals M0 in favor of an alternative hypothesis 

that the mean equals M1 where M1 > M0.  
T Ta>

Following is a specific example. Suppose we want to test the hypothesis that a variable, X, has a 
mean of 100 versus the alternative hypothesis that the mean is greater than 100. Suppose that 
previous studies have shown that the standard deviation, σ , is 40. A random sample of 100 
individuals is used.  

We first compute the critical value, T . The value of T  that yields a a α  = 0.05 is 106.6. If the mean 
computed from a sample is greater than 106.6, reject the hypothesis that the mean is 100. Otherwise, 
do not reject the hypothesis. We call the region greater than 106.6 the Rejection Region and values 
less than or equal to 106.6 the Acceptance Region of the significance test. 
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Now suppose that you want to compute the power of this testing procedure. In order to compute 
the power, we must specify an alternative 
value for the mean. We decide to compute 
the power if the true mean were 110. Figure 
2 shows how to compute the power in this 
case. 

Figure 1 - Finding Alpha 

 

The power is the probability of rejecting  
when the true mean is 110. Since we reject 

 when the calculated mean is greater than 
106.6, the probability of a Type-II error 
(called 

H0

H0

β ) is given by the dark, shaded area 
of the second graph. This value is 0.196. The 
power is equal to 1 - β  or 0.804. 

 

 

 

 

Note that there are six parameters that may 
be varied in this situation: two means, 
standard deviation, alpha, beta, and the 
sample size. 

Figure 2 - Finding Beta 
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Assumptions 
This section describes the assumptions that are made when you use one of these tests. The key 
assumption relates to normality or non-normality of the data. One of the reasons for the 
popularity of the t test is its robustness in the face of assumption violation. However, if an 
assumption is not met even approximately, the significance levels and the power of the t test are 
invalidated. Unfortunately, in practice it often happens that several assumptions are not met. This 
makes matters even worse! Hence, take the steps to check the assumptions before you make 
important decisions based on these tests. 

One-Sample T Test Assumptions 
The assumptions of the one-sample t test are: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. 

3. The sample is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample.  

Paired T Test Assumptions 
The assumptions of the paired t test are:  

1. The data are continuous (not discrete). 

2. The data, i.e., the differences for the matched-pairs, follow a normal probability 
distribution. 

3. The sample of pairs is a simple random sample from its population. Each individual in 
the population has an equal probability of being selected in the sample.  

Wilcoxon Signed-Rank Test Assumptions 
The assumptions of the Wilcoxon signed-rank test are as follows (note that the difference is 
between a data value and the hypothesized median or between the two data values of a pair):  

1. The differences are continuous (not discrete). 

2. The distribution of each difference is symmetric. 

3. The differences are mutually independent. 

4. The differences all have the same median. 

5. The measurement scale is at least interval. 

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can often ignore the 
continuous variable assumption. Perhaps the greatest restriction is that your data come from a 
random sample of the population. If you do not have a random sample, your significance levels 
will probably be incorrect. 
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Technical Details 
Standard Deviation Known 
When the standard deviation is known, the power is calculated as follows for a directional 
alternative (one-tailed test) in which M1 > M0.  

1. Find z  such that , where α ( )1− =Φ zα α ( )Φ x  is the area under the standardized normal 
curve to the left of x. 

2. Calculate: aX = M0 z
n

+ α
σ

1 

3. Calculate: a
az = X - M1

n
σ 2 

4. Power = . ( )1− Φ za

Standard Deviation Unknown 
When the standard deviation is unknown, the power is calculated as follows for a directional 
alternative (one-tailed test) in which M1 > M0.  

1. Find tα  such that , where ( )1− =T tdf α α ( )T tdf α  is the area under a central-t curve to the 
left of x and df = n - 1. 

2. Calculate: x = M0+ t
n

.a α
σ

3 

3. Calculate the noncentrality parameter: λ σ= M1 M0

n

.−
4 

4. Calculate: a
at = x - M1

n

+σ λ 5 

5. Calculate: Power = , where ( )1− ′T tdf a,λ ( )′T xdf ,λ  is the area under a noncentral-t curve with 
degrees of freedom df and noncentrality parameter λ  to the left of x. 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates at the beginning of this manual. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Beta when you want to calculate the power of an experiment that has already been run.  

Mean0 (Null or Baseline) 
This option specifies one or more values of the mean corresponding to the null hypothesis. If you 
are analyzing a paired t test, this value should be zero.  

Only the difference between Mean0 and Mean1 is used in the calculations. 

Means1 (Alternative) 
This option specifies one or more values of the mean corresponding to the alternative hypothesis. 
If you are analyzing a paired t test, this value represents the mean difference that you are 
interested in. 

Only the difference between Mean0 and Mean1 is used in the calculations. 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Standard Deviation 
This option specifies one or more values of the standard deviation. This must be a positive value. 
Be sure to use the standard deviation of X and not the standard deviation of the mean (the 
standard error). 

When this value is not known, you must supply an estimate of it. PASS includes a special module 
for estimating the standard deviation. This module may be loaded by pressing the SD button. 
Refer to the Standard Deviation Estimator chapter for further details. 
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Known Standard Deviation 
This option specifies whether the standard deviation (sigma) is known or unknown. In almost all 
experimental situations, the standard deviation is not known. However, great calculation 
efficiencies are obtained if the standard deviation is assumed to be known.  

When this box is checked, the program performs its calculations assuming that the standard 
deviation is known. This results in the use of the normal distribution in all probability 
calculations. Calculations using this option will be much faster than for the unknown standard 
deviation case. The results for either case will be close when the sample size is over 30. 

When this box is not checked, the program assumes that the standard deviation is not known and 
will be estimated from the data when the t test is run. This results in probability calculations using 
the noncentral-t distribution. This distribution requires a lot more calculations than does the 
normal distribution. 

The calculation speed comes into play whenever the Find option is set to something besides Beta. 
In these cases, the program uses a special searching algorithm which requires numerous 
iterations. You will note a real difference in calculation speed depending on whether this option is 
checked. 

A reasonable strategy would be to leave this option checked while you are experimenting with the 
parameters and then turn it off when you are ready for your final results. 

Population Size 
This is the number of subjects in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 

When a finite population size is specified, the standard deviation is reduced according to the 
formula:  

σ σ1
2 21= n

N
−⎛

⎝⎜
⎞
⎠⎟

 

where n is the sample size, N is the population size, σ  is the original standard deviation, and σ1  
is the new standard deviation.  

The quantity n/N is often called the sampling fraction. The quantity 1−⎛
⎝⎜

⎞
⎠⎟

n
N

 is called the finite 

population correction factor. 
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Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always : Mean0 = Mean1. H0

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

Ha: Mean0 <> Mean1. This is the most common selection. It yields the two-tailed t test. Use this 
option when you are testing whether the means are different but you do not want to specify 
beforehand which mean is larger. Many scientific journals require two-tailed tests. 

Ha: Mean0 < Mean1. This option yields a one-tailed t test. Use it when you are only interested 
in the case in which Mean1 is greater than Mean0. 

Ha: Mean0 > Mean1. This options yields a one-tailed t test. Use it when you are only interested 
in the case in which Mean1 is less than Mean0. 

Nonparametric Adjustment 
This option makes appropriate sample size adjustments for the Wilcoxon test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Wilcoxon test may be 
made using the standard t test formulations with a simple adjustment to the sample size. The size 
of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

Ignore 
Do not make a Wilcoxon adjustment. This indicates that you want to analyze a t test, not the 
Wilcoxon test. 

Uniform 
Make the Wilcoxon sample size adjustment assuming the uniform distribution. Since the factor is 
one, this option performs the same as Ignore. It is included for completeness. 

Double Exponential 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the double 
exponential distribution. 

Logistic 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the logistic 
distribution. 

Normal 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the normal 
distribution. 
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha. This 
means that about one test in twenty will falsely reject the null hypothesis. Note that you should 
pick a value for alpha that represents the risk of a type-I error you are willing to take. 

Experiment with different values between 0.01 and 0.10 to understand the relationship between 
alpha, beta, and sample size.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal means when in fact the means are 
different. You cannot make both a type-I and a type-II error in a single hypothesis test. 

Values must be between zero and one. Historically, the value of 0.20 was used for beta. However, 
you should pick a value for beta that represents the risk of a type-II error you are willing to take. 

Power is defined as one minus beta. Hence, specifying the beta error level also specifies the 
power level. For example, if you specify beta values of 0.05, 0.10, and 0.20, you are specifying 
the corresponding power values of 0.95, 0.90, and 0.80, respectively.  
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Example 1 - Power after a Study 
This example will cover the situation in which you are calculating the power of a t test on data 
that have already been collected and analyzed. For example, you might be playing the role of a 
reviewer, looking at the power of t test from a study you are reviewing. In this case, you would 
not vary the means, standard deviation, or sample size since they are given by the experiment. 
Instead, you investigate the power of the significance tests. You might look at the impact of 
different alpha values on the power.  

Suppose an experiment involving 100 individuals yields the following summary statistics: 

Hypothesized mean (M0) 100.0 
Sample mean (M1) 110.0 
Sample standard deviation 40.0 
Sample size 100 

Given the above data, analyze the power of a t test which tests the hypothesis that the population 
mean is 100 versus the alternative hypothesis that the population mean is 110. Consider the 
power at significance levels 0.01, 0.05, 0.10 and sample sizes 20 to 120 by 20. 

Note that we have set M1 equal to the sample mean. In this case, we are studying the power of the 
t test for a mean difference the size of that found in the experimental data. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Mean0 ...............................................100 
Mean1 ...............................................110 
N........................................................20 to 120 by 20 
Standard Deviation............................40 
Known Standard Deviation................Unchecked 
Population Size .................................Infinite 
Alternative Hypothesis ......................Ha: Mean0 <> Mean1 
Nonparametric Adjustment................Ignore 
Alpha .................................................0.01  0.05  0.10 
Beta...................................................Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
Unknown standard deviation. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.06051 20 0.01000 0.93949 100.0 110.0 40.0 0.250 
0.14435 40 0.01000 0.85565 100.0 110.0 40.0 0.250 
0.24401 60 0.01000 0.75599 100.0 110.0 40.0 0.250 
0.34953 80 0.01000 0.65047 100.0 110.0 40.0 0.250 
0.45316 100 0.01000 0.54684 100.0 110.0 40.0 0.250 
0.54958 120 0.01000 0.45042 100.0 110.0 40.0 0.250 
0.18590 20 0.05000 0.81410 100.0 110.0 40.0 0.250 
0.33831 40 0.05000 0.66169 100.0 110.0 40.0 0.250 
0.47811 60 0.05000 0.52189 100.0 110.0 40.0 0.250 
0.59828 80 0.05000 0.40172 100.0 110.0 40.0 0.250 
0.69698 100 0.05000 0.30302 100.0 110.0 40.0 0.250 
0.77532 120 0.05000 0.22468 100.0 110.0 40.0 0.250 
0.28873 20 0.10000 0.71127 100.0 110.0 40.0 0.250 
0.46435 40 0.10000 0.53565 100.0 110.0 40.0 0.250 
0.60636 60 0.10000 0.39364 100.0 110.0 40.0 0.250 
0.71639 80 0.10000 0.28361 100.0 110.0 40.0 0.250 
0.79900 100 0.10000 0.20100 100.0 110.0 40.0 0.250 
0.85952 120 0.10000 0.14048 100.0 110.0 40.0 0.250 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Mean0 is the value of the population mean under the null hypothesis. It is arbitrary. 
Mean1 is the value of the population mean under the alternative hypothesis. It is relative to Mean0. 
Sigma is the standard deviation of the population. It measures the variability in the population. 
Effect Size, |Mean0-Mean1|/Sigma, is the relative magnitude of the effect under the alternative. 
 
Summary Statements 
A sample size of 20 achieves 6% power to detect a difference of -10.0 between the null 
hypothesis mean of 100.0 and the alternative hypothesis mean of 110.0 with an estimated 
standard deviation of 40.0 and with a significance level (alpha) of 0.01000 using a two-sided 
one-sample t-test. 

 

This report shows the values of each of the parameters, one scenario per row. The values of 
power and beta were calculated from the other parameters. 
The definitions of each column are given in the Report Definitions section. 

Plots Section 
 

 

Power vs N by Alpha with Mean0=100.0
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This plot shows the relationship between sample size and power for various values of alpha.  
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Example 2 - Finding the Sample Size 
This example will consider the situation in which you are planning a study that will use the one-
sample t test and want to determine an appropriate sample size. This example is more subjective 
than the first because you now have to obtain estimates of all the parameters. In the first example, 
these estimates were provided by the data.  

In studying deaths from SIDS (Sudden Infant Death Syndrome), one hypothesis put forward is 
that infants dying of SIDS weigh less than normal at birth. Suppose the average birth weight of 
infants is 3300 grams with a standard deviation of 663 grams. Use an alpha of 0.05 and power of 
both 0.80 and 0.90. How large a sample of SIDS infants will be needed to detect a drop in 
average weight of 25%? Of 10%? Of 5%? Note that applying these percentages to the average 
weight of 3300 yields 2475, 2970, and 3135. 

Although a one-sided hypothesis is being considered, sample size estimates will assume a two-
sided alternative to keep the research design in line with other studies. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................N 
Mean0 ...............................................3300 
Mean1 ...............................................2475 2970 3135 
N........................................................Ignored since this is the Find setting 
Standard Deviation............................663 
Known Standard Deviation................Unchecked 
Population Size .................................Infinite 
Alternative Hypothesis ......................Ha: Mean0 <> Mean1 
Nonparametric Adjustment................Ignore 
Alpha .................................................0.05 
Beta...................................................0.10 0.20 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.90307 9 0.05000 0.09693 3300.0 2475.0 663.0 1.244 
0.85339 8 0.05000 0.14661 3300.0 2475.0 663.0 1.244 
0.90409 45 0.05000 0.09591 3300.0 2970.0 663.0 0.498 
0.80426 34 0.05000 0.19574 3300.0 2970.0 663.0 0.498 
0.90070 172 0.05000 0.09930 3300.0 3135.0 663.0 0.249 
0.80105 129 0.05000 0.19895 3300.0 3135.0 663.0 0.249 

 

This report shows the values of each of the parameters, one scenario per row. Since there were 
three values of Mean1 and two values of beta, there are a total of six rows in the report.  
We were solving for the sample size, N. Notice that the increase in sample size seems to be most 
directly related to the difference between the two means. The difference in beta values does not 
seem to be as influential, especially at the smaller sample sizes. 

Note that even though we set the beta values at 0.1 and 0.2, these are not the beta values that were 
achieved. This happens because N can only take on integer values. The program selects the first 
value of N that gives at least the values of alpha and beta that were desired. 
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Example 3 - Finding the Minimum 
Detectable Difference 
This example will consider the situation in which you want to determine how small of a 
difference between the two means can be detected by the t test with specified values of the other 
parameters.  

Continuing with the previous example, suppose about 50 SIDS deaths occur in a particular area 
per year. Using 50 as the sample size, 0.05 as alpha, and 0.20 as beta, how large of a difference 
between the means is detectable? 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Mean1 (Search<Mean0) 
Mean0 ...............................................3300 
Mean1 ...............................................Ignored since this is the Find setting 
N........................................................50 
Standard Deviation............................663 
Known Standard Deviation................Unchecked 
Population Size .................................Infinite 
Alternative Hypothesis ......................Ha: Mean0 <> Mean1 
Nonparametric Adjustment................Ignore 
Alpha .................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80000 50 0.05000 0.20000 3300.0 3032.0 663.0 0.404 

 

With a sample of 50, a difference of 3300 - 3032 = 268 would be detectable. This difference 
represents about an 8% decrease in weight.  
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Example 4 - Paired T Test 
Usually, a researcher designs a study to compare two or more groups of subjects, so the one 
sample case described in this chapter occurs infrequently. However, there is a popular research 
design that does lead to the single mean test: paired observations. 

For example, suppose researchers want to study the impact of an exercise program on the 
individual’s weight. To do so they randomly select N individuals, weigh them, put them through 
the exercise program, and weigh them again. The variable of interest is not their actual weight, 
but how much their weight changed.  

In this design, the data are analyzed using a one-sample t test on the differences between the 
paired observations. The null hypothesis is that the average difference is zero. The alternative 
hypothesis is that the average difference is some nonzero value. 

To study the impact of an exercise program on weight loss, the researchers decide to conduct a 
study that will be analyzed using the paired t test. A sample of individuals will be weighed before 
and after a specified exercise program that will last three months. The difference in their weights 
will be analyzed. 

Past experiments of this type have had standard deviations in the range of 10 to 15 pounds. The 
researcher wants to detect a difference of 5 pounds or more. Alpha values of 0.01 and 0.05 will be 
tried. Beta is set to 0.20 so that the power is 80%. How large of a sample must the researchers 
take? 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................N 
Mean0 ...............................................0 
Mean1 ...............................................-5 
N ....................................................... Ignored since this is the Find setting. 
Standard Deviation ...........................10 12.5 15 
Known Standard Deviation ...............Unchecked 
Population Size ................................. Infinite 
Alternative Hypothesis ......................Ha: Mean0 <> Mean1 
Nonparametric Adjustment ............... Ignore 
Alpha.................................................0.01 0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80939 51 0.01000 0.19061 0.0 -5.0 10.0 0.500 
0.80778 34 0.05000 0.19222 0.0 -5.0 10.0 0.500 
0.80434 77 0.01000 0.19566 0.0 -5.0 12.5 0.400 
0.80779 52 0.05000 0.19221 0.0 -5.0 12.5 0.400 
0.80252 109 0.01000 0.19748 0.0 -5.0 15.0 0.333 
0.80230 73 0.05000 0.19770 0.0 -5.0 15.0 0.333 
 

N vs S by Alpha with Mean0=0.0 Mean1=-5.0
Power=0.80 T Test
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The report shows the values of each of the parameters, one scenario per row. We were solving for 
the sample size, N.  

Note that depending on our choice of assumptions, the sample size ranges from 34 to 109. Hence, 
the researchers have to make a careful determination of which standard deviation and significance 
level should be used. 

Example 5 - Wilcoxon test 
The Wilcoxon test, a nonparametric analog of the paired comparison t test, is recommended when 
the distribution of the data is symmetrical, but not normal. A study by Al-Sunduqchi (1990) 
showed that sample size and power calculations for the Wilcoxon test can be made using the 
standard t test results with a simple adjustment to the sample size.  

Suppose the researchers in Example 4 want to compare sample size requirements of the t test with 
those of the Wilcoxon test. They would use the same values, only this time the Nonparametric 
Adjustment would be set to double exponential. The double exponential was selected because it 
requires the largest adjustment of the distributions available in PASS and they wanted to know 
what the largest adjustment was. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example5 by 
clicking the Template tab and loading this template.  
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Option Value 
Data Tab 
Find ...................................................N 
Mean0 ...............................................0 
Mean1 ...............................................-5 
N ....................................................... Ignored since this is the Find setting. 
Standard Deviation ...........................10 12.5 15 
Known Standard Deviation ...............Unchecked 
Population Size ................................. Infinite 
Alternative Hypothesis ......................Ha: Mean0 <> Mean1 
Nonparametric Adjustment ...............Double Exponential 
Alpha.................................................0.01 0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80939 34 0.01000 0.19061 0.0 -5.0 10.0 0.500 
0.80778 22 0.05000 0.19222 0.0 -5.0 10.0 0.500 
0.80434 51 0.01000 0.19566 0.0 -5.0 12.5 0.400 
0.80779 34 0.05000 0.19221 0.0 -5.0 12.5 0.400 
0.80252 72 0.01000 0.19748 0.0 -5.0 15.0 0.333 
0.80230 48 0.05000 0.19770 0.0 -5.0 15.0 0.333 
 

N vs S by Alpha with Mean0=0.0 Mean1=-5.0
Power=0.80 WC (DE)
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If you compare these sample size values with those of Example 4, you will find that these are 
about two-thirds of those required for the t test. This is the value of the adjustment factor for the 
Wilcoxon test when the underlying distribution is the double exponential.  
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Example 6 - Validation using Zar 
Zar (1984) pages 111-112 presents an example in which Mean0 = 0.0, Mean1 = 1.0, S = 1.25, 
alpha = 0.05, and N = 12. Zar obtains an approximate power of 0.72.  

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example6 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Mean0 ...............................................0 
Mean1 ...............................................1 
N........................................................12 
Standard Deviation............................1.25 
Known Standard Deviation................Unchecked 
Population Size .................................Infinite 
Alternative Hypothesis ......................Ha: Mean0 <> Mean1 
Nonparametric Adjustment................Ignore 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting. 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.71366 12 0.05000 0.28634 0.0 1.0 1.3 0.800 

 

The difference between the power computed by PASS of 0.71366 and the 0.72 computed by Zar 
is mostly due to Zar’s use of an approximation to the noncentral t distribution. 
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Example 7 - Validation using Machin 
Machin, Campbell, Fayers, and Pinol (1997) page 37 presents an example in which Mean0 = 0.0, 
Mean1 = 0.2, S = 1.0, alpha = 0.05, and beta = 0.20. They obtain a sample size of 199. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example7 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................N 
Mean0 ...............................................0 
Mean1 ...............................................0.2 
N ....................................................... Ignored since this is the Find setting 
Standard Deviation ...........................1.0 
Known Standard Deviation ...............Unchecked 
Population Size ................................. Infinite 
Alternative Hypothesis ......................Ha: Mean0 <> Mean1 
Nonparametric Adjustment ............... Ignore 
Alpha.................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
The standard deviation was assumed to be unknown. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80169 199 0.05000 0.19831 0.0 0.2 1.0 0.200 

 

The sample size of 199 matches Machin’s result. 
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Chapter 405  

Exponential Mean 
Test 
This program module designs studies for testing hypotheses about the mean of the exponential 
distribution. Such tests are often used in reliability acceptance testing, also called reliability 
demonstration testing.  

Results are calculated for plans that are time censored or failure censored, as well as for plans 
that use with replacement or without replacement sampling. We adopt the basic methodology 
outlined in Epstein (1960), Juran (1979), Bain and Engelhardt (1991), and Schilling (1982). 

Technical Details 
The test procedures described here make the assumption that lifetimes follow the exponential 
distribution. The density of the exponential distribution is written as 

f t t( ) exp= −⎛
⎝⎜

⎞
⎠⎟

1
θ θ

 

The parameter θ  is interpreted as average failure time, mean time to failure (MTTF), or mean 
time between failures (MTBF). Its reciprocal is the failure rate.  

The reliability, or probability that a unit continues running beyond time t, is 

R t e
t

( ) =
−
θ  

Hypothesis Test 
The relevant statistical hypothesis is H0 0 1:θ θ=  versus the one-sided alternative H1 0 1:θ θ> . Here, 
θ0  represents an acceptable (high) mean life usually set from the point of view of the producer and 
θ1  represents some unacceptable (low) mean life usually set from the point of view of the consumer. 

The test procedure is to reject the null hypothesis if the observed mean life  is larger than a critical 
value selected to meet the error rate criterion. 

$θ

The error rates are often interpreted in reliability testing as risks. The consumer runs the risk that the 
study will fail to reject products that have a reliability less than they have specified. This consumer 
risk is β . Similarly, the producer runs the risk that the study will reject products that actually meet 
the consumer’s requirements. This producer risk is α .  



405-2  Exponential Mean Test  

Fixed-Failure Sampling Plans 
Fixed failure plans are those in which a specified number of items, n, are observed until a specified 
number of items, , fail. The length of the study  is random. Failed items may, or may not, be 
immediately replaced (with replacement versus without replacement). 

r0 t0

The test statistic is the observed mean life  which is computed using $θ

$θ = =
∑ t

r

i
i all test items

0
 

where  is the elapsed time that the ith item is tested, whether measured until failure or until the 
study is completed. 

ti

For both with-replacement and without-replacement sampling,  follows the two-parameter gamma 
distribution with density 

$θ
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This may be converted to a standard, one-parameter gamma using the transformation  

x r y= 0 /θ  

However, because chi-square tables were more accessible, and because the gamma distribution 
may be transformed to the chi-square distribution, most results in the statistical literature are 
based on the chi-square distribution. That is,  is distributed as a chi-square random variable 
with  degrees of freedom.  

2 0r $ /θ θ
2 0r

Assuming that the testing of all n items begins at the same instant, the expected length of time 
needed to observe the first  failures is r0
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If you choose to solve the without replacement equation for n, you can make use of the 
approximation 

1
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Using the above results, sampling plans that meet the specified producer and consumer risk values 
may be found using the result (see Epstein (1960) page 437) that  is the smallest integer such that r0
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Note that the above formulation depends on  but not n. An appropriate value of n can be found 
by considering . Two options are available. 

r0

( )E t0

1.  The value of n is set (perhaps on economic grounds) and the value of  is calculated. ( )E t0

2.  The value of  is set and the value of n is calculated. ( )E t0

Fixed-Time Sampling Plans 
Fixed Time plans refer to those in which a specified number of items n are observed for a fixed 
length of time . The number of items failing r is recorded. Sampling can be with or without 

replacement. The accept/reject decision can be based on r or the observed mean life  which is 
computed using 

t0

$θ

$θ = =
∑ t

r

i
i all test items  

where  is the time that the ith item is being tested, whether measured until failure or until the study 
is completed. 

ti

With Replacement Sampling 
If failed items are immediately replaced with additional items, the distribution of r (and , since 

) follows the Poisson distribution. The probability distribution of r is given by the 
Poisson probability formula 

$θ
$ /θ = nt r0
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Thus, values of n and t  can be found which meet the 0 α  and β  requirements. 

Without Replacement Sampling 
If failed items are not replaced, the distributions of r and  are different and thus the power and 
sample size calculations depend on which statistic will be used. The probability distribution of r is 
given by the binomial formula 

$θ
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where 

p e t= − −1 0 /θ  

Thus, values of n and t  can be found which meet the 0 α  and β  requirements. Note that this 
formulation ignores the actual failure times. 



405-4  Exponential Mean Test  

If  will be used as the test statistic, power calculations must be based on it. Bartholomew (1963) 
gave the following results for the case r > 0. 
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where g(x) is the chi-square density function with 2k degrees of freedom and 
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The above equation is numerically unstable for large values of N, so we use the following 
approximation also given by Bartholomew (1961). This approximation is used when N > 30 or when 
the exact equation cannot be calculated. Bain and Engelhardt (1991)  page 140 suggest that this 
normal approximation can be used when p > 0.5 
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where 

u = −$θ θ
θ

 

p e t= − −1 0 /θ  
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Select Beta when you want to calculate the power of an experiment or test. 

Theta0 (Baseline Mean Life) 
Enter one or more values for the mean life under the null hypothesis. This is sometimes called the 
producer’s mean life. This value is usually scaled in terms of elapsed time such as hours, days, or 
years. Of course, all time values must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure = − −1 0e t /θ  

so that 

( )( )θ =
−

−
t

P
0

1ln Failure
 

Only positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 
1000 by 100.’ 

Because the exponential function is used in the calculations, try to scale the numbers so they are 
less than 100. For example, instead of 720 days, use 7.2 hundreds of days. This will help to avoid 
numerical problems during the calculations. 

Theta1 (Alternative Mean Life) 
Enter one or more values for the mean life under the alternative hypothesis. This is sometimes 
called the consumer’s mean life. This value is usually scaled in terms of elapsed time such as 
hours, days, or years. Of course, all time values must be on the same time scale. 
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Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure = − −1 0e t /θ  

so that 

( )( )θ =
−

−
t

P
0

1ln Failure
 

Any positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 1000 
by 100.’ 

Because the exponential function is used in the calculations, try to scale the numbers so they are 
less than 100. For example, instead of 720 days, use 7.2 hundreds of days. This will help to avoid 
numerical problems during the calculations. 

N (Sample Size) 
Enter one or more values for the sample size N, the number of items in the study. Note that the 
sample size is arbitrary for sampling plans that are terminated after a fixed number of failures are 
observed. 

You may enter a range such as 10 to 100 by 10 or a list of values separated by commas or blanks. 

T0 (Test Duration Time) 
Enter one or more values for the duration of the test. This value may be interpreted as the exact 
duration time, t0, or the expected duration time, E(t0), depending on the Termination Criterion 
and Replacement Method selected. 

These values must be positive and in the same time units as Theta0 and Theta1. 

E(t0) based on Theta1 
When the experiment is failure terminated, the expected waiting time until r failures are observed, 
E(t0), is calculated. This value depends on the value of theta, the mean life. When checked, E(t0) 
calculations are based on Theta1. When unchecked, E(t0) calculations are based on Theta0. Either 
choice may be reasonable in a given situation. 

Alternative Hypothesis 
Specify the alternative hypothesis of the test. Since the null hypothesis is equality (a difference 
between theta0 and theta1 of zero), the alternative is all that needs to be specified. Usually, a one-
tailed option is selected for these designs. In fact, the two-tailed options are only available for 
time terminated experiments. 

Termination Criterion 
This option specifies the method used to terminate the study or experiment. There are two basic 
choices: 

1. Fixed failures (r): terminate after r failures occur. This is also called failure terminated or 
Type-II Censoring. 

2. Fixed time (t0): terminate after an elapsed time of t0. This is also called time terminated or 
Type-I Censoring. This is the most common. 
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In fixed failure sampling, N may be fixed while t0 varies or t0 may be fixed while N varies. All 
that matters is the product of these two quantities. 

In fixed time sampling, two test statistics are available: r and theta-hat. When sampling is without 
replacement, tests based on theta-hat are more powerful (require smaller sample size).  

Replacement Method 
When failures occur, they may be immediately replaced (With Replacement) with new items or 
not (Without Replacement). One of the assumptions of the exponential distribution is that the 
probability of failure does not depend on the previous running time. That is, it is assumed that 
there is no wear-out. Adopting ‘with replacement’ sampling will shorten the elapsed time of an 
experiment that is failure terminated. 

Alpha (Producer’s Risk) 
This option specifies one or more values for the probability of a type-I error (alpha), also called 
the producer’s risk. A type-I error occurs when you reject the null hypothesis of equal 
probabilities when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Beta (Consumer’s Risk) 
This option specifies one or more values for the probability of a type-II error (beta), the 
consumer’s risk. A type-II error occurs when you fail to reject the null hypothesis of equal 
probabilities of the event of interest when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.20 was used for beta. Now, 
0.10 is more popular. You should pick a value for beta that represents the risk of a type-II error 
you are willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80.  

r (Number of Failures) 
Enter one or more values for the rejection number of the test. If r or more items fail, the null 
hypothesis that Theta0 = Theta1 is rejected in favor of the alternative the Theta0 > Theta1.  

Note that this value is ignored for time terminated experiments, because the appropriate value is 
calculated. This value is also ignored in some situations in failure terminated experiments. 
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Example1 - Power for Several Sample 
Sizes 
This example will calculate power for a time terminated, without replacement study in which the 
results will be analyzed using theta-hat. The study will be used to test the alternative hypothesis 
that Theta0 > Theta1, where Theta0 = 2.0 days and Theta1 = 1.0 days. The test duration is 1.0 
days. Funding for the study will allow for a sample size of up to 40 test items. The researchers 
decide to look at sample sizes of 10, 20, 30, and 40. Significance levels of 0.01 and 0.05 will be 
considered.  

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Theta0...............................................2 
Theta1...............................................1 
N .......................................................5 to 50 by 5 
t0 .......................................................1 
Alternative Hypothesis ......................Ha: Theta0 > Theta1 
Termination Criterion ........................Fixed Time using Theta-hat 
Replacement Method........................Without Replacement 
Alpha.................................................0.01 0.05 
Beta................................................... Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
Test Based on Theta-hat with Fixed Running Time t0 and Without Replacement Sampling.  
H0: Theta = Theta0. Ha: Theta = Theta1 < Theta0. Reject H0 if Theta-hat <= ThetaC. 
  Time   Target Actual Target Actual Theta 
Power N t0 Theta0 Theta1 Alpha Alpha Beta Beta C  
0.21695 10 1.000 2.0 1.0 0.01000 0.01000  0.78305 0.7  
0.45485 20 1.000 2.0 1.0 0.01000 0.01000  0.54515 1.0  
0.67159 30 1.000 2.0 1.0 0.01000 0.01000  0.32841 1.1  
0.80628 40 1.000 2.0 1.0 0.01000 0.01000  0.19372 1.2  
0.46940 10 1.000 2.0 1.0 0.05000 0.05000  0.53060 1.0  
0.71828 20 1.000 2.0 1.0 0.05000 0.05000  0.28172 1.2  
0.86665 30 1.000 2.0 1.0 0.05000 0.05000  0.13335 1.3  
0.93730 40 1.000 2.0 1.0 0.05000 0.05000  0.06270 1.4 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Alpha is the probability of rejecting a true null hypothesis.  
Beta is the probability of accepting a false null hypothesis.  
Theta0 is the Mean Life under the null hypothesis. 
Theta1 is the Mean Life under the alternative hypothesis. 
t0 is the test duration time. It provides the scale for Theta0 and Theta1. 
r is the number of failures. 
 
 
Summary Statements 
A sample size of 10 achieves 22% power to detect the difference between the null hypothesis 
mean lifetime of 2.0 and the alternative hypothesis mean lifetime of 1.0 at a 0.01000 
significance level (alpha) using a one-sided test based on the elapsed time. Failing items are 
not replaced with new items. The study is terminated when it has run for 1.000 time units. 

This report shows the power for each of the scenarios. The critical value, Theta C, is also 
provided. 

Plot Section 
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Example2 - Validation Using Epstein 
Epstein (1960), page 438, presents a table giving values of r necessary to meet risk criteria for 
various values of alpha, beta, theta0, and theta1 for the fixed failures case. Specifically, when 
theta0 = 5, theta1 = 2, beta = 0.05, and alpha = 0.01, 0.05, and 0.10, he finds r = 21, 14, and 11. 
We will now duplicate these results. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................r 
Theta0...............................................5 
Theta1...............................................2 
N .......................................................20 (this value is ignored) 
t0 .......................................................1 
Alternative Hypothesis ......................Ha: Theta0 > Theta1 
Termination Criterion ........................Fixed Failures, Fixed E(t0) 
Replacement Method........................Without Replacement 
Alpha.................................................0.01 0.05 0.10 
Beta...................................................0.05 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
Test Based on Fixed Failures r, Fixed Expected Time E(t0), and Without Replacement Sampling.  
H0: Theta = Theta0. Ha: Theta = Theta1 < Theta0. Reject H0 if r >= r0. 
  Time   Target Actual Target Actual 
Power r0 / N E(t0) Theta0 Theta1 Alpha Alpha Beta Beta 
0.95841 21/115 1.000 5.0 2.0 0.01000 0.01000 0.05000 0.04159 
0.95956 14/77 1.000 5.0 2.0 0.05000 0.05000 0.05000 0.04044 
0.96221 11/60 1.000 5.0 2.0 0.10000 0.10000 0.05000 0.03779 
 

PASS has calculated 21, 14, and 11 for r as in Epstein. 

We should note that occasionally our results differ from those of Epstein. We have checked a few 
of these carefully by hand, and, in every case, we have found our results to be correct.   
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Chapter 410  

Tests of One Mean 
using Simulation 
This procedure allows you to study the power and sample size of several statistical tests of the 
hypothesis that the population mean is equal to a specific value versus the alternative that it is 
greater than, less than, or not equal to that value. The one-sample t-test is commonly used in this 
situation, but other tests have been developed for situations where the data are not normally 
distributed. These additional tests include the Wilcoxon signed-rank test, the sign test, and the 
computer-intensive bootstrap test. When the population follows the exponential distribution, a test 
based on this distribution should be used.  

The t-test assumes that the data are normally distributed. When this assumption does not hold, the t-
test is still used hoping that its robustness will produce accurate results. This procedure allows you 
to study the accuracy of various tests using simulation techniques. A wide variety of distributions 
can be simulated to allow you to assess the impact of various forms of non-normality on each test’s 
accuracy.  

The details of the power analysis of the t-test using analytic techniques are presented in another 
PASS chapter and will not be duplicated here. This chapter will be confined to power analysis using 
computer simulation. 



410-2  Test of One Mean using Simulation 

Technical Details 
Computer simulation allows one to estimate the power and significance level that is actually 
achieved by a test procedure in situations that are not mathematically tractable. Computer simulation 
was once limited to mainframe computers. Currently, due to increased computer speeds, simulation 
studies can be completed on desktop and laptop computers in a reasonable period of time.  

The steps to a simulation study are as follows. 

1. Specify the method by which the test is to be carried out. This includes specifying how the test 
statistic is calculated and how the significance level is specified. 

2. Generate a random sample, , from the distribution specified by the alternativeX X Xn1 2, , ,K  
hypothesis. Calculate the test statistic from the simulated data and determine if the null 
hypothesis is accepted or rejected. Each of these samples is used to calculate the power of the 
test. 

3. Generate a random sample, , from the distribution specified by the nullY Y Yn1 2, , ,K  hypothesis. 
Calculate the test statistic from the simulated data and determine if the null hypothesis is 
accepted or rejected. Each of these samples is used to calculate the significance level of the test. 

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated data 
lead to a rejection of the null hypothesis. The power is the proportion of simulation samples in 
step 2 that lead to rejection. The significance level is the proportion of simulated samples in step 
3 that lead to rejection. 

Data Distributions 
A wide variety of distributions may be studied. These distributions can vary in skewness, 
elongation, or other features such as bimodality. A detailed discussion of the distributions that may 
be used in the simulation is provided in the chapter ‘Data Simulator’.  

Test Statistics 
This section describes the test statistics that are available in this procedure. 
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One-Sample t-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follows. 
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and M0 is the value of the mean hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (often 0.05), the null hypothesis is rejected. Otherwise, no conclusion can 
be reached. 

Wilcoxon Signed-Rank  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. This test 
assumes that the data follow a symmetric distribution. The test is computed using the following 
steps.  

1. Subtract the hypothesized mean, M0, from each data value. Rank the values according to their 
absolute values. 

2. Compute the sum of the positive ranks, Sp, and the sum of the negative ranks, Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 

W  =  n(n+ )
μ

1
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respectively, where ti represents the number of times the ith value occurs. 

4. Compute the z value using 

z =  W
W

W

W

− μ
s

 

For cases when n is less than 38, the significance level is found from a table of exact probabilities 
for the Wilcoxon test. When n is greater than or equal to 38, the significance of the test statistic is 
determined by comparing the z value to a normal probability table. If this p-value is less than a 
specified level (often 0.05), the null hypothesis is rejected. Otherwise, no conclusion can be 
reached. 
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Sign Test  
The sign test is popular because it is simple to compute. This test assumes that the data all follow 
the same distribution. The test is computed using the following steps.  

1. Count the number of values strictly greater than M0. Call this value X. 

2. Count the number of values strictly less than M0. Call this value Y. 

3. Set m = X + Y. 

4. Under the null hypothesis, X is distributed as a binomial random variable with a proportion of 
0.5 and sample size of m.  

The significance of X is calculated using binomial probabilities. 

Bootstrap Test  
The one-sample bootstrap procedure for testing whether the mean is equal to a specific value is 
given in Efron & Tibshirani (1993), pages 224-227. The bootstrap procedure is as follows.  

1. Compute the mean of the sample. Call it X . 

2. Compute the t-value using the standard t-test. The formula for this computation is 

t X M
sX

X

=
− 0

 

where M0 is the hypothesized mean. 

3. Draw a random, with-replacement sample of size n from the original X values. Call this 
sample Y Y .  Yn1 2, , ,L

4. Compute the t-value of this bootstrap sample using the formula 

t Y X
sY

Y

=
−

 

5. For a two-tailed test, if t tY > x  then add one to a counter variable, A. 

6. Repeat steps 3 – 5 B times. B may be anywhere from 100 to 10,000. 

7. Compute the p-value of the bootstrap test as (A + 1) / (B + 1) 

8. Steps 1 – 7 complete one simulation iteration. Repeat these steps M times, where M is the 
number of simulations. The power and significance level are equal to the percent of the time 
the p-value is less than the nominal alpha of the test in their respective simulations. 

Note that the bootstrap test is a time-consuming test to analyze, especially if you set B to a value 
much larger than 100.  
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Exponential Test 
The exponential distribution is a highly skewed distribution, so it is very different from the 
normal distribution. Thus, the t-test does not work well with exponential data.  

There is an exact test for the mean of a sample drawn from the exponential distribution. It is well 
known that a simple function of the mean of exponential data follows the chi-square distribution. 
This relationship is given in Epstein (1960) as 

2
0 2

2nX
M n~ χ  

This expression can be used to test hypotheses about the value of the mean, M0.  

Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, note that although the shape parameters are 
constant, the standard deviations are not. In cases such as this, the null and alternatives not only 
have different means, but different standard deviations! 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter Procedure Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be calculated using the values of the other parameters. 
Under most conditions, you would select either Power or N. 

Select Power when you want to estimate the power for a specific scenario.  

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level. This option can be very computationally intensive, and may take considerable time to 
complete. 

Simulations 
This option specifies the number of iterations, M, used in the simulation. Larger numbers of 
iterations result in longer running time and more accurate results. 

The precision of the simulated power estimates can be determined by recognizing that they follow 
the binomial distribution. Thus, confidence intervals may be constructed for power estimates. The 
following table gives an estimate of the precision that is achieved for various simulation sizes 
when the power is either 0.50 or 0.95. The table values are interpreted as follows: a 95% 
confidence interval of the true power is given by the power reported by the simulation plus and 
minus the ‘Precision’ amount given in the table. 
 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 

Notice that a simulation size of 1000 gives a precision of plus or minus 0.014 when the true 
power is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a 
small amount of additional precision achieved.  
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H1 (Alternative) 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0: Mean = M0. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

Mean <> M0. This is the most common selection. It yields a two-tailed test. Use this option 
when you are testing whether the mean is different from a specified value, M0, but you do not 
want to specify beforehand whether it is smaller or larger. Most scientific journals require two-
tailed tests. 

Mean < M0. This option yields a one-tailed test. Use it when you want to test whether the true 
mean is less than M0. 

Mean > M0. This option yields a one-tailed test. Use it when you want to test whether the true 
mean is greater than M0. 

Test Statistic 
Specify which test statistic (t-test, Wilcoxon test, sign test, bootstrap test, or exponential test) is to 
be simulated. Although the t-test is the most commonly used test statistic, it is based on 
assumptions that may not be viable in many situations. For your data, you may find that one of 
the other tests is more accurate (actual alpha = target alpha) and more precise (higher power). 

Note that the bootstrap test is computationally intensive, so it can be very slow to evaluate. 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50 100 150 200 250 or 50 to 250 by 50.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Commonly, the value of 0.05 is used for two-tailed tests 
and 0.025 is used for one-tailed tests.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal means when in fact the means are 
different. One cannot make both a type-I and a type-II error in a single hypothesis test. 

Values must be between zero and one. Historically, the value of 0.20 was used for beta. Now, 
0.10 is more common. However, you should pick a value for beta that represents the risk of a 
type-II error you are willing to take. 

Power is defined as 1-beta. Hence, specifying beta also specifies the power. For example, if you 
specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power values of 
0.95, 0.90, and 0.80.  
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Distribution Assuming H0 (Null Hypothesis) 
This option specifies the mean and distribution under the null hypothesis, H0. Usually, the mean 
is specified by entering ‘M0’ for the mean parameter in the distribution expression and then 
entering values for the M0 parameter described below. All of the distributions are parameterized 
so that the mean is entered first. For example, if you wanted to test whether the mean of a normal 
distributed variable is five, you could enter N(5, S) or N(M0, S) here. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value ‘M0’ is reserved for the value of the mean 
under the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,P3,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean under H0 
The distributions have been parameterized in terms of their means, since this is the parameter 
being tested. The mean of a distribution created as a linear combination of other distributions is 
found by applying the linear combination to the individual means. However, the mean of a 
distribution created by multiplying or dividing other distributions is not necessarily equal to 
applying the same function to the individual means. For example, the mean of 4N(4, 5) + 2N(5, 
6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 4*4*2*5 = 160 (although 
it is close). 

Specifying the Mean for Paired (Matched) Data 
Depending on the formula that is entered, the mean is not necessarily the value of M0. For 
example, a common use of the one-group t-test is to test whether the mean of a set of differences 
is zero. Differences may be specified (ignoring the correlation between paired observations) as 
the difference between two normal distributions. This would be specified as N(M0, S) - N(M0, 
S). The mean of the resulting distribution is M0 – M0 = 0 (not M0). 
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Distribution Assuming H1 (Alternative 
Hypothesis) 
This option specifies the mean and distribution under the alternative hypothesis, H1. That is, this 
is the actual (true) value of the mean at which the power is computed. Usually, the mean is 
specified by entering ‘M1’ for the mean parameter in the distribution expression and then 
entering values for the M1 parameter below. All of the distributions are parameterized so that the 
mean is entered first.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value ‘M1’ is reserved for the value of the mean 
under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,P3,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean under H1 
The distributions have been parameterized in terms of their means, since this is the parameter 
being tested. The mean of a distribution created as a linear combination of other distributions is 
found by applying the linear combination to the individual means. However, the mean of a 
distribution created by multiplying or dividing other distributions is not necessarily equal to 
applying the same function to the individual means. For example, the mean of 4N(4, 5) + 2N(5, 
6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 4*4*2*5 = 160 (although 
it is close). 

Specifying the Mean for Paired (Matched) Data 
Depending on the formula that is entered, the mean is not necessarily the value of M1. For 
example, a common use of the one-group t-test is to test whether the mean of a set of differences 
is zero. Differences may be specified (ignoring the correlation between paired observations) as 
the difference between two normal distributions. This would be specified as N(M1, S) - N(M0, 
S). The mean of the resulting distribution is M1 – M0. 
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M0 (Mean under H0) 
These values are substituted for the M0 in the distribution specifications given above. M0 is 
intended to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

Note that whether M0 is the mean of the simulated distribution depends on the formula you have 
entered. For example, N(M0, S) has a mean of M0, but N(M0, S)-N(M0, S) has a mean of zero. 

M1 (Mean under H1) 
These values are substituted for the M1 in the distribution specifications given above. M1 is 
intended to be the value of the mean hypothesized by the alternative hypothesis, H1. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

Note that whether M1 is the mean of the simulated distribution depends on the formula you have 
entered. For example, N(M1, S) has a mean of M1, but N(M1, S)-N(M0, S) has a mean of M1 -
M0. 

Parameter Values (S, A, B, C) 
Enter the numeric value(s) of parameter listed above. These values are substituted for the 
corresponding letter in the distribution specifications for H0 and H1. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is not 
reported. We recommend a value of at least 500. 

Bootstrap Iterations 
Specify the number of iterations used in the bootstrap hypothesis test. This value is only used if 
the bootstrap test is displayed on the reports. The running time of the procedure depends heavily 
on the number of iterations specified here.  

Recommendations by authors of books discussing the bootstrap range from 100 to 10,000. If you 
enter a large (greater than 500) value, the procedure may take several hours to run. 



 Test of One Mean using Simulation  410-11 

Example1 - Power at Various Sample 
Sizes 
A researcher is planning an experiment to test whether the mean response level to a certain drug 
is significantly different from zero. The researcher wants to use a t-test with an alpha level of 
0.05. He wants to compute the power at various sample sizes from 5 to 40, assuming the true 
mean is one. He assumes that the data are normally distributed with a standard deviation of 2. 
Since this is an exploratory analysis, he sets the number of simulation iterations to 1000. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Power 
Simulations........................................1000 
H1 (Alternative) .................................Mean<>M0 
Test Statistic......................................T-Test 
N........................................................5 to 40 by 5 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Distribution Assuming H0..................N(M0 S) 
Distribution Assuming H1..................N(M1 S) 
M0 (Mean under H0) .........................0 
M1 (Mean under H1) .........................1 
S........................................................2 
Reports Tab 
Show Numeric Report .......................Checked 
Show Inc’s & 95% C.I.’s ....................Checked 
Show Definitions ...............................Checked 
Show Plots ........................................Checked 
Summary Statement Rows................1 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.138 5 0.0 1.0 0.050 0.050 0.862 0.0 1.0 2.0    
(0.021) [0.117 0.159]   (0.014) [0.036 0.064]      
 
0.293 10 0.0 1.0 0.050 0.061 0.707 0.0 1.0 2.0    
(0.028) [0.265 0.321]   (0.015) [0.046 0.076]      
 
0.437 15 0.0 1.0 0.050 0.058 0.563 0.0 1.0 2.0    
(0.031) [0.406 0.468]   (0.014) [0.044 0.072]      
 
0.582 20 0.0 1.0 0.050 0.058 0.418 0.0 1.0 2.0    
(0.031) [0.551 0.613]   (0.014) [0.044 0.072]      
 
0.643 25 0.0 1.0 0.050 0.048 0.357 0.0 1.0 2.0    
(0.030) [0.613 0.673]   (0.013) [0.035 0.061]      
 
0.772 30 0.0 1.0 0.050 0.042 0.228 0.0 1.0 2.0    
(0.026) [0.746 0.798]   (0.012) [0.030 0.054]      
 
0.806 35 0.0 1.0 0.050 0.054 0.194 0.0 1.0 2.0    
(0.025) [0.781 0.831]   (0.014) [0.040 0.068]      
 
0.872 40 0.0 1.0 0.050 0.044 0.128 0.0 1.0 2.0    
(0.021) [0.851 0.893]   (0.013) [0.031 0.057]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 1000.   Simulation Run Time: 17.81 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Mean0 is the value of the mean assuming the null hypothesis. This is the value being tested. 
Mean1 is the actual value of the mean. The procedure tests whether Mean0 = Mean1. 
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  

 

This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha). Note that because these 
are results of a simulation study, the computed power and alpha will vary from run to run.  Thus, 
another report obtained using the same input parameters will be slightly different than the one 
above. 

The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence interval will decrease. 
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Plots Section 
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This plot shows the relationship between sample size and power.  
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Example2 - Finding the Sample Size for 
Skewed Data 
In studying deaths from SIDS (Sudden Infant Death Syndrome), one hypothesis put forward is 
that infants dying of SIDS weigh less than normal at birth. Suppose the average birth weight of 
infants is 3300 grams with a standard deviation of 663 grams. The researchers decide to examine 
the effect of a skewed distribution on the test used by adding skewness to the simulated data 
using Tukey’s Lambda distribution with a skewness factor of 0.5.  

Using the Data Simulator program, the researchers found that the actual standard deviation using 
the above parameters was almost 800. This occurs because adding skewness changes the standard 
deviation. They found that setting the standard deviation in Tukey’s Lambda distribution to 563 
resulted in a standard deviation in the data of about 663.  

A histogram of 10,000 pseudo-random values from this distribution appears as follows. 
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The researchers want to determine how large a sample of SIDS infants will be needed to detect a 
drop in average weight of 25%? Note that applying this percentage to the average weight of 3300 
yields 2475.Use an alpha of 0.05 and 80% power.  

Although a one-sided hypothesis might be considered, sample size estimates will assume a two-
sided alternative to keep the research design in line with other studies. To decrease the running 
time of this example, the number of simulation iterations is set to 1000. In practice, you would 
probably use a value of about 5000. 
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Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................N 
Simulations........................................1000 
H1 (Alternative) .................................Mean<>M0 
Test Statistic......................................T-Test 
N........................................................Ignored since this is the Find setting 
Alpha .................................................0.05 
Beta...................................................0.20 
Distribution Assuming H0..................L(M0 S G 0) 
Distribution Assuming H1..................L(M1 S G 0) 
M0 (Mean under H0) .........................2475 
M1 (Mean under H1) .........................3300 
S........................................................563 
G .......................................................0.5 (Note that parameter A was changed to G.) 
Reports Tab 
Show Numeric Report .......................Checked 
Show Inc’s & 95% C.I.’s ....................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results of Search for N 
 

  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.817 6 2475.0 3300.0 0.050 0.073 0.183 2475.0 3300.0 563.0 0.5   
(0.024) [0.793 0.841]   (0.016) [0.057 0.089]      

 
The required sample size was 6. Notice how wide the confidence interval of power is. We re-ran 
this simulation several times and obtained sample sizes of 5, 6, and 7. Note that the actual alpha 
value is between 0.057 and 0.089, which is definitely greater than 0.05. This shows one of the 
problems of using the t-test with a skewed distribution. 

To be more accurate and yet avoid the long running time of the search for N, a reasonable 
strategy would be to run simulations to obtain the powers using N’s from 4 to 10. The result of 
this study is displayed next. 
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Numeric Results of Power Search for Various N 
 

  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.414 4 2475.0 3300.0 0.050 0.093 0.586 2475.0 3300.0 563.0 0.5   
(0.014) [0.400 0.428]   (0.008) [0.085 0.101]      
 
0.645 5 2475.0 3300.0 0.050 0.084 0.355 2475.0 3300.0 563.0 0.5   
(0.013) [0.632 0.658]   (0.008) [0.076 0.091]      
 
0.811 6 2475.0 3300.0 0.050 0.088 0.189 2475.0 3300.0 563.0 0.5   
(0.011) [0.800 0.822]   (0.008) [0.081 0.096]      
 
0.912 7 2475.0 3300.0 0.050 0.089 0.088 2475.0 3300.0 563.0 0.5   
(0.008) [0.905 0.920]   (0.008) [0.081 0.097]      
 
0.960 8 2475.0 3300.0 0.050 0.077 0.040 2475.0 3300.0 563.0 0.5   
(0.005) [0.955 0.966]   (0.007) [0.069 0.084]      
 
0.983 9 2475.0 3300.0 0.050 0.082 0.017 2475.0 3300.0 563.0 0.5   
(0.004) [0.979 0.987]   (0.008) [0.074 0.089]      
 
0.994 10 2475.0 3300.0 0.050 0.079 0.006 2475.0 3300.0 563.0 0.5   
(0.002) [0.992 0.996]   (0.007) [0.071 0.086]      

 
The sample size of 6 appears to meet the design parameters the best. The actual significance level 
still appears to be greater than 0.05. The researchers decide that they must use a smaller value of 
Alpha so that the actual alpha is about 0.05. After some experimentation, they find that setting 
Alpha to 0.025 results in the desired power and significance level. 

Numeric Results with Alpha = 0.025 
 

  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.593 6 2475.0 3300.0 0.025 0.057 0.407 2475.0 3300.0 563.0 0.5   
(0.014) [0.579 0.606]   (0.006) [0.051 0.064]      
 
0.754 7 2475.0 3300.0 0.025 0.058 0.246 2475.0 3300.0 563.0 0.5   
(0.012) [0.742 0.766]   (0.006) [0.051 0.064]      
 
0.862 8 2475.0 3300.0 0.025 0.049 0.138 2475.0 3300.0 563.0 0.5   
(0.010) [0.853 0.872]   (0.006) [0.043 0.055]      
 
0.929 9 2475.0 3300.0 0.025 0.044 0.071 2475.0 3300.0 563.0 0.5   
(0.007) [0.921 0.936]   (0.006) [0.039 0.050]      

 
It appears that a sample size of 8 with a Target Alpha of 0.025 will result in an experimental 
design with the characteristics the researchers wanted. 

Notice that when working with non-normal distributions, you must change both N and the Target 
Alpha to achieve the design you want! 
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Example3 – Comparative results with 
Skewed Data 
Continuing with Example2, the researchers want to study the characteristics of various test 
statistics as the amount of skewness is increased. To do this, they let the skewness parameter of 
Tukey’s Lambda distribution vary between 0 and 1. The researchers realize that the standard 
deviation will change as the skewness parameter is increased, but they decide to ignore this 
complication.  

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Power 
Simulations........................................1000 
H1 (Alternative) .................................Mean<>M0 
Test Statistic......................................T-Test 
N........................................................6 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Distribution Assuming H0..................L(M0 S G 0) 
Distribution Assuming H1..................L(M1 S G 0) 
M0 (Mean under H0) .........................2475 
M1 (Mean under H1) .........................3300 
S........................................................563 
G .......................................................0.0 0.2 0.4 0.6 0.8 1.0 
Report Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 
Include T-Test Results ......................Checked 
Include Wilcoxon & Sign Test ...........Checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Power Comparison for Testing One Mean = Mean0.   Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Tukey(M0 S G 0) 
H1 Distribution: Tukey(M1 S G 0) 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign   
N (Mean0) (Mean1) Alpha Power Power Power   
6 2475.0 3300.0 0.050 0.816 0.634 0.634   
6 2475.0 3300.0 0.050 0.852 0.705 0.705   
6 2475.0 3300.0 0.050 0.845 0.790 0.790   
6 2475.0 3300.0 0.050 0.779 0.839 0.839   
6 2475.0 3300.0 0.050 0.644 0.866 0.866   
6 2475.0 3300.0 0.050 0.466 0.757 0.757   
Number of Monte Carlo Iterations: 5000.   Simulation Run Time: 43.81 seconds. 

 
Alpha Comparison for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign   
N (Mean0) (Mean1) Alpha Alpha Alpha Alpha   
6 2475.0 3300.0 0.050 0.046 0.032 0.032   
6 2475.0 3300.0 0.050 0.058 0.035 0.035   
6 2475.0 3300.0 0.050 0.070 0.040 0.040   
6 2475.0 3300.0 0.050 0.095 0.056 0.056   
6 2475.0 3300.0 0.050 0.134 0.084 0.084   
6 2475.0 3300.0 0.050 0.173 0.107 0.107   
Number of Monte Carlo Iterations: 5000.   Simulation Run Time: 43.81 seconds. 

 
Several interesting trends become apparent from this study. First, for a sample size of 6, the 
power of the Wilcoxon test and the sign test are the same (this is not the case for larger sample 
sizes). The power of the t-test decreases as the amount of skewness increases. Unfortunately, we 
do not know if this was due to the increased variance, or the increased skewness. The power of 
the Wilcoxon and sign tests does not decrease—in fact, it increases until the skewness reaches 
0.6. Finally, the significance level is adversely impacted by the skewness. 
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Example4 - Validation using Zar 
Zar (1984), pages 111-112, presents an example in which Mean0 = 0.0, Mean1 = 1.0, S = 1.25, 
alpha = 0.05, and N = 12. Zar obtains an approximate power of 0.72. We will validate this 
procedure by running this example. To make certain that the results are very accurate, the number 
of simulations will be set to 10,000.  

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Power 
Simulations........................................10000 
H1 (Alternative) .................................Mean<>M0 
Test Statistic......................................T-Test 
N........................................................12 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Distribution Assuming H0..................N(M0 S) 
Distribution Assuming H1..................N(M1 S) 
M0 (Mean under H0) .........................0 
M1 (Mean under H1) .........................1 
S........................................................1.25 
Reports Tab 
Show Numeric Report .......................Checked 
Show Inc’s & 95% C.I.’s ....................Checked 
Show Definitions ...............................Checked 
Show Plots ........................................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: T-Test 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.717 12 0.0 1.0 0.050 0.056 0.283 0.0 1.0 1.3    
(0.009) [0.708 0.726]   (0.004) [0.051 0.060]      

 

This simulation obtained a power of 0.717 which rounds to the 0.72 computed by Zar. Note that 
another repetition of this same analysis will probably be slightly different since a different set of 
random numbers will be used. 
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Example5 - Validation using Machin 
Machin, et. al. (1997), page 37, present an example in which Mean0 = 0.0, Mean1 = 0.2, S = 1.0, 
alpha = 0.05, and beta = 0.20. They obtain a sample size of 199. Because of the long running 
time, we will set the number of simulations at only 200. Of course, in practice you would usually 
set this to a value greater than 1000.  

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example5 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................N 
Simulations .......................................200 
H1 (Alternative) .................................Mean<>M0 
Test Statistic .....................................T-Test 
N ....................................................... Ignored since this is the Find setting 
Alpha.................................................0.05 
Beta...................................................0.20 
Distribution Assuming H0..................N(M0 S) 
Distribution Assuming H1..................N(M1 S) 
M0 (Mean under H0).........................0 
M1 (Mean under H1).........................0.20 
S........................................................1 
Reports Tab 
Show Numeric Report.......................Checked 
Show Inc’s & 95% C.I.’s....................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: T-Test 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.785 211 0.0 0.2 0.050 0.045 0.215 0.0 0.2 1.0    
(0.057) [0.728 0.842]   (0.029) [0.016 0.074]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 200.   Simulation Run Time: 39.83 seconds. 

Note that using a simulation size of only 200, the estimated sample size of 211 is still close to the 
exact value of 199. We ran this simulation several times and obtained sample sizes between 187 
and 211. 
You might try resetting the simulation size to 2000 and rerunning the simulation. 
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Example6 – Power of the Wilcoxon Test 
The Wilcoxon nonparametric test was designed for data that do not follow the normal distribution 
but are symmetric. This type of data often occurs when differences between two non-normal 
variables are taken, as in a study that analyzes differences in pre- and post-test scores.  

For this example, suppose the pre-test and the post-test scores are exponentially distributed. Here 
are examples of exponentially-distributed data with means of 4 and 2, respectively. 
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It has been shown that the differences between two identically-distributed variables are 
symmetric. The histogram below on the left shows differences in the null case in which the 
difference is between two exponential variables both with a mean of 4. The histogram below on 
the right shows differences in the alternative case in which the difference is between an 
exponential variable with a mean of 4 and an exponential variable with a mean of 2. Careful 
inspection shows that the second histogram is skewed to the right and the mean difference is 
about 2, not 0. 
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The researchers want to study the power of the two-sided Wilcoxon test when sample sizes of 10, 
20, 30, and 40 are used, and testing is done at the 5% significance level. 
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Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example6 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Power 
Simulations .......................................5000 
H1 (Alternative) .................................Mean<>M0 
Test Statistic .....................................Wilcoxon 
N .......................................................10 20 30 40 50 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Distribution Assuming H0..................E(M0)-E(M0) 
Distribution Assuming H1..................E(M0)-E(M1) 
M0 (Mean under H0).........................4 
M1 (Mean under H1).........................2 
Reports Tab 
Show Numeric Report.......................Checked 
Show Inc’s & 95% C.I.’s....................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Expo(M0)-Expo(M0) 
H1 Distribution: Expo(M0)-Expo(M1) 
Test Statistic: Wilcoxon Signed-Rank Test 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1     
0.204 10 0.0 2.0 0.050 0.038 0.796 4.0 2.0     
(0.011) [0.193 0.216]   (0.005) [0.032 0.043]      
 
0.480 20 0.0 2.0 0.050 0.051 0.520 4.0 2.0     
(0.014) [0.466 0.494]   (0.006) [0.045 0.057]      
 
0.647 30 0.0 2.0 0.050 0.050 0.353 4.0 2.0     
(0.013) [0.634 0.660]   (0.006) [0.044 0.056]      
 
0.789 40 0.0 2.0 0.050 0.047 0.211 4.0 2.0     
(0.011) [0.778 0.800]   (0.006) [0.041 0.053] 
  
0.863 50 0.0 2.0 0.050 0.049 0.137 4.0 2.0     
(0.010) [0.853 0.872]   (0.006) [0.043 0.055]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 5000.   Simulation Run Time: 79.70 seconds. 

Reasonable power is achieved for N = 50. 
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Example7 – Likert-Scale Data 
Likert-scale data occurs commonly in survey research. A Likert Scale is discrete, ordinal data. It 
usually occurs when a survey poses a question and the respondent must pick among strongly 
agree, agree, undecided, disagree, or strongly disagree. The responses are usually coded as 1, 2, 3, 
4, and 5.  

Likert data can be analyzed in a number of ways. Perhaps the most common is to use a t-test or a 
Wilcoxon test. (Using the Wilcoxon test is invalid in this case because the data are seldom 
distributed symmetrically.) 

In this example, a questionnaire is planned on which Likert-scale questions will be asked. The 
researchers want to study the power and actual significance levels of various sample sizes. They 
decide to look at what happens as the proportion of strongly agree responses is increased beyond 
a perfectly uniform response pattern. They want to compute the power when the strongly agree 
response is twice as likely, four times as likely, and eight times as likely. The sample size is 20, 
alpha is 0.05, and the test is two-sided. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example7 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Power 
Simulations........................................5000 
H1 (Alternative) .................................Mean<>M0 
Test Statistic......................................T-Test 
N........................................................20 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Distribution Assuming H0..................M(M0 1 1 1 1) 
Distribution Assuming H1..................M(M1 1 1 1 1) 
M0 (Mean under H0) .........................1 
M1 (Mean under H1) .........................2 4 8 
Reports Tab 
Show Numeric Report .......................Checked 
Show Inc’s & 95% C.I.’s ....................Checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: M(M0 1 1 1 1) 
H1 Distribution: M(M1 1 1 1 1) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1     
0.167 20 3.0 2.7 0.050 0.050 0.833 1.0 2.0     
(0.010) [0.156 0.177]   (0.006) [0.044 0.056]      
 
0.558 20 3.0 2.3 0.050 0.052 0.442 1.0 4.0     
(0.014) [0.544 0.572]   (0.006) [0.046 0.058]      
 
0.910 20 3.0 1.8 0.050 0.055 0.090 1.0 8.0     
(0.008) [0.902 0.918]   (0.006) [0.048 0.061]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 5000.   Simulation Run Time: 12.53 seconds. 

Note that M0 and M1 are no longer the H0 and H1 means. Now, they represent the relative 
weighting given to the strongly agree response. Under H0, the mean is 3.0. As M1 is increased, 
the mean under H1 changes from 2.7 to 2.3 to 1.8. We note that the actual significance level, 
alpha, remains close to the target value of 0.05. 
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Example8 – Computing the Power after 
Completing an Experiment 
A group of researchers has completed an experiment designed to determine if a particular 
hormone increases weight gain in rats. The researchers inject 20 rats of the same age with the 
hormone and measure their weight gain after 1 month.  The investigators uses the two-sided 
bootstrap test with alpha = 0.05 and 100 bootstrap samples to determine if the average weight 
gained by these rats (171 grams) is significantly greater than the known average weight gained by 
rats of the same age over the same period of time (155 grams).  Unfortunately, the results indicate 
that there is no significant difference between the two means.  Therefore, the researchers decide 
to compute the power achieved by this test for alternative means ranging from 160 to 190 grams.  
They decide to use 1000 simulations for the study.  For comparative purposes, they also decide to 
look at the power achieved by the bootstrap test in comparison to various other applicable tests.  
Suppose that they know that the standard deviation for weight gain is 33 grams. 

Note that the researchers compute the power for a range of practically significant alternatives.  
The range chosen should represent likely values based on historical evidence. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example8 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Power 
Simulations........................................1000 
H1 (Alternative) .................................Mean<>M0 
Test Statistic......................................Bootstrap 
N........................................................20 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Distribution Assuming H0..................N(M0 S) 
Distribution Assuming H1..................N(M1 S) 
M0 (Mean under H0) .........................155 
M1 (Mean under H1) .........................160 to 190 by 10 
S........................................................33 
Options Tab 
Bootstrap Iterations ...........................100 
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Reports Tab 
Show Numeric Report.......................Checked 
Show Inc’s & 95% C.I.’s....................Checked 
Show Comparative Reports ..............Checked 
Show Plots ........................................Checked 
Show Comparative Plots...................Checked 
Include T-Test Results ......................Checked 
Include Wilcoxon & Sign Test ...........Checked 
Include Bootstrap Test Results .........Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Power of Bootstrap 
 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: Bootstrap Test (100) 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.108 20 155.0 160.0 0.050 0.045 0.892 155.0 160.0 33.0    
(0.019) [0.089 0.127]   (0.013) [0.032 0.058]      
 
0.453 20 155.0 170.0 0.050 0.044 0.547 155.0 170.0 33.0    
(0.031) [0.422 0.484]   (0.013) [0.031 0.057]      
 
0.872 20 155.0 180.0 0.050 0.044 0.128 155.0 180.0 33.0    
(0.021) [0.851 0.893]   (0.013) [0.031 0.057]      
 
0.994 20 155.0 190.0 0.050 0.042 0.006 155.0 190.0 33.0    
(0.005) [0.989 0.999]   (0.012) [0.030 0.054]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 1000.   Simulation Run Time: 2.99 minutes. 
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Reasonable power is achieved by this test for alternative means larger than 180.  The accuracy of 
these results, of course, depends on the assumption that the data are normally distributed. 
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Comparative Results for Power of Various Tests 
 

Power Comparison for Testing One Mean = Mean0.   Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap  
N (Mean0) (Mean1) Alpha Power Power Power Power  
20 155.0 160.0 0.050 0.105 0.097 0.078 0.108  
20 155.0 170.0 0.050 0.472 0.439 0.312 0.453  
20 155.0 180.0 0.050 0.903 0.882 0.697 0.872  
20 155.0 190.0 0.050 0.997 0.991 0.935 0.994  
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.99 minutes. 
 
 
Alpha Comparison for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap  
N (Mean0) (Mean1) Alpha Alpha Alpha Alpha Alpha  
20 155.0 160.0 0.050 0.041 0.045 0.038 0.045  
20 155.0 170.0 0.050 0.045 0.049 0.037 0.044  
20 155.0 180.0 0.050 0.045 0.040 0.033 0.044  
20 155.0 190.0 0.050 0.053 0.058 0.037 0.042  
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.99 minutes. 
 

Power vs M1 by Test with M0=155.0 S=33.0 Alpha=0.05
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It is apparent from these results that the bootstrap performs as well as (if not better than) the t-test 
and nonparametric tests for this design.   
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Example9 – Comparison of Tests for 
Exponential Data 
A researcher is designing an experiment.  She believes that the data will follow an exponential 
distribution.  Consequently, she does not believe that the t-test will be useful for her situation.  
She would like to compare several possible tests to determine which would be best for analyzing 
exponential data.  She is interested in determining the power when the alternative mean is twice 
the null mean, which is 10. She wants to find the power achieved for sample sizes ranging from 
20 to 60 with alpha = 0.05.   

The number of simulations will be set at 1000 to expedite the analysis.  Greater accuracy could be 
achieved by setting this number higher.  This example will still take a few minutes to run because 
the bootstrap is included in the report. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example9 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Power 
Simulations .......................................1000 
H1 (Alternative) .................................Mean<>M0 
Test Statistic .....................................T-Test 
N .......................................................20 to 60 by 20 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Distribution Assuming H0..................E(M0) 
Distribution Assuming H1..................E(M1) 
M0 (Mean under H0).........................10 
M1 (Mean under H1).........................20 
Options Tab 
Bootstrap Iterations...........................100 
Reports Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 
Include T-Test Results ......................Checked 
Include Wilcoxon & Sign Test ...........Checked 
Include Bootstrap Test Results .........Checked 
Include Exponential Test Results......Checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Power Comparison for Testing One Mean = Mean0.   Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Expo(M0) 
H1 Distribution: Expo(M1) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap Expo 
N (Mean0) (Mean1) Alpha Power Power Power Power Power 
20 10.0 20.0 0.050 0.626 0.445 0.125 0.427 0.886 
40 10.0 20.0 0.050 0.964 0.790 0.254 0.875 0.989 
60 10.0 20.0 0.050 0.996 0.898 0.271 0.983 0.999 
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.43 minutes. 
 
 
Alpha Comparison for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Expo(M0) 
H1 Distribution: Expo(M1) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap Expo 
N (Mean0) (Mean1) Alpha Alpha Alpha Alpha Alpha Alpha 
20 10.0 20.0 0.050 0.094 0.130 0.202 0.074 0.048 
40 10.0 20.0 0.050 0.057 0.172 0.342 0.046 0.044 
60 10.0 20.0 0.050 0.060 0.268 0.489 0.049 0.049 
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.43 minutes. 
 

Power vs N by Test with M0=10.0 M1=20.0 Alpha=0.05
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As would be expected for exponential data, the exponential test performs the best.  The bootstrap 
test performs nearly as well for larger sample sizes.  The other tests fail to achieve the target alpha 
level.  Note that these simulation results will vary from run to run because the samples generated 
are random.  The researcher must now decide which test to use based on her level of confidence 
in the data being truly exponentially distributed and the size of a sample she can afford to take. 
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Chapter 415  

Non-Inferiority 
Tests of One Mean 
Introduction 
This module computes power and sample size for non-inferiority and superiority tests in one-
sample designs in which the outcome is distributed as a normal random variable. This includes 
the analysis of the differences between paired values.  

The details of sample size calculation for the one-sample design are presented in the One-Sample 
T-Test chapter and they will not be duplicated here. This chapter only discusses those changes 
necessary for non-inferiority and superiority tests. Sample size formulas for non-inferiority and 
superiority tests of a single mean are presented in Chow et al. (2003) page 50.  

The one-sample t-test is used to test whether a population mean is different from a specific value. 
When the data are differences between paired values, this test is known as the paired t-test. This 
module also calculates the power of the nonparametric analog of the t-test, the Wilcoxon test.  

Paired Designs 
Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other variables. 
Hypothesis tests on paired data can be analyzed by considering the difference between the paired 
items as the response. The distribution of differences is usually symmetric. In fact, the distribution 
must be symmetric if the individual distributions of the two items are identical. Hence, the paired t-
test and the Wilcoxon signed-rank test are appropriate for paired data even when the distributions of 
the individual items are not normal.  

In paired designs, the variable of interest is the difference between two individual measurements. 
Although the non-inferiority hypothesis refers to the difference between two individual means, the 
actual values of those means are not needed. All that is needed is their difference. 
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The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size could be calculated using the One-Sample T-Test procedure. However, at 
the urging of our users, we have developed this module which provides the input and output 
options that are convenient for non-inferiority tests. This section will review the specifics of non-
inferiority and superiority testing.  

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0:μX A≤  versus H1:μX A>  

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tail test 
because H0 is rejected in samples in which the sample mean is larger than A. 

Following is an example of a lower-tail test. 

H0:μX A≥  versus H1:μX A<  

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation
μ  Not used Population mean. If the data are paired differences, this 

is the mean of those differences. 
T

μR  Not used Reference value. Usually, this is the mean of a reference 
population. If the data are paired differences, this is the 
hypothesized value of the mean difference. 

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the magnitude of difference that is not of 
practical importance. This may be thought of as the 
largest difference from the reference value that is 
considered to be trivial. The absolute value symbols are 
used to emphasize that this is a magnitude. The sign is 
determined by the specific design. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the mean and the reference value, at 
which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 
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Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the mean is not worse than that of the baseline (reference) 
population by more than a small equivalence margin. The actual direction of the hypothesis 
depends on the whether higher values of the response are good or bad.  

A superiority test tests that the mean is better than that of the baseline (reference) population by 
more than a small equivalence margin. The actual direction of the hypothesis depends on the 
whether higher values of the response are good or bad. 

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean of the treatment group is no less than a small amount below the 
reference value. The value of δ  is often set to zero. Equivalent sets of the null and alternative 
hypotheses are 

H0:μ μ εT R≤ −  versus  H1:μ μ εT R> −  

H0:μ μ εT R− ≤ −   versus  H1:μ μ εT R− > −  

H0:δ ε≤ −   versus  H1:δ ε> −  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean of the treatment group is no more than a small amount above the 
reference value. The value of δ  is often set to zero. Equivalent sets of the null and alternative 
hypotheses are 

H0:μ μ εT R≥ +  versus  H1:μ μ εT R< +  

H0:μ μ εT R− ≥   versus  H1:μ μ εT R− <  

H0:δ ε≥   versus  H1:δ ε<  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean is greater than the reference value by at least the margin of 
equivalence. The value of δ  must be greater than ε . Equivalent sets of the null and alternative 
hypotheses are 

H0:μ μ εT R≤ +  versus  H1:μ μ εT R> +  

H0:μ μ εT R− ≤   versus  H1:μ μ εT R− >  

H0:δ ε≤   versus  H1:δ ε>  
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Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean is less than the reference value by at least the margin of 
equivalence. The value of δ  must be less than− ε . Equivalent sets of the null and alternative 
hypotheses are 

H0:μ μ εT R≥ −  versus  H1:μ μ εT R< −  

H0:μ μ εT R− ≥ −   versus  H1:μ μ εT R− < −  

H0:δ ε≥ −   versus  H1:δ ε< −  

Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that a test is to be conducted to determine if a new cancer treatment adversely 
affects the mean bone density. The adjusted mean bone density (AMBD) in the population of 
interest is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that 
if the treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health 
threat.  

The hypothesis of interest is whether the AMBD in the treated group is greater than 0.002300-
0.000115 = 0.002185. The statistical test will be set up so that if the null hypothesis that the 
AMBD is less than or equal to 0.002185 is rejected, the conclusion will be that the new treatment 
is non-inferior, at least in terms of AMBD. The value 0.000115 gm/cm is called the margin of 
equivalence or the margin of non-inferiority. 
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Test Statistics 
This section describes the test statistics that are available in this procedure. 

One-Sample T-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 
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and D0 is the value of the mean hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps. 

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to their 
absolute values. 

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 
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4. Compute the z value using 
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The significance of the test statistic is determined by computing the p-value using the standard 
normal distribution. If this p-value is less than a specified level (usually 0.05), the null hypothesis 
is rejected in favor of the alternative hypothesis. Otherwise, no conclusion can be reached. 
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Computing the Power 
The power is calculated as follows for a directional alternative (one-tailed test) in which D1 > 
D0. D1 is the value of the mean at which the power is computed. 

1. Find tα  such that 1 , where ( )1− =−T tn α α ( )tn−1 αT  is the area to the left of x under a central-
t curve with n – 1 degrees of freedom. 

2. Calculate x = D0+ t
n

.a α
σ

 

3. Calculate the noncentrality parameter λ σ= D1 D0

n

.−
 

4. Calculate a
a= x - D1

n

+σ λ

( )1− ′−T tn a,λ

t  

5. Calculate the power = 1 , where ( )′−T xn 1,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom n – 1 and noncentrality parameter λ . 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that will be of interest. 

Find 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Beta & Power or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Beta & Power when you want to calculate the power.  

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are usually considered 
bad. However, if the response variable is income, higher values are generally considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
mean is within the margin of equivalence of being no worse than the reference mean. Select 
Superiority when you want to test whether the mean is better than the reference mean by at least 
the margin of equivalence. 

|E| (Equivalence Margin) 
This is the magnitude of the margin of equivalence. It is the smallest difference between the mean 
and the reference value that still results in the conclusion of non-inferiority (or superiority). Note 
that the sign of this value is assigned depending on the selections for Higher Is and Test Type. 

D (True Value) 
This is the difference between the mean and the reference value at which the power is computed. 
For non-inferiority tests, this value is often set to zero, but it can be non-zero as long as the values 
are consistent with the alternative hypothesis, H1. For superiority tests, this value is non-zero. 
Again, it must be consistent with the alternative hypothesis, H1. 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. You may enter a list of values using the 
syntax 50 100 150 200 250 or 50 to 250 by 50.  



415-8  Non-Inferiority Tests of One Mean 

Standard Deviation 
This option specifies one or more values of the standard deviation. This must be a positive value. 
PASS includes a special module for estimating the standard deviation. This module may be 
loaded by pressing the SD button. Refer to the Standard Deviation Estimator chapter for further 
details. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject a true H0. Since this is a one-sided test, the value of 0.025 is 
commonly used for alpha. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of inferiority when you should. Values 
must be between zero and one. The value of 0.10 is recommended for beta.  

Power is defined as one minus beta. Hence, specifying the beta error level also specifies the 
power level. For example, if you specify beta values of 0.05, 0.10, and 0.20, you are specifying 
the corresponding power values of 0.95, 0.90, and 0.80, respectively. 

Nonparametric Adjustment 
This option makes appropriate sample size adjustments for the Wilcoxon test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Wilcoxon test may be 
made using the standard t test formulations with a simple adjustment to the sample size. The size 
of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

Ignore 
Do not make a Wilcoxon adjustment. This indicates that you want to analyze a t test, not the 
Wilcoxon test. 

Uniform 
Make the Wilcoxon sample size adjustment assuming the uniform distribution. Since the factor is 
one, this option performs the same as Ignore. It is included for completeness. 

Double Exponential 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the double 
exponential distribution. 

Logistic 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the logistic 
distribution. 
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Normal 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the normal 
distribution. 

Population Size 
This is the number of subjects in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 

When a finite population size is specified, the standard deviation is reduced according to the 
formula 

σ σ1
2 21= n

N
−⎛

⎝⎜
⎞
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σσ  is the original standard deviation, and where n is the sample size, N is the population size, 1  
is the new standard deviation.  

The quantity n/N is often called the sampling fraction. The quantity 1−⎛
⎝⎜

⎞
⎠⎟

n
N

 is called the finite 

population correction factor. 
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Example1 - Power Analysis 
Suppose that a test is to be conducted to determine if a new cancer treatment adversely affects the 
mean bone density. The adjusted mean bone density (AMBD) in the population of interest is 
0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the 
treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health 
threat. They also want to consider what would happen if the margin of equivalence is set to 2.5% 
(0.0000575 gm/cm). 

Following accepted procedure, the analysis will be a non-inferiority test using the t-test at the 
0.025 significance level. Power is to be calculated assuming that the new treatment has no effect 
on AMBD. Several sample sizes between 20 and 300 will be analyzed. The researchers want to 
achieve a power of at least 90%. All numbers have been multiplied by 10000 to make the reports 
and plots easier to read. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta & Power 
Higher is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| (Equivalence Margin)...................0.575 1.15 
D (True Difference) ...........................0 
N .......................................................20 40 60 80 100 150 200 300 
S (Std Deviation)...............................3 
Alpha.................................................0.025 
Beta................................................... Ignored since this is the Find setting 
Nonparametric Adjustment ............... Ignore 
Population Size ................................. Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.12601 20 -0.575 0.000 0.02500 0.87399 3.000 
0.21844 40 -0.575 0.000 0.02500 0.78156 3.000 
0.30873 60 -0.575 0.000 0.02500 0.69127 3.000 
0.39493 80 -0.575 0.000 0.02500 0.60507 3.000 
0.47532 100 -0.575 0.000 0.02500 0.52468 3.000 
0.64517 150 -0.575 0.000 0.02500 0.35483 3.000 
0.76959 200 -0.575 0.000 0.02500 0.23041 3.000 
0.91262 300 -0.575 0.000 0.02500 0.08738 3.000 
0.36990 20 -1.150 0.000 0.02500 0.63010 3.000 
0.65705 40 -1.150 0.000 0.02500 0.34295 3.000 
0.83164 60 -1.150 0.000 0.02500 0.16836 3.000 
0.92317 80 -1.150 0.000 0.02500 0.07683 3.000 
0.96682 100 -1.150 0.000 0.02500 0.03318 3.000 
0.99658 150 -1.150 0.000 0.02500 0.00342 3.000 
0.99970 200 -1.150 0.000 0.02500 0.00030 3.000 
1.00000 300 -1.150 0.000 0.02500 0.00000 3.000 
 
Report Definitions 
H0 (null hypothesis) is that D <= -|E|, where D = Mean - Reference Value. 
H1 (alternative hypothesis) is that D > -|E|. 
Power is the probability of rejecting H0 when it is false. It should be close to one. 
N is the sample size, the number of subjects in the study. 
Alpha is the probability of rejecting H0 when it is true which is the probability of a false positive. 
Beta is the probability of accepting H0 when it is false which is the probability of a false negative. 
|E| is the magnitude of the margin of equivalence. It is the largest difference that is not of practical significance. 
D is actual difference between the mean and the reference value. 
Reference Value is a standard value to which the mean is to be compared.  
S is the standard deviation of the response. It measures the variability in the population. 
 
Summary Statements 
A sample size of 20 achieves 13% power to detect non-inferiority using a one-sided t-test when 
the margin of equivalence is -0.575 and the true difference between the mean and the reference 
value is 0.000. The data are drawn from a single population with a standard deviation of 3.000. 
The significance level (alpha) of the test is 0.02500. 
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The above report shows that for |E| = 1.15, the sample size necessary to obtain 90% power is just 
under 80. However, if |E| = 0.575, the required sample size is about 300. 
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Example2 - Finding the Sample Size 
Continuing with Example1, the researchers want to know the exact sample size for each value of 
|E|. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N 
Higher is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| (Equivalence Margin)...................0.575 1.15 
D (True Difference) ...........................0 
N ....................................................... Ignored since this is the Find setting 
S (Std Deviation)...............................3 
Alpha.................................................0.025 
Beta...................................................0.10 
Nonparametric Adjustment ............... Ignore 
Population Size ................................. Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.90051 287 -0.575 0.000 0.02500 0.09949 3.000 
0.90215 74 -1.150 0.000 0.02500 0.09785 3.000 

 
This report shows the exact sample size requirement for each value of |E|. 
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Example3 - Validation using Chow 
Chow, Shao, Wang (2003) pages 54-55 has an example of a sample size calculation for a non-
inferiority trial. Their example obtains a sample size of 8 when D = 0.5, |E| = 0.5, S = 1, Alpha = 
0.05, and Beta = 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N 
Higher is ............................................Good 
Test Type ..........................................Non-Inferiority 
|E| (Equivalence Margin) ...................0.5 
D (True Difference) ...........................0.5 
N........................................................Ignored since this is the Find setting 
S (Std Deviation) ...............................1 
Alpha .................................................0.05 
Beta...................................................0.20 
Nonparametric Adjustment................Ignore 
Population Size .................................Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.81502 8 -0.500 0.500 0.05000 0.18498 1.000 

 
PASS has also obtained a sample size of 8. 
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Example4 - Validation of a Cross-Over 
Design given in Julious 
Julious (2004) page 1953 gives an example of a sample size calculation for a cross-over design. 
His example obtains a sample size of 87 when D = 0, |E| = 10, S = 28.28427, Alpha = 0.025, and 
Beta = 0.10. When D is changed to 2, the resulting sample size is 61. 

Note that in Julius’s example, the population standard deviation is given as 20. Assuming that the 
correlation between items in a pair is 0, the standard deviation of the difference is calculated to be 

( )( )( )S = + − =20 20 0 20 20 28 2842712 2 . . Actually, the value of S probably should be less 
because the correlation is usually greater than 0 (at least 0.2). 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N 
Higher is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| (Equivalence Margin)...................10 
D (True Difference) ...........................0 2 
N ....................................................... Ignored since this is the Find setting 
S (Std Deviation)...............................28.284271 
Alpha.................................................0.025 
Beta...................................................0.10 
Nonparametric Adjustment ............... Ignore 
Population Size ................................. Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.90332 87 -10.000 0.000 0.02500 0.09668 28.284 
0.90323 61 -10.000 2.000 0.02500 0.09677 28.284 

 
PASS has also obtained sample sizes of 87 and 61. 
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Example5 - Validation of a Cross-Over 
Design given in Chow, Shao, and Wang 
Chow, Shao, and Wang (2004) page 67 give an example of a sample size calculation for a cross-
over design. Their example calculates sample sizes of 13 and 14 (13 by formula and 14 from their 
table) in each sequence (26 or 28 total) when D = -0.1, |E| = 0.2, S = 0.2, Alpha = 0.05, and Beta 
= 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example5 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N 
Higher is ............................................Good 
Test Type ..........................................Non-Inferiority 
|E| (Equivalence Margin) ...................0.2 
D (True Difference) ...........................-.1 
N........................................................Ignored since this is the Find setting 
S (Std Deviation) ................................2 
Alpha .................................................0.05 
Beta...................................................0.20 
Nonparametric Adjustment................Ignore 
Population Size .................................Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
  Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (S)  
0.81183 27 -0.200 -0.100 0.05000 0.18817 0.200 

 
PASS obtained a sample size of 27 which is between the values of 26 and 28 that were obtained 
by Chow et al.  
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Chapter 420  

Confidence 
Interval for the 
Mean 
Introduction 
This routine calculates the sample size necessary to achieve a required precision at a stated 
confidence coefficient for a confidence interval about the mean when the underlying data 
distribution is normal.  

Technical Details 
For a single mean from a normal distribution, a two-sided, ( )100 1−α % confidence interval is 
calculated by  

x z
n

± −1 2α σ/  

when  (the variance of X) is known or by  σ 2

x
t

n
n± − −1 2 1α σ/ , $

 

when  (the variance of X) is unknown.  σ 2

Notice that the confidence interval is calculated using an estimate of the mean plus or minus a 
quantity that represents the precision (or margin of error) of this estimate. That is, the width of the 
confidence interval is equal to twice the term on the right of the expression. We will label this half-
width, D, and call it the precision of the confidence interval.  
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The basic equation for determining sample size is 

D z
n

= −1 2α σ/  

when the standard deviation is known and 

D
t

n
n= − −1 2 1α σ/ , $

 

when the standard deviation is unknown. These equations can be solved for any of the unknown 
quantities in terms of the others. When the standard deviation is unknown, we must supply an 
estimate of that value.  

Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), an adjustment must be made. The adjustment reduces the 
standard deviation as follows:  

σ σfinite
n
N

= −⎛
⎝⎜

⎞
⎠⎟

1  

This new standard deviation replaces the regular standard deviation in the above formulas. 

Confidence Coefficient 
The confidence coefficient,1−α , has the following interpretation. If thousands of samples of  n 
items are drawn from a population using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean is 1−α . 

Notice that is a long term statement about many, many samples.  

Power 
Notice that these formulas do not contain a statement about the power. In fact, since we are 
calculating confidence intervals and not conducting hypothesis tests, we cannot commit the errors 
that are possible with those tests. A natural question is, if we obtained a sample size based on the 
confidence interval formulas and then conducted a hypothesis test, what would be the power of the 
test? The answer is about 0.50. 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be solved for from the other parameters.  

Precision 
This is half the width of the confidence interval. That is, the confidence interval is formed by 
taking the sample mean plus and minus this amount. The smaller this amount, the more narrow 
the interval. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Confidence Coefficient 
The confidence coefficient, 1−α , has the following interpretation. If thousands of samples of n 
items are drawn from a population using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean is 1−α . In power analysis, we specifyα . When dealing with confidence intervals, we 
specify 1−α . 

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90,0.95 or 0.90 to 0.99 by 0.01. 

Population Size 
This is the number of individuals in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 
This option sets the population size. 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

S (Standard Deviation) 
Enter a value (or range of values) for the standard deviation. Roughly speaking, this value 
estimates the average absolute difference between each individual and every other individual. 
You must use the results of a pilot study, a previous study, or a ball park estimate based on the 
range (Range/4) to estimate this parameter. 
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Know Standard Deviation 
Check this box when you want to base your results on the normal distribution. When the box is 
not checked, calculations are based on the t-distribution. The difference between the two 
distributions is negligible when the sample size is greater than fifty.  

Options Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example1 - Calculating Sample Size 
Suppose a study is planned in which you want to construct a confidence interval for the mean that 
is no wider than 7 units. You set the confidence coefficient at 0.95. Previous studies have shown 
that the standard deviation is about 28. Instead of looking at a precision of just 7, you want to see 
the sample sizes for a range of values from 5 to 9. 

Calculate the necessary sample size. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................N (Sample Size) 
Precision ...........................................5 to 9 by 1 
Confidence Coefficient ......................0.95, 0.99 
Population Size .................................Infinite 
N (Sample Size) ................................Ignored 
S (Standard Deviation)......................28 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results 
 C.C. N S 
 Confidence Sample Standard 
Precision Coefficient Size Deviation 
5.0 0.95000 123 28.0 
5.0 0.99000 209 28.0 
6.0 0.95000 87 28.0 
6.0 0.99000 149 28.0 
7.0 0.95000 64 28.0 
7.0 0.99000 110 28.0 
8.0 0.95000 50 28.0 
8.0 0.99000 86 28.0 
9.0 0.95000 40 28.0 
8.9 0.99000 69 28.0 
Unknown standard deviation. 
  
 
Report Definitions 
Precision is the plus and minus value used to create the confidence interval. 
Confidence Coefficient is probability value associated with the confidence interval. 
N is the size of the sample drawn from the population.  
The standard deviation of the population measures the variability in the population. 
 
Summary Statements 
A sample size of 123 produces a 95% confidence interval equal to the sample mean plus or minus 
5.0 when the estimated standard deviation is 28.0. 
 

This report shows the calculated sample size for each of the scenarios.  

Plot Section 
 

 

N vs Precision by C.C. with S=28.0 C.I. Mean
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This plot shows the sample size versus the precision for the two confidence coefficients. 
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Example2 - Validation using Moore and 
McCabe 
Moore and McCabe (1999) page 443 give an example of a sample size calculation for a 
confidence interval on the mean when the confidence coefficient is 95%, the standard deviation is 
known to be 3, and the margin of error is 2. The necessary sample size is 9. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................N (Sample Size) 
Precision ...........................................2 
Confidence Coefficient ......................0.95 
Population Size .................................Infinite 
N (Sample Size) ................................Ignored 
S (Standard Deviation)......................3 
Known Standard Deviation................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 C.C. N S 
 Confidence Sample Standard 
Precision Coefficient Size Deviation 
2.0 0.95000 9 3.0 
Known standard deviation. 
 

PASS also calculated the necessary sample size to be 9.  
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Chapter 430  

Two Means 
Introduction 
A common research task is to compare the means of two populations (groups) by taking 
independent samples from each. This is sometimes referred to as a parallel-groups design. This 
design is used in situations such as the comparison of the income level of two regions, the 
nitrogen content of two lakes, or the effectiveness of two drugs.  

The mean represents the center of the population. If the means are different, then the populations 
are different. Other parameters of the two populations (such as the variance) can also be 
considered, but the mean is usually the starting point. 

If assumptions about the other features of the two populations are met (such as that they are 
normally distributed and their variances are equal), the two-sample t test can be used to compare 
the means of random samples drawn from these two populations. If the normality assumption is 
violated but the distributions are still symmetric, the nonparametric Mann-Whitney U test may be 
used instead.   
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Test Procedure 
Let the means of populations one and two be μ1  and μ2 . Let , the null hypothesis, represent 
the hypothesis that the two means are equal. That is, 

H0

H0 1 2 0:μ μ− = .  

The formal steps in conducting a two-sample t test and analyzing its power are as follows:  

1.  Find the critical value. Assume that the true difference between the means (μ μ1 − 2 ) is zero. 
Choose a value  so that the probability of rejecting  when  is true is equal to a 

specified value, 

Tα H0 H0

α . Using the t distribution, select T  so that α ( )Pr T T> =α α .  

Figure 1 - Find the Critical Value 

 
Again, select elect T  so that if the means of the two populations are equal, t statistics 
calculated from two samples drawn from those populations will only exceed  exactly 

α

Tα
100α%  of the time. 

2.  Conduct the experiment. Select two samples of  and  items from the populations and 
compute the t value. Call this number .  

N1 N2

TS

3.  Look for statistical significance. If  reject the null hypothesis that T TS > α μ μ1 2 0− =  in 
favor of an alternative hypothesis that μ μ1 2 0− = >d , where μ μ1 2> . 
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4.  Compute the power. Now suppose that you want to compute the power of this test. First, 
you must specify an alternative value, d, for the difference between the two means so that 
μ μ1 2= + d . You now consider a new probability distribution centered at d which is called 
the noncentral-t distribution. It appears as a bell-shaped curve as shown below. 

Figure 2 - Computing the Power 

 
The power is the probability of rejecting  when the true difference is d. Since we reject 

 when our computed  value is greater that T , the power is the area under the 
noncentral-t curve to the right of T . The area to the left of T  represents the probability of a 
type-II error, or beta, since when the computed T  value is less than , we do not reject the 
false . 

H0

H0 TS α

α α

S Tα
H0

Notice that in order to compute the power of the test, we must specify the true values of the 
means. Since we do not know these values, we compute the power at several possible values of d. 
This lets us understand what the power might have been. 

Note that we can set the value of alpha (probability of a type-I error). However, we cannot set the 
value of beta (probability of a type-II error). Beta is computed based on a hypothesized value of 
d. We do not know what the value d really is. So we can compute beta for a variety of d values, 
but unless we know the true values of the population means, we do not know the true value of d, 
and hence, we do not know the true value of beta. This is why so much attention is paid to alpha, 
but so little attention is paid to beta. 
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Assumptions 
The following assumptions are made when using the two-sample t test or the Mann-Whitney U 
test. One of the reasons for the popularity of the t test is its robustness in the face of assumption 
violation. However, if an assumption is not met even approximately, the significance levels and 
the power of the t test are unknown. Unfortunately, in practice it often happens that several 
assumptions are not met. This makes matters even worse! Hence, you should take the appropriate 
steps to check the assumptions before you make important decisions based on these tests.  

Two-Sample T Test Assumptions 
The assumptions of the two-sample t test are:  

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. 

3. The variances of the two populations are equal. (If not, the Aspin-Welch Unequal-
Variance test is used.) 

4. The two samples are independent. There is no relationship between the individuals in one 
sample as compared to the other (as there is in the paired t test).  

5. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  

Mann-Whitney U Test Assumptions 
The assumptions of the Mann-Whitney U test for difference in means are:  

1. The variable of interest is continuous (not discrete). The measurement scale is at least 
ordinal.  

2. The probability distributions of the two populations are identical, except for location. 
That is, the variances are equal.  

3. The two samples are independent. 

4. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to 
several hundred. If your data are discrete with at least five unique values, you can often 
ignore the continuous variable assumption. Perhaps the greatest restriction is that your data 
come from a random sample of the population. If you do not have a random sample, your 
significance levels will probably be incorrect. 
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Technical Details 
There are four separate situations each requiring different formulas. Let the means of the two 
populations be represented by μ1  and μ2 . The difference between these means will be 
represented by d. Let the standard deviations of the two populations be represented as σ1  and 
σ2 . 

Case 1 - Standard Deviations Known and Equal 
When σ σ σ1 2= =  and are known, the power of the t test is calculated as follows for a 
directional alternative (one-tailed test) in which d > 0. 

1. Find z   such that , where α ( )1− =Φ zα α ( )Φ x  is the area under the standardized normal 
curve to the left of x. 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

 

3. Calculate: p
x

x
z = z - dασ

σ
 

4. Calculate:   Power =  ( )1− Φ zp

Case 2 - Standard Deviations Known and Unequal 
When σ σ1 ≠ 2 and are known, the power is calculated as follows for a directional alternative 
(one-tailed test) in which d > 0.  

1. Find z   such that , where α ( )1− =Φ zα α ( )Φ x  is the area under the standardized normal 
curve to the left of x. 

2. Calculate: σ
σ σ

x
1
2

1

2
2

2
=

N
+

N
 

3. Calculate: p
x

x
z =

z -α dσ
σ

 

4. Calculate:   Power =  ( )1− Φ zp
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Case 3 - Standard Deviations Unknown and Equal 
When σ σ σ1 2= =  and are unknown, the power of the t test is calculated as follows for a 
directional alternative (one-tailed test) in which d > 0.  

1.  Find  such that , where tα ( )1− =T tdf α α ( )T tdf α  is the area under a central-t curve to the 

left of x and . df N N= + −1 2 2

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

 

3. Calculate the noncentrality parameter: λ
σ

=
d

x
 

4. Calculate: p
x

x
t =

t - d
+ασ

σ
λ  

5. Calculate: Power = , where ( )1− ′T tdf p,λ ( )′T xdf ,λ  is the area under a noncentral-t curve with 

degrees of freedom df and noncentrality parameter λ  to the left of x. 

Case 4 - Standard Deviations Unknown and 
Unequal 
When σ σ1 ≠ 2  and are unknown, the power is calculated as follows for a directional alternative 
(one-tailed test) in which d > 0. Note that in this case, an approximate t test is used.  

1. Calculate: σ σ σ
x

1
2

1

2
2

2
=

N
+

N
. 

2. Calculate: f =

N ( N + 1)
+

N ( N + 1)

- 2x

1
4

1
2

1

2
4

2
2

2

σ
σ σ

4

 

which is the adjusted degrees of freedom. Often, this is rounded to the next highest integer. 

3.  Find  such that , where tα ( )1− =T tf α α ( )T tf α  is the area to the left of x under a central-t 
curve with f degrees of freedom. 

4. Calculate: λ
σ

=
d

,
x

1 the noncentrality parameter. 

5. Calculate: p
x

x
t =

t - d
+ασ

σ
λ 2 

1.  Calculate: Power = , where ( )1− ′T tf p,λ ( )′T xf ,λ  is the area to the left of x under a 

noncentral-t curve with degrees of freedom f and noncentrality parameter λ . 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates at the beginning of this manual. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Mean1, Mean2, Sigma1, Sigma2, Alpha, Beta, N1, and N2. In most 
situations, you will select either Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment.  

Mean1 (Mean of Group 1) 
This option specifies the mean of the first group. Under the null hypothesis of no difference 
between groups, the means of both groups are assumed to be equal. Hence, under the null 
hypothesis, this is also the mean of the second group.  

Mean2 (Mean of Group 2) 
This option specifies the mean of the second group in the alternative hypothesis. The difference 
between this value and the value of Mean1 represents the amount that is tested by the t test. 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 
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R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always  Mean1 = Mean2. H0:

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Possible selections are: 

Ha: Mean1 <> Mean2. This is the most common selection. It yields the two-tailed t test. Use this 
option when you are testing whether the means are different, but you do not want to specify 
beforehand which mean is larger. 

Ha: Mean1 < Mean2. This option yields a one-tailed t test. Use it when you are only interested 
in the case in which Mean2 is greater than Mean1. 

Ha: Mean1 > Mean2. This option yields a one-tailed t test. Use it when you are only interested 
in the case in which Mean2 is less than Mean1. 

Nonparametric Adjustment 
This option lets you make sample size adjustments appropriate for when you are using the Mann-
Whitney test rather than the t test. Results by Al-Sunduqchi and Guenther (1990) indicate that 
power calculations for the Mann-Whitney test may be made using the standard t test formulations 
with a simple adjustment to the sample sizes, N1 and N2. The size of the adjustment depends on 
the actual distribution of the data. They give sample size adjustment factors for four distributions. 
These are 1 for uniform, 2/3 for double exponential,  for logistic, and 9 2/ π π / 3  for normal.  

The options are as follows: 

Ignore 
Do not make a Mann-Whitney adjustment. This indicates that you want to analyze a t test, not the 
Mann-Whitney test. 

Uniform 
Make the Mann-Whitney sample size adjustment assuming the uniform distribution. Since the 
factor is one, this option performs the same as Ignore. It is included for completeness. 

Double Exponential 
Make the Mann-Whitney sample size adjustment assuming the double exponential distribution. 

Logistic 
Make the Mann-Whitney sample size adjustment assuming the logistic distribution. 

Normal 
Make the Mann-Whitney sample size adjustment assuming the normal distribution.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. The recommended range is 0.001 to 0.10. Historically, the 
value of 0.05 was used for alpha. This means that about one test in twenty will falsely reject the 
null hypothesis. You should pick a value for alpha that represents the risk of a type-I error you 
are willing to take in your experimental situation.  

Below are some values of alpha and corresponding odds of rejection. 

Alpha Approximate Odds of Rejecting a true null hypothesis 
0.01 1 in 100 
0.02 1 in 50 
0.03 1 in 33 
0.04 1 in 25 
0.05 1 in 20 
0.06 1 in 17 
0.07 1 in 14 
0.08 1 in 12 
0.09 1 in 11 
0.10 1 in 10 
0.15 1 in 7 
0.20 1 in 5 
0.25 1 in 4 
0.33 1 in 3 
0.50 1 in 2 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal means when in fact the means are 
different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Lately, 0.10 is becoming popular. However, you should pick a value for beta that represents the 
risk of a type-II error you are willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

Note that each value of the alternative hypothesis will have a different power. 

S1 and S2 (Standard Deviations) 
These options specify the values of the standard deviations for each group. When the S2 is set to 
S1, only S1 needs to be specified. The value of S1 will be copied into S2. 

When these values are not known, you must supply estimates of them. Press the SD button to 
display the Standard Deviation Estimator window. This procedure will help you find appropriate 
values for the standard deviation. 
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Known Std Deviation 
This option specifies whether the standard deviations (sigmas) are known or unknown. In almost 
all experimental situations, sigma is not known. However, since great calculation efficiencies are 
obtained if we can assume that sigma is known, and since this option has only a small impact on 
the final result, we usually leave it checked until we are ready for the final results. 

When this box is checked, the program makes its calculations assuming that the standard 
deviations are known. This results in the use of the normal distribution in all probability 
calculations. Calculations using this option will be much faster than for the unknown sigma case. 
The results for either case will be close when the sample size is over 30. 

When this box is not checked, the program assumes that sigma is not known and will be 
estimated from the data. This results in probability calculations using the noncentral-t 
distribution. This distribution requires a lot more calculations than does the normal distribution. 

The calculation speed comes into play whenever the Find option is set to something besides Beta. 
In these cases, the program uses a special searching algorithm which requires many iterations. 
You will note a real difference in calculation speed depending on whether this option is checked. 

A reasonable strategy would be to leave this option checked while you are experimenting with the 
parameters and then leave it unchecked when you are ready for your final results. 
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Example 1 - Power after a Study 
This example will cover the situation in which you are calculating the power of a t test after the 
data have been collected.  

A clinical trial was run to compare the effectiveness of two drugs. The ten responses in each 
group are shown below. 

Drug A Drug B 
21 15 
20 17 
25 17 
20 19 
23 22 
20 12 
13 16 
18 21 
25 20 
24 19 

These data were run through the NCSS statistical program with the following results. 
 
 Descriptive Statistics Section 
    Standard Standard 95% LCL 95% UCL 
 Variable Count Mean Deviation Error of Mean of Mean 
 Drug A 10 20.9 3.665151 1.159023 18.27811 23.52189 
 Drug B 10 17.8 3.011091 0.9521905 15.646 19.954 
 
 Alternative  Prob Decision  
 Hypothesis T Value Level (5%)  
 (Drug A)-(Drug B)<>0 2.0667 0.053460 Accept Ho  
 

Notice that the probability level of 0.05346 is not significant. When a test is not significant, its 
power should be evaluated. The researchers decide to calculate the power using the sample values 
as estimates for the population values for various sample sizes and for alphas of 0.01 and 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Beta 
Mean1 ...............................................20.9 
Mean2 ...............................................17.8 
N1......................................................5 10 15 20 25 30 50 
N2......................................................Use R 
R........................................................1.0 
Alternative Hypothesis ......................Ha: Mean1 <> Mean2 
Nonparametric Adjustment................Ignore 
Alpha .................................................0.01  0.05  
Beta...................................................Ignored since this is the Find setting 
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S1......................................................3.67 
S2......................................................3.01 
Known Std Deviation.........................Not checked 
Axes Tab 
Vertical Range ..................................Min=0, Max=Data 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.08825 5 5 1.00 0.01000 0.91175 20.900 17.800 3.670 3.010 
0.24642 10 10 1.00 0.01000 0.75358 20.900 17.800 3.670 3.010 
0.42417 15 15 1.00 0.01000 0.57583 20.900 17.800 3.670 3.010 
0.58661 20 20 1.00 0.01000 0.41339 20.900 17.800 3.670 3.010 
0.71790 25 25 1.00 0.01000 0.28210 20.900 17.800 3.670 3.010 
0.81541 30 30 1.00 0.01000 0.18459 20.900 17.800 3.670 3.010 
0.97513 50 50 1.00 0.01000 0.02487 20.900 17.800 3.670 3.010 
0.26033 5 5 1.00 0.05000 0.73967 20.900 17.800 3.670 3.010 
0.50069 10 10 1.00 0.05000 0.49931 20.900 17.800 3.670 3.010 
0.68601 15 15 1.00 0.05000 0.31399 20.900 17.800 3.670 3.010 
0.81252 20 20 1.00 0.05000 0.18748 20.900 17.800 3.670 3.010 
0.89246 25 25 1.00 0.05000 0.10754 20.900 17.800 3.670 3.010 
0.94028 30 30 1.00 0.05000 0.05972 20.900 17.800 3.670 3.010 
0.99550 50 50 1.00 0.05000 0.00450 20.900 17.800 3.670 3.010 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from each population. To conserve resources, they should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Mean1 is the mean of populations 1 and 2 under the null hypothesis of equality. 
Mean2 is the mean of population 2 under the alternative hypothesis. The mean of population 1 is unchanged. 
S1 and S2 are the population standard deviations. They represent the variability in the populations. 
 
Summary Statements 
Group sample sizes of 5 and 5 achieve 16% power to detect a difference of -1.0 between the null 
hypothesis that both group means are 0.0 and the alternative hypothesis that the mean of group 
2 is 1.0 with known group standard deviations of 1.0 and 1.0 and with a significance level 
(alpha) of 0.01000 using a two-sided two-sample t-test. 
 

This report shows the values of each of the parameters, one scenario per row. At alpha = 0.05 and 
N1 = 10, the power was only 0.50. The researchers only had a 50-50 chance of rejecting the null 
hypothesis in this case.  
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Plots Section 
 

 

Power vs N1 by Alpha with M1=20.900 M2=17.800
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This plot shows the relationship between alpha and power in this example. Notice that the range 
of power values over the range of alpha values. Clearly, the sample size should have been 
doubled to twenty per group in order to achieve a power greater than 0.80. 
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Example 2 - Finding the Sample Size 
Necessary to Reject 
Continuing with the last example, determine the sample size that the researchers would have 
needed for the null hypothesis to be rejected at the alpha = 0.01 and 0.05 levels, all other 
parameters remaining unchanged. They decided to use a beta error level of 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................N1 
Mean1 ...............................................20.9 
Mean2 ...............................................17.8 
N1 ..................................................... Ignored since this is the Find setting 
N2 .....................................................Use R 
R .......................................................1.0 
Alternative Hypothesis ......................Ha: Mean1 <> Mean2 
Nonparametric Adjustment ............... Ignore 
Alpha.................................................0.01  0.05  
Beta...................................................0.20 
S1......................................................3.67 
S2......................................................3.01 
Known Std Deviation.........................Not checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.81541 30 30 1.00 0.01000 0.18459 20.900 17.800 3.670 3.010 
0.81252 20 20 1.00 0.05000 0.18748 20.900 17.800 3.670 3.010 

 

We note that the required sample size is 20 when alpha is 0.05 and 30 when alpha is 0.01. Note 
that although the power was set at 0.80, the actual power achieved was 0.81. This is due to the 
fact that sample sizes must be integers, so specified power levels are not met exactly. 
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Example 3 - Minimum Detectable 
Difference 
The minimum detectable difference is the difference between the two means that would be 
significant if all other parameters are kept at their experimental values. The minimum detectable 
difference is found by setting Mean1 to zero and solving for Mean2.  

Continuing with the previous example, what is the minimum detectable difference when N1 = N2 
= 10, alpha = 0.05, beta = 0.20, S1 = 3.67, and S2 = 3.01. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Mean2 (Search>Mean1) 
Mean1 ...............................................0 
Mean2 ...............................................Ignored since this is the Find setting 
N1......................................................10 
N2......................................................Use R 
R........................................................1.0 
Alternative Hypothesis ......................Ha: Mean1 <> Mean2 
Nonparametric Adjustment................Ignore 
Alpha .................................................0.05  
Beta...................................................0.20 
S1......................................................3.67 
S2......................................................3.01 
Known Std Deviation.........................Not checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.80000 10 10 1.00 0.05000 0.20000 0.000 4.431 3.670 3.010 

 

The minimum detectable difference for this experiment is 4.431 minutes. If the true population 
means were this far apart, at a significance level of 0.05 and the power would be 0.80. Hence, the 
researchers should not have proceeded with the experiment if they thought the true difference was 
less than 4.431. 
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Example 4 - Finding the Sample Size 
This example will show how the sample size for a new study is determined. A researcher decides 
to use a parallel-group design to study the impact of a new exercise program on body weight. 
Participants will be divided into two groups: those using and those not using the exercise 
program. Each participant’s weight loss (or gain) will be measured after three months. How many 
participants are needed to achieve 90% power at significance levels of 0.01 and 0.05? 

Past experiments of this type have had standard deviations in the range of 10 to 15 pounds. The 
researcher wants to detect a difference of 15 pounds or more.  

Although a drop in the mean is hypothesized, two-sided testing will be used because this is the 
standard method used and the researcher plans on publishing the results. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................N1 
Mean1 ...............................................0 
Mean2 ...............................................15 
N1 ..................................................... Ignored since this is the Find setting 
N2 .....................................................Use R 
R .......................................................1.0 
Alternative Hypothesis ......................Ha: Mean1 <> Mean2 
Nonparametric Adjustment ............... Ignore 
Alpha.................................................0.01  0.05  
Beta...................................................0.10 
S1......................................................10 12.5 15 
S2......................................................S1 
Known Std Deviation.........................Not checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.90052 15 15 1.00 0.01000 0.09948 0.000 15.000 10.000 10.000 
0.91690 11 11 1.00 0.05000 0.08310 0.000 15.000 10.000 10.000 
0.90961 23 23 1.00 0.01000 0.09039 0.000 15.000 12.500 12.500 
0.90719 16 16 1.00 0.05000 0.09281 0.000 15.000 12.500 12.500 
0.90596 32 32 1.00 0.01000 0.09404 0.000 15.000 15.000 15.000 
0.91250 23 23 1.00 0.05000 0.08750 0.000 15.000 15.000 15.000 
 
 

N1 vs S1 by Alpha with M1=0.000 M2=15.000
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After looking at these reports, the researcher decides to enroll 20 subjects per group and test the 
hypothesis at the 0.05 significance level. He chooses 20 because it is a little larger than the 16 
that are required when the standard deviation is 12.5. 
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Example 5 - Mann-Whitney Test 
The Mann-Whitney test is a popular nonparametric analog of the two-sample t test. It is 
recommended when the distribution of the data is not normal. A study by Al-Sunduqchi (1990) 
showed that sample size and power calculations for the Mann-Whitney test can be made using the 
standard t test results with an adjustment to the sample size.  

Suppose that the researcher in Example 4 wants to compare sample size requirements of the t test 
with those of the Mann-Whitney test. To do this, he would use the same values, only this time the 
Nonparametric Adjustment would be set to a specific distribution. In this example, the double 
exponential is selected since it requires the largest adjustment of the distributions listed and the 
actual distribution is not known.  

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example5 by 
clicking the Template tab and loading this template. 

Option Value 
Data Tab 
Find ...................................................N1 
Mean1 ...............................................0 
Mean2 ...............................................15 
N1 ..................................................... Ignored since this is the Find setting 
N2 .....................................................Use R 
R .......................................................1.0 
Alternative Hypothesis ......................Ha: Mean1 <> Mean2 
Nonparametric Adjustment ...............Double Exponential 
Alpha.................................................0.01  0.05  
Beta...................................................0.10 
S1......................................................10 12.5 15 
S2......................................................S1 
Known Std Deviation.........................Not checked 

 



  Two Means 430-19 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Mann-Whitney Test (Double Exponention Distribution) 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and equal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.90052 10 10 1.00 0.01000 0.09948 0.000 15.000 10.000 10.000 
0.91690 7 7 1.00 0.05000 0.08310 0.000 15.000 10.000 10.000 
0.90961 15 15 1.00 0.01000 0.09039 0.000 15.000 12.500 12.500 
0.90719 10 10 1.00 0.05000 0.09281 0.000 15.000 12.500 12.500 
0.90596 21 21 1.00 0.01000 0.09404 0.000 15.000 15.000 15.000 
0.91250 15 15 1.00 0.05000 0.08750 0.000 15.000 15.000 15.000 

 

Comparing the sample sizes found here with those of the corresponding t test found in the last 
example at the 0.05 significance level, note that there is a reduction in the maximum sample size 
from 23 to 15. That is, if the Mann-Whitney test is used instead of the t test when the actual 
distribution follows the double exponential distribution, the sample size necessary to achieve 90% 
power at the 0.05 significance level is reduced from 23 to 15 per group. 

 



430-20 Two Means  

Example 6 - Validation of Sample Size 
using Machin et al. 
Machin et al. (1997) page 35 present an example in which the mean difference is 5, the common 
standard deviation is 10, the power is 90%, and the significance level is 0.05. They calculate the 
per group sample size as 86.  

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example6 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................N1 
Mean1 ...............................................0 
Mean2 ...............................................5 
N1 ..................................................... Ignored since this is the Find setting 
N2 .....................................................Use R 
R .......................................................1.0 
Alternative Hypothesis ......................Ha: Mean1 <> Mean2 
Nonparametric Adjustment ............... Ignore 
Alpha.................................................0.05  
Beta...................................................0.10 
S1......................................................10 
S2......................................................S1 
Known Std Deviation.........................Not checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.90323 86 86 1.00 0.05000 0.09677 0.000 5.000 10.000 10.000 

 

Note that the sample size of 86 per group matches Machin’s result exactly. 
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Example 7 - Validation using Zar 
Zar (1984) page 136 give an example in which the mean difference is 1, the common standard 
deviation is 0.7206, the sample sizes are 15 in each group, and the significance level is 0.05. They 
calculate the power as 0.96. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example7 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Mean1 ...............................................0 
Mean2 ...............................................1 
N1......................................................15 
N2......................................................Use R 
R........................................................1.0 
Alternative Hypothesis ......................Ha: Mean1 <> Mean2 
Nonparametric Adjustment................Ignore 
Alpha .................................................0.05  
Beta...................................................Ignored since this is the Find setting 
S1......................................................0.7206 
S2......................................................S1 
Known Std Deviation.........................Not checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.95611 15 15 1.00 0.05000 0.04389 0.000 1.000 0.721 0.721 

 

Note that the power of 0.95611 matches Zar’s result of 0.96 to the two decimal places given. 
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Chapter 435  

Comparing Two 
Exponential 
Means 
This program module designs studies for testing hypotheses about the means of two exponential 
distributions. Such a test is used when you want to make a comparison between two groups that 
both follow the exponential distribution. The responses from the samples are assumed to be 
continuous, positive numbers such as lifetime.  

We adopt the basic methodology outlined in the books by Bain and Engelhardt (1991) and Desu 
and Raghavarao (1990). 

Technical Details 
The test procedure described here makes the assumption that lifetimes in each group follow an 
exponential distribution. The densities of the two exponential distributions are written as  

f t t ii
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The parameters θi  are interpreted as the average failure times, the mean time to failure (MTTF), 
or the mean time between failures (MTBF) of the two groups. The reliability, or the probability 
that a unit continues running beyond time t, is 

R t ei
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Hypothesis Test 
The relevant statistical hypothesis is H0 1 2 1: /θ θ =  versus one of the following alternatives: 
H A: /θ θ ρ1 2 1= > , H A: /θ θ ρ1 2 1= < , or H A: /θ θ ρ1 2 1= ≠ . The test procedure is to reject the 

null hypothesis if the ratio of the observed mean lifetimes   is too large or too small. 
The samples of size  are assumed to be drawn without replacement. The experiment is run until all 
items fail. 

H0 $ $ / $ρ θ θ= 1 2

2

ni

If the experiment is curtailed before all n n1 +  items fail, the sample size results are based on the 
number of failures , not the total number of samples r r1 2+ n n1 2+ . 

The mean lifetimes are estimated as follows 
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where  is the time that the jth item in the ith group is tested, whether measured until failure or 
until the study is completed. 

tij

Power and sample size calculations are based on the fact that the estimated lifetime ratio is 
proportional to the F distribution. That is, 
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Note that only the actual numbers of failures are used in these distributions. Hence, we assume that 
the experiment is run until all items fail so that r ni i=  . That is, the sample sizes are the number of 
failures, not the number of items. Enough units must be sampled to ensure that the stated number of 
failures occur. 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Select Beta when you want to calculate the power of an experiment. 

Theta1 (Group 1 Mean Life) 
Enter one or more values for the mean life of group 1 under the alternative hypothesis. This value 
is usually scaled in terms of elapsed time such as hours, days, or years. Of course, all time values 
must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure e time= − −1 /θ  

so that 

( )( )θ =
−

−
time

P Failureln 1
 

Any positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 1000 
by 100.’ 

Note that only the ratio of theta1 and theta2 is used in the calculations. 
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Theta2 (Group 2 Mean Life) 
Enter one or more values for the mean life of group 2 under the alternative hypothesis. This value 
is usually scaled in terms of elapsed time such as hours, days, or years. Of course, all time values 
must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure e time= − −1 /θ  

so that 

( )( )θ =
−

−
time

P Failureln 1
 

Any positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 1000 
by 100.’ 

Note that only the ratio of theta1 and theta2 is used in the calculations. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha), also called 
the significance level. A type-I error occurs when you reject the null hypothesis of equal thetas 
when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal thetas when in fact they are 
different. 

Values must be between zero and one. Historically, the value of 0.20 was used for beta. Now, 
0.10 is more popular. You should pick a value for beta that represents the risk of a type-II error 
that you are willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80. 
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Alternative Hypothesis 
Specify the alternative hypothesis of the test. Since the null hypothesis is equality (a difference 
between theta1 and theta2 of zero), the alternative is all that needs to be specified.  

Note that the alternative hypothesis should match the values of Theta1 and Theta2. That is, if you 
select Ha: Theta1 > Theta, then the value of Theta1 should be greater than the value of Theta2. 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Example1 - Power for Several Sample 
Sizes 
This example will calculate power for several sample sizes of a study designed to compare the 
average failure time of (supposedly) identical components manufactured by two companies. 
Management wants the study to be large enough to detect a ratio of mean lifetimes of 1.3 at the 
0.05 significance level. The analysts decide to look at sample sizes between 5 and 500.  

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Theta1...............................................1.3 
Theta2...............................................1.0 
Alternative Hypothesis ......................Ha: Theta1 <> Theta2 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
N1 .....................................................5 20 50 100 200 300 400 500 
N2 .....................................................Use R 
R (Sample Allocation Ratio)..............1.0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
H0: Theta1 = Theta2. Ha: Theta1 <> Theta2.  
   Allocation     Theta1/ 
Power N1 N2 Ratio Alpha Beta Theta1 Theta2 Theta2 
0.06652 5 5 1.00000 0.05000 0.93348 1.3 1.0 1.30000 
0.12839 20 20 1.00000 0.05000 0.87161 1.3 1.0 1.30000 
0.25602 50 50 1.00000 0.05000 0.74398 1.3 1.0 1.30000 
0.45619 100 100 1.00000 0.05000 0.54381 1.3 1.0 1.30000 
0.74551 200 200 1.00000 0.05000 0.25449 1.3 1.0 1.30000 
0.89447 300 300 1.00000 0.05000 0.10553 1.3 1.0 1.30000 
0.95976 400 400 1.00000 0.05000 0.04024 1.3 1.0 1.30000 
0.98559 500 500 1.00000 0.05000 0.01441 1.3 1.0 1.30000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N1 is the number of failures needed in Group 1. 
N2 is the number of failures needed in Group 2. 
Alpha is the probability of rejecting a true null hypothesis.  
Beta is the probability of accepting a false null hypothesis.  
Theta1 is the Mean Life in Group 1 
Theta2 is the Mean Life in Group 2. 
 
Summary Statements 
Samples of size 5 and 5 achieve 7% power to detect a difference between the mean lifetime in 
group 1 of 1.3 and the mean lifetime in group 2 of 1.0 at a 0.05000 significance level (alpha) 
using a two-sided hypothesis based on the F distribution. 

This report shows the power for each of the scenarios.  

Plot Section 
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Example2 - Validation Using Manual 
Calculations 
We could not find published results that could be used to validate this procedure. Instead, we will 
compare the results to those computed using our probability distribution calculator. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Theta1...............................................1.3 
Theta2...............................................1.0 
Alternative Hypothesis ......................Ha: Theta1 > Theta2 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
N1 .....................................................20 
N2 .....................................................Use R 
R (Sample Allocation Ratio)..............1.0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
H0: Theta1 = Theta2. Ha: Theta1 > Theta2.  
   Allocation     Theta1/ 
Power N1 N2 Ratio Alpha Beta Theta1 Theta2 Theta2 
0.20369 20 20 1.00000 0.05000 0.79631 1.3 1.0 1.30000 
 

We will now check these results using manual calculations. First, we find critical value 

F0.95,40 40, = 1.6927972097  

using the probability calculator. Now, to calculate the power, we find the inverse F of 
1.6927972097/1.3 = 1.302152 to be 0.79631, which matches the reported value of Beta.  
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Chapter 440  

Tests of Two 
Means Using 
Simulation 
This procedure allows you to study the power and sample size of several statistical tests of the null 
hypothesis that the difference between two means is equal to a specific value versus the alternative 
hypothesis that it is greater than, less than, or not-equal to that value. Because the mean represents 
the center of the population, if the means are different, the populations are different. Other 
attributes of the two populations (such as the shape and spread) might also be compared, but this 
module focuses on comparisons of the means only.  

Measurements are made on individuals that have been randomly assigned to, or randomly chosen 
from, one of two groups. This is sometimes referred to as a parallel-groups design. This design is 
used in situations such as the comparison of the income level of two regions, the nitrogen content 
of two lakes, or the effectiveness of two drugs.  

The two-sample t-test is commonly used in this situation. When the variances of the two groups are 
unequal, Welch’s t-test is often used. When the data are not normally distributed, the Mann-Whitney 
(Wilcoxon signed-ranks) U test may be used. 

The details of the power analysis of the two-sample t-test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 

Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify how the test is carried out. This includes indicating how the test statistic is calculated 
and how the significance level is specified. 

2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s power.  
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3. Generate random samples from the distributions specified by the null hypothesis. Calculate each 
test statistic from the simulated data and determine if the null hypothesis is accepted or rejected. 
Tabulate the number of rejections and use this to calculate the test’s significance level.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated data 
leads to a rejection of the null hypothesis. The power is the proportion of simulated samples in 
step 2 that lead to rejection. The significance level is the proportion of simulated samples in step 
3 that lead to rejection. 

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draw the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
The two-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t statistic is 
as follows 
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The significance of the test statistic is determined by computing the p-value based on the t 
distribution with degrees of freedom df. If this p-value is less than a specified level (often 0.05), 
the null hypothesis is rejected. Otherwise, no conclusion can be reached. 

Welch’s T-Test 
Welch (1938) proposed the following test for use when the two variances cannot be assumed 
equal.  
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Trimmed T-Test assuming Equal Variances 
The notion of trimming off a small proportion of possibly outlying observations and using the 
remaining data to form a t-test was first proposed for one sample by Tukey and McLaughlin 
(1963). Tukey and Dixon (1968) consider a slight modification of this one sample test, called 
Winsorization, which replaces the trimmed data with the nearest remaining value. The two-
sample trimmed t-test was proposed by Yuen and Dixon (1973).  

Assume that the data values have been sorted from lowest to highest. The trimmed mean is 
defined as 
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where h = N – 2g and g = [N(G/100)]. Here we use [Z] to mean the largest integer smaller than Z 
with the modification that if G is non-zero, the value of  [N(G/100)] is at least one. G is the 
percent trimming and should usually be less than 25%, often between 5% and 10%. Thus, the g 
smallest and g largest observation are omitted in the calculation. 

To calculate the modified t-test, calculate the Winsorized mean and the Winsorized sum of 
squared deviations as follows. 
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Using the above definitions, the two-sample trimmed t-test is given by 
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The distribution of this t statistic is approximately that of a t distribution with degrees of freedom 
equal to . This approximation is often reasonably accurate if both sample sizes are 
greater than 6. 

h h1 2 2+ −

Trimmed T-Test assuming Unequal Variances 
Yuen (1974) combines trimming (see above) with Welch’s (1938) test. The resulting trimmed 
Welch test is resistant to outliers and seems to alleviate some of the problems that occur because 
of skewness in the underlying distributions. Extending the results from above, the trimmed 
version of Welch’s t-test is given by 
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Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions for 
this test are that the distributions are at least ordinal and that they are identical under H0. This 
implies that ties (repeated values) are not acceptable. When ties are present, the approximation 
provided can be used, but know that the theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator of z is negative or -0.5 otherwise. The 
value of z is then compared to the standard normal distribution. 

Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, although the shape parameters are constant, the 
standard deviations, which are based on both the shape parameter and the mean, are not. Thus the 
distributions not only have different means, but different standard deviations! 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies whether you want to find Power or N1 from the simulation. Select Power 
when you want to estimate the power of a certain scenario. Select N1 when you want to determine 
the sample size needed to achieve a given power and alpha error level. Finding N1 is very 
computationally intensive, and so it may take a long time to complete. 
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Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

H1 (Alternative) 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0: Diff = Diff0. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

Difference <> Diff0. This is the most common selection. It yields a two-tailed test. Use this 
option when you are testing whether the mean is different from a specified value Diff0, but you 
do not want to specify beforehand whether it is smaller or larger. Most scientific journals require 
two-tailed tests. 

Difference < Diff0. This option yields a one-tailed test. Use it when you want to test whether the 
true mean is less than Diff0. 

Difference > Diff0. This option yields a one-tailed test. Use it when you want to test whether the 
true mean is greater than Diff0. Note that this option could be used for a non-inferiority test.  

Test Statistic 
Specify which test statistic is to be used in the simulation. Although the t-test is the most 
commonly used test statistic, it is based on assumptions that may not be viable in many situations. 
For your data, you may find that one of the other tests is more accurate (actual alpha = target 
alpha) and more precise (better power). 



 Two Means using Simulation  440-7 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Group 1 (and 2) Dist’n | H0 
These options specify the distributions of the two groups under the null hypothesis, H0. The 
difference between the means of these two distributions is the difference that is tested, Diff0.  

Usually, these two distributions will be identical and Diff0 = 0. However, if you are planning a 
non-inferiority test, the means will be different. 

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to specify that the mean of a normally-distributed variable is to be five, you could enter 
N(5, S) or N(M0, S) here and M0 = 5 later. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
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Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Group 1 (and 2) Dist’n | H1 
These options specify the distributions of the two groups under the alternative hypothesis, H1. 
The difference between the means of these two distributions is the difference that is assumed to 
be the true value of the difference. That is, this is the difference at which the power is computed. 

Usually, the mean difference is specified by entering M0 for the mean parameter in the 
distribution expression for group 1 and M1 for the mean parameter in the distribution expression 
for group 2. The mean difference under H1 then becomes the value of M0– M1.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean of 
group 2 under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 
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M0 (Mean | H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean | H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values for each letter using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Commonly, the value of 0.05 is used for two-tailed tests 
and 0.025 is used for one-tailed (non-inferiority) tests.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal means when in fact the means are 
different. You cannot make both a type-I and a type-II error in a single hypothesis test. 

Values must be between zero and one. Historically, the value of 0.20 was used for beta. Now, 
0.10 is more common. However, you should pick a value for beta that represents the risk of a 
type-II error you are willing to take. 

Power is defined as one minus beta. Hence, specifying beta also specifies the power. For 
example, if you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding 
power values of 0.95, 0.90, and 0.80, respectively.  

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the sample size, N1, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 
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Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Pools should be at least the maximum of 10,000 and twice the number of simulations. You can 
enter Automatic and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 

Percent Trimmed at Each End 
Specify the percent of each end of the sorted data that is to be trimmed (constant G above) when 
using the trimmed means procedures. This percentage is applied to the sample size to determine 
how many of the lowest and highest data values are to be trimmed by the procedure. For example, 
if the sample size (N1) is 27 and you specify 10 here, then [27*10/100] = 2 observations will be 
trimmed at the bottom and the top. For any percentage, at least one observation is trimmed from 
each end of the sorted dataset. 

The range of possible values is 0 to 25.  

Reports Tab 
The Reports tab contains settings about the format of the output. 

Show Numeric Reports & Plots 
These options let you specify whether you want to generate the standard reports and plots. 

Show Inc’s & 95% C.I. 
Checking this option causes an additional line to be printed showing a 95% confidence interval 
for both the power and actual alpha and half the width of the confidence interval (the increment). 

Show Comparative Reports & Plots 
These options let you specify whether you want to generate reports and plots that compare the 
test statistics that are available. 

Include T-Test Results – Include Mann-Whitney-
Test Results 
These options let you specify whether to include each test statistic in the comparative reports. 
These options are only used if comparative reports and/or plots are generated. 
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Example 1 - Power at Various Sample 
Sizes 
Researchers are planning a parallel-group experiment to test whether the difference in response to 
a certain drug is zero. The researchers will use a two-sided t-test with an alpha level of 0.05. They 
want to compare the power at sample sizes of 50, 100, and 200 when the shift in the means is 0.6 
from drug 1 to drug 2. They assume that the data are normally distributed with a standard 
deviation of 2. Since this is an exploratory analysis, they set the number of simulation iterations 
to 2000. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations........................................2000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic......................................T-Test 
N1......................................................50 100 200 
N2......................................................Use R 
R........................................................1.0 
Group 1 Dist’n | H0............................N(M0 S) 
Group 2 Dist’n | H0............................N(M0 S) 
Group 1 Dist’n | H1............................N(M0 S) 
Group 2 Dist’n | H1............................N(M1 S) 
M0 (Mean under H0) .........................0 
M1 (Mean under H1) .........................0.6 
S........................................................2 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.324 50/50 0.0 -0.6 0.050 0.056 0.676 0.0 0.6 2.0    
(0.021) [0.303 0.345]   (0.010) [0.045 0.066]  
 
0.563 100/100 0.0 -0.6 0.050 0.047 0.437 0.0 0.6 2.0    
(0.022) [0.541 0.585]   (0.009) [0.038 0.056]  
 
0.855 200/200 0.0 -0.6 0.050 0.045 0.145 0.0 0.6 2.0    
(0.015) [0.840 0.870]   (0.009) [0.035 0.054]      

 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 34.78 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N1 is the size of the sample drawn from population 1. 
N2 is the size of the sample drawn from population 2. 
Diff0 is the mean difference between (Grp1 - Grp2) assuming the null hypothesis, H0.  
Diff1 is the mean difference between (Grp1 - Grp2) assuming the alternative hypothesis, H1.  
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  
Second Row: (Power Prec.) [95% LCL and UCL Power]    (Alpha Prec.) [95% LCL and UCL Alpha] 
 
Summary Statements 
Group sample sizes of 50 and 50 achieve 32% power to detect a difference of -0.6 between the 
null hypothesis mean difference of 0.0 and the actual mean difference of -0.6 at the 0.050 
significance level (alpha) using a two-sided T-Test. These results are based on 2000 Monte 
Carlo samples from the null distributions: Normal(M0 S) and Normal(M0 S), and the alternative 
distributions: Normal(M0 S) and Normal(M1 S). 
 
Chart Section 
 

Power vs N1 with M0=0.0 M1=-0.6 S=2.0 Alpha=0.05
R=1.00 2-Sided T-Test
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  

The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 
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Example 2 - Finding the Sample Size 
Continuing with Example1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N 
Simulations........................................2000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic......................................T-Test 
N1......................................................Ignored since this is the Find setting  
N2......................................................Use R 
R........................................................1.0 
Group 1 Dist’n | H0............................N(M0 S) 
Group 2 Dist’n | H0............................N(M0 S) 
Group 1 Dist’n | H1............................N(M0 S) 
Group 2 Dist’n | H1............................N(M1 S) 
M0 (Mean under H0) .........................0 
M1 (Mean under H1) .........................0.6 
S........................................................2 
Alpha .................................................0.05 
Beta...................................................0.10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results of Search for N 
 

  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.904 231/231 0.0 -0.6 0.050 0.053 0.097 0.0 0.6 2.0    
(0.013) [0.891 0.916]   (0.010) [0.043 0.063] 
     
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 3.00 minutes. 
   

The required sample size was 231 which achieved a power of 0.904. To check the accuracy of 
this simulation, we ran this scenario through the analytic procedure in PASS which gave the 
sample size as 234 per group. The simulation answer of 231 was reasonably close. 
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Example 3 – Comparative Results  
Continuing with Example 2, the researchers want to study the characteristics of alternative test 
statistics. They want to compare the results of all test statistics for N1 = 50, 100, and 200. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations .......................................2000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic .....................................T-Test 
N1 .....................................................50 100 200 
N2 .....................................................Use R 
R .......................................................1.0 
Group 1 Dist’n | H0............................N(M0 S) 
Group 2 Dist’n | H0............................N(M0 S) 
Group 1 Dist’n | H1............................N(M0 S) 
Group 2 Dist’n | H1............................N(M1 S) 
M0 (Mean under H0).........................0 
M1 (Mean under H1).........................0.6 
S........................................................2 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Reports Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Power Power Power Power Power M0 M1 S  
50/50 0.0 -0.6 0.050 0.304 0.303 0.283 0.283 0.288 0.0 0.6 2.0  
100/100 0.0 -0.6 0.050 0.577 0.577 0.538 0.538 0.544 0.0 0.6 2.0  
200/200 0.0 -0.6 0.050 0.859 0.859 0.848 0.848 0.850 0.0 0.6 2.0  
Pool Size: 10000. Simulations: 2000. Run Time: 3.66 minutes. Percent Trimmed at each end: 10. 
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Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S  
50/50 0.0 -0.6 0.050 0.048 0.047 0.048 0.048 0.045 0.0 0.6 2.0  
100/100 0.0 -0.6 0.050 0.048 0.048 0.049 0.049 0.048 0.0 0.6 2.0  
200/200 0.0 -0.6 0.050 0.054 0.054 0.054 0.054 0.053 0.0 0.6 2.0  
Pool Size: 10000. Simulations: 2000. Run Time: 3.66 minutes. Percent Trimmed at each end: 10. 

   
These results show that for data that fit the assumptions of the t-test, all five test statistics have 
accurate alpha values and reasonably close power values. It is interesting to note that the powers 
of the trimmed procedures, when N1 = 50, are only 7% less than that of the t-test, even though 
about 20% of the data were trimmed. 
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Example 4 - Validation 
Zar (1984) page 136 give an example in which the mean difference is 1, the common standard 
deviation is 0.7206, the sample sizes are 15 in each group, and the significance level is 0.05. They 
calculate the power to be 0.96. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations .......................................10000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic .....................................T-Test 
N1 .....................................................15 
N2 .....................................................Use R 
R .......................................................1.0 
Group 1 Dist’n | H0............................N(M0 S) 
Group 2 Dist’n | H0............................N(M0 S) 
Group 1 Dist’n | H1............................N(M0 S) 
Group 2 Dist’n | H1............................N(M1 S) 
M0 (Mean under H0).........................0 
M1 (Mean under H1).........................1 
S........................................................0.7206 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.956 15/15 0.0 -1.0 0.050 0.045 0.044 0.0 1.0 0.7    
(0.004) [0.952 0.960]   (0.004) [0.041 0.049]   
 
Notes: 
Pool Size: 20000. Simulations: 10000. Run Time: 10.14 seconds. 

 

The power matches the exact value of 0.96. 
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Example 5 – Non-Inferiority Test 
A non-inferiority test is used to show that a new treatment is not significantly worse than the 
standard (or reference) treatment. The maximum deviation that is ‘not significantly worse’ is 
called the margin of equivalence.  

Suppose that the mean diastolic BP of subjects on a certain drug is 96mmHg. If the mean 
diastolic BP of a new drug is not more than 100mmHg, the drug will be considered non-inferior 
to the standard drug. The standard deviation among these subjects is 6 mmHg. 

The developers of this new drug must design an experiment to test the hypothesis that the mean 
difference between the two mean BP’s is less than 4. The statistical hypothesis to be tested is 

H N S0 4:μ μ− ≥  versus H N S1 4:μ μ− <  

Notice that when the null hypothesis is rejected, the conclusion is that the average difference is 
less than 4. Following proper procedure, they use a significance level of 0.025 for this one-sided 
test to keep it comparable to the usual value of 0.05 for a two-sided test. They decide to find the 
sample size at which the power is 0.90 when the two means are actually equal. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example5 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N1 
Simulations........................................2000 
H1 (Alternative) .................................Diff<Diff0 
Test Statistic......................................T-Test 
N1......................................................Ignored since this is the Find setting 
N2......................................................Use R 
R........................................................1.0 
Group 1 Dist’n | H0............................N(M1 S) 
Group 2 Dist’n | H0............................N(M0 S) 
Group 1 Dist’n | H1............................N(M0 S) 
Group 2 Dist’n | H1............................N(M0 S) 
M0 (Mean under H0) .........................96 
M1 (Mean under H1) .........................100 
S........................................................6 
Alpha .................................................0.025 
Beta...................................................0.10 
Click the Run button to perform the calculations and generate the following output. 

  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.918 49/49 4.0 0.0 0.025 0.024 0.083 96.0 100.0 6.0    

We see that 49 subjects are required to achieve the desired experimental design. 
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Example 6 – Selecting a test statistic 
when the data contain outliers  
The two-sample t-test is known to be robust to the violation of some assumptions, but it is 
susceptible to inaccuracy because the data contain outliers. This example will investigate the 
impact of outliers on the power and precision of the five test statistics available in PASS. 

A mixture of two normal distributions will be used to randomly generate outliers. The mixture 
will draw 95% of the data from a normal distribution with a mean of 0 and a standard deviation of 
1. The other 5% of the data will come from a normal distribution with a mean of 0 and a standard 
deviation that ranges from 1 to 10.  

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example6 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations .......................................2000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic .....................................T-Test 
N1 .....................................................20 
N2 .....................................................Use R 
R .......................................................1.0 
Group 1 Dist’n | H0............................N(M0 S)[95];N(M0 A)[5]  
Group 2 Dist’n | H0............................N(M0 S)[95];N(M0 A)[5] 
Group 1 Dist’n | H1............................N(M0 S)[95];N(M0 A)[5] 
Group 2 Dist’n | H1............................N(M1 S)[95];N(M1 A)[5] 
M0 (Mean under H0).........................0 
M1 (Mean under H1).........................1 
S........................................................1 
A........................................................1 5 10 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Reports Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M0 S)[95];Normal(M0 A)[5] 
H1 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M1 S)[95];Normal(M1 A)[5] 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Power Power Power Power Power M0 M1 S A 
20/20 0.0 -1.0 0.050 0.865 0.864 0.835 0.835 0.841 0.0 1.0 1.0 1.0 
20/20 0.0 -1.0 0.050 0.638 0.637 0.789 0.787 0.781 0.0 1.0 1.0 5.0 
20/20 0.0 -1.0 0.050 0.469 0.463 0.778 0.775 0.776 0.0 1.0 1.0 10.0 
Pool Size: 10000. Simulations: 2000. Run Time: 1.77 minutes. Percent Trimmed: 10. 
 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S A 
20/20 0.0 -1.0 0.050 0.046 0.046 0.045 0.044 0.047 0.0 1.0 1.0 1.0 
20/20 0.0 -1.0 0.050 0.040 0.039 0.045 0.044 0.048 0.0 1.0 1.0 5.0 
20/20 0.0 -1.0 0.050 0.037 0.034 0.054 0.052 0.061 0.0 1.0 1.0 10.0 
Pool Size: 10000. Simulations: 2000. Run Time: 1.77 minutes. Percent Trimmed: 10. 

  
The first line gives the results for the standard case in which the two standard deviations (S and 
A) are equal. Note that in this case, the power of the t-test is a little higher than for the other tests. 
As the amount of contamination is increased (A equal 5 and then 10), the power of the trimmed 
tests and the Mann Whitney test remain high, but the power of the t-test falls from 86% to 47%. 
Also, the value of alpha remains constant for the trimmed and nonparametric tests, but the alpha 
of the t-test becomes very conservative. 

The conclusion this simulation is that if there is a possibility of outliers, you should use either the 
nonparametric test or the trimmed test. 
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Example 7 – Selecting a test statistic 
when the data are skewed  
The two-sample t-test is known to be robust to the violation of some assumptions, but it is 
susceptible to inaccuracy when the underlying distributions are skewed. This example will 
investigate the impact of skewness on the power and precision of the five test statistics available 
in PASS.  

Tukey’s lambda distribution will be used because it allows the amount of skewness to be 
gradually increased.  

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example7 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations .......................................2000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic .....................................T-Test 
N1 .....................................................20 
N2 .....................................................Use R 
R .......................................................1.0 
Group 1 Dist’n | H0............................L(M0 S G 0) 
Group 2 Dist’n | H0............................L(M0 S G 0) 
Group 1 Dist’n | H1............................L(M0 S G 0) 
Group 2 Dist’n | H1............................L(M1 S G 0) 
M0 (Mean under H0).........................0 
M1 (Mean under H1).........................1 
S........................................................1 
G .......................................................0 0.5 0.9 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Reports Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Tukey(M0 S G 0) & Tukey(M0 S G 0) 
H1 Dist's: Tukey(M0 S G 0) & Tukey(M1 S G 0) 

 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Power Power Power Power Power M0 M1 S G 
20/20 0.0 -1.0 0.050 0.869 0.867 0.833 0.833 0.838 0.0 1.0 1.0 0.0 
20/20 0.0 -1.0 0.050 0.880 0.879 0.923 0.922 0.948 0.0 1.0 1.0 0.5 
20/20 0.0 -1.0 0.050 0.867 0.866 0.963 0.960 0.993 0.0 1.0 1.0 0.9 
Pool Size: 10000. Simulations: 2000. Run Time: 1.85 minutes. Percent Trimmed: 10. 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S G 
20/20 0.0 -1.0 0.050 0.051 0.051 0.043 0.043 0.045 0.0 1.0 1.0 0.0 
20/20 0.0 -1.0 0.050 0.039 0.038 0.043 0.041 0.044 0.0 1.0 1.0 0.5 
20/20 0.0 -1.0 0.050 0.050 0.049 0.051 0.047 0.054 0.0 1.0 1.0 0.9 
Pool Size: 10000. Simulations: 2000. Run Time: 1.85 minutes. Percent Trimmed: 10. 

  
The first line gives the results for the standard case in which there is no skewness (G = 0). Note 
that in this case, the power of the t-test is a little higher than that of the other tests. As the amount 
of skewness is increased (G equal 0.5 and then 0.9), the power of the trimmed tests and the Mann 
Whitney test increases, but the power of the t-test remains about the same. Also, the value of 
alpha remains constant for all tests. 

The conclusion of this simulation is that if there is skewness, you will gain power by using the 
nonparametric or trimmed test. 
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Chapter 445  

Test of the Ratio of 
Two Means 
Introduction 
This procedure calculates power and sample size for t-tests from a parallel-groups design in which 
the logarithm of the outcome is a continuous normal random variable. This routine deals with the 
case in which the statistical hypotheses are expressed in terms of mean ratios instead of mean 
differences.  

The details of testing two treatments using data from a two-group design are given in another 
chapter, and they will not be repeated here. If the logarithms of the responses can be assumed to 
follow a normal distribution, hypotheses stated in terms of the ratio can be transformed into 
hypotheses about the difference. The details of this analysis are given in Julious (2004). They will 
only be summarized here. 

Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment (group 2) mean. T

μR  Not used Reference mean. This is the reference (group 1) mean.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 

In the two-sided case, the null hypothesis is 

H0 0:φ φ=  

and the alternative hypothesis is  

H1 0:φ φ≠  
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Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as percentages, but differences must 
be interpreted as actual amounts in their original scale. Hence, it has become a common practice 
to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of the ratio of the means. 

2. Transform this into hypotheses about a difference by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 are as follows for the null hypothesis. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be found to be  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  
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Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σ d

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Find 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Beta for a power analysis or N1 for sample size determination. 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. Possible selections are: 

H1: R1 <> R0. This is the most common selection. It yields the two-tailed t-test. Use this option 
when you are testing whether the means are different, but you do not want to specify beforehand 
which mean is larger. 

H1: R1 < R0. This option yields a one-tailed t-test. Use it when you are only interested in the 
case in which Mean1 is greater than Mean2. 

H1: R1 > R0. This option yields a one-tailed t-test. Use it when you are only interested in the 
case in which Mean1 is less than Mean2. 

R0 (Ratio Under H0) 
This is the value of the ratio of the two means assumed by the null hypothesis, H0. Usually, R0 = 
1.0 which implies that the two means are equal. However, you may test other values of R0 as 
well. Strictly speaking, any positive number is valid, but values near to, or equal to, 1.0 are 
usually used. 

Warning: you cannot use the same value for both R0 and R1. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Often, a 
range of values will be tried. For example, you might try the four values: 

1.05 1.10 1.15 1.20 

Strictly speaking, any positive number is valid. However, numbers between 0.50 and 2.00 are 
usually used. 

Warning: you cannot use the same value for both R0 and R1. 
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COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not log) scale. This value must be 
determined from past experience or from a pilot study. See the discussion above for more details 
on the definition of the coefficient of variation.  

Alpha (Significance Level) 
Specify one or more values of alpha, the probability of a type-I error which is rejecting the null 
hypothesis of equality when in fact the groups are different. Note that the valid range is 0 to 1, 
but typical values are between 0.01 and 0.20. 

You can enter a range of values such as 0.05 0.10 0.15 or 0.5 to 0.15 by 0.05.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal means when in fact the means are 
different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

N1 (Sample Size) 
Enter a value (or range of values) for the sample size of group 1 (the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 
10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Example1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
better than the standard drug. From previous studies, responses for either treatment are known to 
follow a lognormal distribution. A parallel-group design will be used and the logged data will be 
analyzed with a one-sided, two-sample t-test. 

Past experience leads the researchers to set the COV to 1.20. The significance level is 0.025. The 
power will be computed for R1 equal 1.10 and 1.20. Sample sizes between 100 and 900 will be 
examined in the analysis. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Alternative Hypothesis ......................R1>R0 (One-Sided) 
R0 .....................................................1.0 
R1 .....................................................1.1  1.2 
COV ..................................................1.2 
Alpha.................................................0.025 
Beta................................................... Ignored since this is the Find setting 
N1 .....................................................100 to 900 by 200 
N2 .....................................................Use R 
R .......................................................1.0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test Using Ratios 
H0: R1=R0.  H1: R1>R0. 
 
 Group Mean Mean  Coefficient   
 Sample Ratio Ratio Effect of Significance  
 Sizes Under H0 Under H1 Size Variation Level  
Power (N1/N2) (R0) (R1) (ES) (COV) (Alpha) Beta 
0.1057 100/100 1.000 1.100 0.1009 1.200 0.0250 0.8943 
0.2351 300/300 1.000 1.100 0.1009 1.200 0.0250 0.7649 
0.3581 500/500 1.000 1.100 0.1009 1.200 0.0250 0.6419 
0.4715 700/700 1.000 1.100 0.1009 1.200 0.0250 0.5285 
0.5718 900/900 1.000 1.100 0.1009 1.200 0.0250 0.4282 
0.2737 100/100 1.000 1.200 0.1930 1.200 0.0250 0.7263 
0.6571 300/300 1.000 1.200 0.1930 1.200 0.0250 0.3429 
0.8625 500/500 1.000 1.200 0.1930 1.200 0.0250 0.1375 
0.9506 700/700 1.000 1.200 0.1930 1.200 0.0250 0.0494 
0.9836 900/900 1.000 1.200 0.1930 1.200 0.0250 0.0164 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from each population.  
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
R0 is the ratio of the means (Mean2/Mean1) under the null hypothesis, H0. 
R1 is the ratio of the means (Mean2/Mean1) at which the power is calculated. 
COV is the coefficient of variation on the original scale. The value of sigma is calculated from this. 
ES is the effect size which is |Ln(R0)-Ln(R1)| / (sigma). 
 
Summary Statements 
A one-sided, two-sample t-test with group sample sizes of 100 and 100 achieves 11% power to 
detect a ratio of 1.100 when the ratio under the null hypothesis is 1.000. The coefficent of 
variation on the original scale is 1.200. The significance level (alpha) is 0.0250. 
 

 

This report shows the power for the indicated scenarios.  

Plot Section 
 

 

Power vs N1 by R1 with R0=1.000 CV=1.200
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This plot shows the power versus the sample size. 
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Example2 –Validation 
We will validate this procedure by showing that it gives the identical results to the regular test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example 1. Since the output for this example is shown above, only the output from the procedure 
that uses differences is shown below. 

To run the power analysis of a t-test on differences, we need the values of Mean2 (which 
correspond to R1) and S1. The value of Mean1 will be zero. 

( )
( )

S COV1 1
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2
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= +

= +

=

ln
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=
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Setup 
Load the PASS: Means: 2: Inequality: Differences panel. You can enter the following parameter 
values or load Example1c. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Mean1 ...............................................0 
Mean2 ...............................................0.095310 0.182322 
N1 .....................................................100 to 900 by 200 
N2 .....................................................Use R 
R .......................................................1.0 
Alternative Hypothesis ......................Ha: Mean1<Mean2 
Nonparametric Adjustment ............... Ignore 
S1......................................................0.944456 
S2......................................................S1 
Alpha.................................................0.025 
Beta................................................... Ignored since this is the Find setting 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<Mean2 
The standard deviations were assumed to be unknown and equal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.1057 100 100 1.000 0.0250 0.8943 0.0000 0.0953 0.9445 0.9445 
0.2351 300 300 1.000 0.0250 0.7649 0.0000 0.0953 0.9445 0.9445 
0.3581 500 500 1.000 0.0250 0.6419 0.0000 0.0953 0.9445 0.9445 
0.4715 700 700 1.000 0.0250 0.5285 0.0000 0.0953 0.9445 0.9445 
0.5718 900 900 1.000 0.0250 0.4282 0.0000 0.0953 0.9445 0.9445 
0.2737 100 100 1.000 0.0250 0.7263 0.0000 0.1823 0.9445 0.9445 
0.6571 300 300 1.000 0.0250 0.3429 0.0000 0.1823 0.9445 0.9445 
0.8625 500 500 1.000 0.0250 0.1375 0.0000 0.1823 0.9445 0.9445 
0.9506 700 700 1.000 0.0250 0.0494 0.0000 0.1823 0.9445 0.9445 
0.9836 900 900 1.000 0.0250 0.0164 0.0000 0.1823 0.9445 0.9445 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 450  

Non-Inferiority 
Tests of the 
Difference in Two 
Means 
Introduction 
This procedure computes power and sample size for non-inferiority and superiority tests in two-
sample designs in which the outcome is a continuous normal random variable. Measurements are 
made on individuals that have been randomly assigned to one of two groups. This is sometimes 
referred to as a parallel-groups design. This design is used in situations such as the comparison of 
the income level of two regions, the nitrogen content of two lakes, or the effectiveness of two 
drugs.  

The two-sample t-test is commonly used with this situation. When the variances of the two groups 
are unequal, Welch’s t-test may be used. When the data are not normally distributed, the Mann-
Whitney (Wilcoxon signed-ranks) U test may be used. 

The details of sample size calculation for the two-sample design are presented in the Two-Sample 
T-Test chapter and they will not be duplicated here. This chapter only discusses those changes 
necessary for non-inferiority and superiority tests. Sample size formulas for non-inferiority and 
superiority tests of two means are presented in Chow et al. (2003) pages 57-59.  



450-2  Non-Inferiority Tests of Two Means 

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size could be calculated using the Two-Sample T-Test procedure. However, at 
the urging of our users, we have developed this module, which provides the input and output in 
formats that are convenient for these types of tests. This section will review the specifics of non-
inferiority and superiority testing.  

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0 1 2:μ μ− ≤ D  versus H1 1 2:μ μ− > D  

Rejecting this test implies that the mean difference is larger than the value D. This test is called an 
upper-tailed test because it is rejected in samples in which the difference between the sample 
means is larger than D. 

Following is an example of a lower-tailed test. 

H0 1 2:μ μ− ≥ D  versus H1 1 2:μ μ− < D  

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialized notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation
μ  Not used Mean of population 1. Population 1 is assumed to consist 

of those who have received the new treatment. 
1

μ2  Not used Mean of population 2. Population 2 is assumed to consist 
of those who have received the reference treatment. 

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the magnitude of the amount that is not of 
practical importance. This may be thought of as the 
largest change from the baseline that is considered to be 
trivial. The absolute value is shown to emphasize that 
this is a magnitude. The sign of the value will be 
determined by the specific design that is being used. 

δ  D True difference. This is the value of μ μ1 2− , the 
difference between the means. This is the value at which 
the power is calculated. 

Note that the actual values of μ1  and μ2  are not needed. Only their difference is needed for 
power and sample size calculations. 
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Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than the equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

A superiority test tests that the treatment mean is better than the reference mean by more than the 
equivalence margin. The actual direction of the hypothesis depends on the response variable 
being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

H0 1 2:μ μ ε≤ −  versus  H1 1 2:μ μ ε> −  

H0 1 2:μ μ ε− ≤ −   versus  H1 1 2:μ μ ε− > −  

H0:δ ε≤ −   versus  H1:δ ε> −  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

H0 1 2:μ μ ε≥ +  versus  H1 1 2:μ μ ε< +  

H0 1 2:μ μ ε− ≥   versus  H1 1 2:μ μ ε− <  

H0:δ ε≥   versus  H1:δ ε<  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of equivalence. The value of δ  must be greater than ε . The following are equivalent 
sets of hypotheses. 

H0 1 2:μ μ ε≤ +  versus  H1 1 2:μ μ ε> +  

H0 1 2:μ μ ε− ≤   versus  H1 1 2:μ μ ε− >  

H0:δ ε≤   versus  H1:δ ε>  
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Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of equivalence. The value of δ  must be less than − ε . The following are equivalent sets of 
hypotheses. 

H0 1 2:μ μ ε≥ −  versus  H1 1 2:μ μ ε< −  

H0 1 2:μ μ ε− ≥ −   versus  H1 1 2:μ μ ε− < −  

H0:δ ε≥ −   versus  H1:δ ε< −  

Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that a test is to be conducted to determine if a new cancer treatment adversely 
affects mean bone density. The adjusted mean bone density (AMBD) in the population of interest 
is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the 
treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health 
threat.  

The hypothesis of interest is whether the mean AMBD in the treated group is more than 0.000115 
below that of the reference group. The statistical test will be set up so that if the null hypothesis is 
rejected, the conclusion will be that the new treatment is non-inferior. The value 0.000115 gm/cm 
is called the margin of equivalence or the margin of non-inferiority. 



 Non-Inferiority Tests of Two Means  450-5 

Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
Under the null hypothesis, this test assumes that the two groups of data are simple random 
samples from a single population of normally-distributed values that all have the same mean and 
variance. This assumption implies that the data are continuous and their distribution is symmetric. 
The calculation of the test statistic for the case when higher response values are good is as 
follows.  
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The null hypothesis is rejected if the computed p-value is less than a specified level (usually 
0.05). Otherwise, no conclusion can be reached. 

Welch’s T-Test 
Welch (1938) proposed the following test when the two variances are not assumed to be equal.  
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Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions are 
that the distributions are at least ordinal and that they are identical under H0. This means that ties 
(repeated values) are not acceptable. When ties are present, you can use approximations, but the 
theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

 The correction factor, C, is 0.5 if the rest of the numerator is negative or -0.5 otherwise. The 
value of z is then compared to the normal distribution. 



 Non-Inferiority Tests of Two Means  450-7 

Computing the Power 
Standard Deviations Equal 
When σ σ σ1 2= = , the power of the t test is calculated as follows.  

1.  Find  such that , where tα ( )1− =T tdf α α ( )T tdf α  is the area under a central-t curve to the 

left of x and df N N= + −1 2 2 . 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

 

3. Calculate the noncentrality parameter: λ
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4. Calculate: Power = ( )1− ′T tdf ,λ α , where ( )′T xdf ,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom df and noncentrality parameter λ . 

Standard Deviations Unequal 
This case often recommends Welch’s test. When σ σ1 2≠ , the power is calculated as follows.  
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which is the adjusted degrees of freedom. Often, this is rounded to the next highest integer. 
Note that this is not the value of f used in the computation of the actual test. Instead, this is 
the expected value of f. 

3.  Find  such that , where tα ( )1− =T tf α α ( )T tf α  is the area to the left of x under a central-t 
curve with f degrees of freedom. 

4. Calculate: λ
ε
σ

=
x

,  the noncentrality parameter. 

5. Calculate: Power = ( )1− ′T tf ,λ α , where ( )′T xf ,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom f and noncentrality parameter λ . 
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Nonparametric Adjustment 
When using the Mann-Whitney test rather than the t test, results by Al-Sunduqchi and Guenther 
(1990) indicate that power calculations for the Mann-Whitney test may be made using the 
standard t test formulations with a simple adjustment to the sample sizes. The size of the 
adjustment depends on the actual distribution of the data. They give sample size adjustment 
factors for four distributions. These are 1 for uniform, 2/3 for double exponential,  for 
logistic, and 

9 2/ π
π / 3  for normal distributions.  
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Beta or N1. 

Select N1 when you want to determine the sample size needed to achieve a given power and 
alpha.  

Select Beta when you want to calculate the power of an experiment that has already been run.  

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are usually considered 
bad. However, if the response variable is income, higher values are generally considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
mean is within the margin of equivalence of being no worse than the reference mean. Select 
Superiority when you want to test whether the mean is better than the reference mean by at least 
the margin of equivalence. 

|E| (Equivalence Margin) 
This is the magnitude of the margin of equivalence. It is the smallest difference between the mean 
and the reference mean that still results in the conclusion of non-inferiority (or superiority). Note 
that the sign of this value is assigned depending on the selections for Higher Is and Test Type.  

D (True Value) 
This is the difference between the mean and the reference value at which the power is computed. 
For non-inferiority tests, this value is often set to zero, but it can be non-zero as long as the values 
are consistent with the alternative hypothesis, H1. For superiority tests, this value is non-zero. 
Again, it must be consistent with the alternative hypothesis, H1. 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 
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N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of inferiority when in fact the mean is not non-
inferior. Since this is a one-sided test, the value of 0.025 is commonly used for alpha. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of inferiority when you should. Values 
must be between zero and one. The value of 0.10 is recommended for beta.  

Power is defined as one minus beta. Hence, specifying the beta error level also specifies the 
power level. For example, if you specify beta values of 0.05, 0.10, and 0.20, you are specifying 
the corresponding power values of 0.95, 0.90, and 0.80, respectively. 

S1 and S2 (Standard Deviations) 
These options specify the values of the standard deviations for each group. When the S2 is set to 
S1, only S1 needs to be specified. The value of S1 will be copied into S2. 

When these values are not known, you must supply estimates of them. Press the SD button to 
display the Standard Deviation Estimator window. This procedure will help you find appropriate 
values for the standard deviation. 
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Nonparametric Adjustment 
This option makes appropriate sample size adjustments for the Wilcoxon test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Wilcoxon test may be 
made using the standard t test formulations with a simple adjustment to the sample size. The size 
of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

Ignore 
Do not make a Wilcoxon adjustment. This indicates that you want to analyze a t test, not the 
Wilcoxon test. 

Uniform 
Make the Wilcoxon sample size adjustment assuming the uniform distribution. Since the factor is 
one, this option performs the same function as Ignore. It is included for completeness. 

Double Exponential 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the double 
exponential distribution. 

Logistic 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the logistic 
distribution. 

Normal 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the normal 
distribution. 
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Example1 - Power Analysis 
Suppose that a test is to be conducted to determine if a new cancer treatment adversely affects 
bone density. The adjusted mean bone density (AMBD) in the population of interest is 0.002300 
gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the treatment 
reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health threat. They 
also want to consider what would happen if the margin of equivalence is set to 2.5% (0.0000575 
gm/cm). 

Following accepted procedure, the analysis will be a non-inferiority test using the t-test at the 
0.025 significance level. Power to be calculated assuming that the new treatment has no effect on 
AMBD. Several sample sizes between 10 and 800 will be analyzed. The researchers want to 
achieve a power of at least 90%. All numbers have been multiplied by 10000 to make the reports 
and plots easier to read. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Beta & Power 
Higher is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| (Equivalence Margin)...................0.575 1.15 
D (True Difference) ...........................0 
N1 .....................................................10 50 100 200 300 500 600 800 
S (Std Deviation)...............................3 
Alpha.................................................0.025 
Beta................................................... Ignored since this is the Find setting 
Nonparametric Adjustment ............... Ignore 
Reports Tab 
Mean Decimals .................................3 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.06013 10/10 -0.575 0.000 0.02500 0.93987 3.000 3.000 
0.15601 50/50 -0.575 0.000 0.02500 0.84399 3.000 3.000 
0.27052 100/100 -0.575 0.000 0.02500 0.72948 3.000 3.000 
0.48326 200/200 -0.575 0.000 0.02500 0.51674 3.000 3.000 
0.65087 300/300 -0.575 0.000 0.02500 0.34913 3.000 3.000 
0.85769 500/500 -0.575 0.000 0.02500 0.14231 3.000 3.000 
0.91295 600/600 -0.575 0.000 0.02500 0.08705 3.000 3.000 
0.96943 800/800 -0.575 0.000 0.02500 0.03057 3.000 3.000 
0.12553 10/10 -1.150 0.000 0.02500 0.87447 3.000 3.000 
0.47524 50/50 -1.150 0.000 0.02500 0.52476 3.000 3.000 
0.76957 100/100 -1.150 0.000 0.02500 0.23043 3.000 3.000 
0.96926 200/200 -1.150 0.000 0.02500 0.03074 3.000 3.000 
0.99685 300/300 -1.150 0.000 0.02500 0.00315 3.000 3.000 
0.99998 500/500 -1.150 0.000 0.02500 0.00002 3.000 3.000 
1.00000 600/600 -1.150 0.000 0.02500 0.00000 3.000 3.000 
1.00000 800/800 -1.150 0.000 0.02500 0.00000 3.000 3.000 
 
Report Definitions 
Group 1 is the treatment group. Group 2 is the reference or standard group. 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the sample sizes of group 1 and 2, respectively. 
|E| is the magnitude of the margin of equivalence. It is the largest difference that is not of practical significance. 
D is actual difference between the means. D = Mean1 - Mean2. 
Alpha is the probability of a false-positive result. 
Beta is the probability of a false-negative result. 
SD1 and SD2 are the standard deviations of groups 1 and 2, respectively. 
 
Summary Statements 
Group sample sizes of 10 and 10 achieve 6% power to detect non-inferiority using a one-sided, 
two-sample t-test. The margin of equivalence is 0.575. The true difference between the means is 
assumed to be 0.000. The significance level (alpha) of the test is 0.02500. The data are drawn 
from populations with standard deviations of 3.000 and 3.000. 
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The above report shows that for |E| = 1.15, the sample size necessary to obtain 90% power is 
about 150 per group. However, if |E| = 0.575, the required sample size is about 600 per group. 
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Example2 - Finding the Sample Size 
Continuing with Example1, the researchers want to know the exact sample size for each value of 
|E| to achieve 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N1 
Higher is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| (Equivalence Margin)...................0.575 1.15 
D (True Difference) ...........................0 
N1 ..................................................... Ignored since this is the Find setting 
S (Std Deviation)...............................3 
Alpha.................................................0.025 
Beta...................................................0.10 
Nonparametric Adjustment ............... Ignore 
Reports Tab 
Mean Decimals .................................3 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.90036 573/573 -0.575 0.000 0.02500 0.09964 3.000 3.000 
0.90149 144/144 -1.150 0.000 0.02500 0.09851 3.000 3.000 

 
This report shows the exact sample size requirement for each value of |E|. 
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Example3 - Validation using Chow 
Chow, Shao, Wang (2003) page 62 has an example of a sample size calculation for a non-
inferiority trial. Their example obtains a sample size of 51 in each group when D = 0, |E| = 0.05, 
S = 0.1, Alpha = 0.05, and Beta = 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N1 
Higher is ............................................Good 
Test Type ..........................................Non-Inferiority 
|E| (Equivalence Margin) ...................0.05 
D (True Difference) ...........................0 
N1......................................................Ignored since this is the Find setting 
S (Std Deviation) ...............................0.1 
Alpha .................................................0.05 
Beta...................................................0.20 
Nonparametric Adjustment................Ignore 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.80590 51/51 -0.050 0.000 0.05000 0.19410 0.100 0.100 

 
PASS has also obtained a sample size of 51 per group. 
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Example4 - Validation using Julious 
Julious (2004) page 1950 gives an example of a sample size calculation for a parallel, non-
inferiority design. His example obtains a sample size of 336 when D = 0, |E| = 10, S = 40, Alpha 
= 0.025, and Beta = 0.10. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N1 
Higher is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| (Equivalence Margin)...................10 
D (True Difference) ...........................0 
N1 ..................................................... Ignored since this is the Find setting 
S (Std Deviation)...............................40 
Alpha.................................................0.025 
Beta...................................................0.10 
Nonparametric Adjustment ............... Ignore 
Population Size ................................. Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.90045 337/337 -10.000 0.000 0.02500 0.09955 40.000 40.000 
 

 
PASS obtained sample sizes of 337 in each group. The difference between 336 that Julious 
received and 337 that PASS calculated is likely caused by rounding. 
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Chapter 455  

Non-Inferiority 
Test of the Ratio of 
Two Means 
Introduction 
This procedure calculates power and sample size for non-inferiority and superiority t-tests from a 
parallel-groups design in which the logarithm of the outcome is a continuous normal random 
variable. This routine deals with the case in which the statistical hypotheses are expressed in terms 
of mean ratios instead of mean differences.  

The details of testing the non-inferiority of two treatments using data from a two-group design are 
given in another chapter and they will not be repeated here. If the logarithm of the response can be 
assumed to follow a normal distribution, hypotheses about non-inferiority stated in terms of the ratio 
can be transformed into hypotheses about the difference. The details of this analysis are given in 
Julious (2004). They will only be summarized here.  
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Non-Inferiority Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  E Margin of equivalence. This is a tolerance value that 
defines the maximum amount that is not of practical 
importance. This is the largest change in the mean ratio 
from the baseline value (usually one) that is still 
considered to be trivial.  

 φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 

The null hypothesis of inferiority is 

H where0 1: .φ φ φ≤ <L L  

and the alternative hypothesis of non-inferiority is  

H1: φ φ> L  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be found to be  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σ d

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Find 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Beta for a power analysis or N1 for sample size determination. 

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are usually considered 
bad. However, if the response variable is income, higher values are probably considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
treatment mean is within the margin of equivalence of being no worse than the reference mean. 
Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 

E (Equivalence Margin) 
This is the magnitude of the relative margin of equivalence. It is the smallest change in the ratio 
of the two means that still results in the conclusion of non-inferiority (or superiority).  

For example, suppose the non-inferiority boundary for the mean ratio is to be 0.80. This value is 
interpreted as follows: if the mean ratio (Treatment Mean / Reference Mean) is greater than 0.80, 
the treatment group is non-inferior to the reference group. In this example, the margin of 
equivalence would be 1.00 - 0.80 = 0.20. 

This example assumes that higher values are better. If higher values are worse, an equivalence 
margin of 0.20 would be translated into a non-inferiority bound of 1.20. In this case, if the mean 
ratio is less than 1.20, the treatment group is non-inferior to the reference group. 

Note that the sign of this value is ignored. Only the magnitude is used. 

Recommended values:  

0.20 is a common value for this parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, to be conservative, some authors recommend 
calculating the power using a ratio of 0.95 since this will require a larger sample size. 
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COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. See the discussion above for more details 
on the definition of the coefficient of variation.  

N1 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 1 (the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 
10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Alpha (Significance Level) 
Specify one or more values of alpha (the probably of a type-I error which is rejecting the null 
hypothesis of inferiority) when in fact the treatment group is not inferior to the reference group. 
Note that the valid range is 0 to 1, but typical values are between 0.01 and 0.20. 

You can enter a range of values such as 0.05, 0.10, 0.15 or 0.5 to 0.15 by 0.01.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of inferiority when in fact the treatment 
mean is non-inferior. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  
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Example1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is not 
inferior to the standard drug. Responses following either treatment are known to follow a log 
normal distribution. A parallel-group design will be used and the logged data will be analyzed 
with a two-sample t-test.  

Researchers have decided to set the margin of equivalence at 0.20. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.025. The power will be computed 
assuming that the true ratio is either 0.95 or 1.00. Sample sizes between 100 and 1000 will be 
included in the analysis. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
High Is...............................................Good 
Test Type ..........................................Non-Inferiority 
E........................................................0.20 
R1 .....................................................0.95 1.0 
COV ..................................................1.50 
Alpha.................................................0.025 
Beta................................................... Ignored since this is the Find setting 
N1 .....................................................100 to 1000 by 100 
N2 .....................................................Use R 
R .......................................................1.0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 



 Non-Inferiority Tests using the Ratio of Two Means  455-7 

Numeric Results 
 

Numeric Results for Non-Inferiority Ratio Test (H0: R <= 1-E; H1: R > 1-E) 
 
  Equivalence Equivalence True Significance Coefficient  
  Margin Bound Ratio Level of Variation  
Power N1/N2 (E) (RB) (R1) (Alpha) (COV) Beta 
0.1987 100/100 0.20 0.80 0.95 0.0250 1.50 0.8013 
0.3539 200/200 0.20 0.80 0.95 0.0250 1.50 0.6461 
0.4918 300/300 0.20 0.80 0.95 0.0250 1.50 0.5082 
0.6098 400/400 0.20 0.80 0.95 0.0250 1.50 0.3902 
0.7064 500/500 0.20 0.80 0.95 0.0250 1.50 0.2936 
0.7827 600/600 0.20 0.80 0.95 0.0250 1.50 0.2173 
0.8416 700/700 0.20 0.80 0.95 0.0250 1.50 0.1584 
0.8860 800/800 0.20 0.80 0.95 0.0250 1.50 0.1140 
0.9189 900/900 0.20 0.80 0.95 0.0250 1.50 0.0811 
0.9428 1000/1000 0.20 0.80 0.95 0.0250 1.50 0.0572 
0.3038 100/100 0.20 0.80 1.00 0.0250 1.50 0.6962 
0.5384 200/200 0.20 0.80 1.00 0.0250 1.50 0.4616 
0.7113 300/300 0.20 0.80 1.00 0.0250 1.50 0.2887 
0.8280 400/400 0.20 0.80 1.00 0.0250 1.50 0.1720 
0.9013 500/500 0.20 0.80 1.00 0.0250 1.50 0.0987 
0.9451 600/600 0.20 0.80 1.00 0.0250 1.50 0.0549 
0.9702 700/700 0.20 0.80 1.00 0.0250 1.50 0.0298 
0.9842 800/800 0.20 0.80 1.00 0.0250 1.50 0.0158 
0.9918 900/900 0.20 0.80 1.00 0.0250 1.50 0.0082 
0.9958 1000/1000 0.20 0.80 1.00 0.0250 1.50 0.0042 
 
Report Definitions 
H0 (null hypothesis) is that R <= 1-E, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is that R > 1-E. 
E is the magnitude of the relative margin of equivalence. 
RB is equivalence bound for the ratio. 
R1 is actual ratio between the treatment and reference means. 
COV is the coefficient of variation on the original scale.  
Power is the probability of rejecting H0 when it is false. 
N1 is the number of subjects in the first (reference) group. 
N2 is the number of subjects in the second (treatment) group. 
Alpha is the probability of falsely rejecting H0. 
Beta is the probability of not rejecting H0 when it is false. 
 
Summary Statements 
Group sample sizes of 100 in the first group and 100 in the second group achieve 20% power to 
detect non-inferiority using a one-sided, two-sample t-test. The margin of equivalence is 0.20. 
The true ratio of the means at which the power is evaluated is 0.95. The significance level 
(alpha) of the test is 0.0250. The coefficients of variation of both groups are assumed to be 
 

 

This report shows the power for the indicated scenarios.  
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Plot Section 
 

 

Power vs N1 by R1 with E=0.20 CV=1.50
Alpha=0.025 N2=N1 1-Sided T-Test

0.95

1.00

P
ow

er

R
1

N1

0.1

0.3

0.5

0.7

0.9

1.1

0 200 400 600 800 1000

 
 

This plot shows the power versus the sample size. 
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Example2 –Validation 
We could not find a validation example for this procedure in the statistical literature. Therefore, 
we will show that this procedure gives the same results as the non-inferiority test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example1. Since the output for this example is shown above, all that we need is the output from 
the procedure that uses differences. 

To run the inferiority test on differences, we need the values of |E| and S1. 
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Setup 
Load the PASS: Means: 2: Non-Inferiority: Differences panel. You can enter the following 
parameter values or load Example1b. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| ......................................................0.223144 
D........................................................-0.051293  0.0 
S1......................................................1.085659 
S2......................................................S1 
Alpha .................................................0.025 
Beta...................................................Ignored since this is the Find setting 
N1......................................................100 to 1000 by 100 
N2......................................................Use R 
R........................................................1.0 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: D <= -|E|; H1: D > -|E|) 
Test Statistic: T-Test 
 
 Equivalence Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (E) (D) (Alpha) Beta (SD1) (SD2) 
0.1987 100/100 -0.223 -0.051 0.0250 0.8013 1.086 1.086 
0.3539 200/200 -0.223 -0.051 0.0250 0.6461 1.086 1.086 
0.4918 300/300 -0.223 -0.051 0.0250 0.5082 1.086 1.086 
0.6098 400/400 -0.223 -0.051 0.0250 0.3902 1.086 1.086 
0.7064 500/500 -0.223 -0.051 0.0250 0.2936 1.086 1.086 
0.7828 600/600 -0.223 -0.051 0.0250 0.2172 1.086 1.086 
0.8416 700/700 -0.223 -0.051 0.0250 0.1584 1.086 1.086 
0.8860 800/800 -0.223 -0.051 0.0250 0.1140 1.086 1.086 
0.9189 900/900 -0.223 -0.051 0.0250 0.0811 1.086 1.086 
0.9428 1000/1000 -0.223 -0.051 0.0250 0.0572 1.086 1.086 
0.3038 100/100 -0.223 0.000 0.0250 0.6962 1.086 1.086 
0.5384 200/200 -0.223 0.000 0.0250 0.4616 1.086 1.086 
0.7113 300/300 -0.223 0.000 0.0250 0.2887 1.086 1.086 
0.8280 400/400 -0.223 0.000 0.0250 0.1720 1.086 1.086 
0.9013 500/500 -0.223 0.000 0.0250 0.0987 1.086 1.086 
0.9451 600/600 -0.223 0.000 0.0250 0.0549 1.086 1.086 
0.9702 700/700 -0.223 0.000 0.0250 0.0298 1.086 1.086 
0.9842 800/800 -0.223 0.000 0.0250 0.0158 1.086 1.086 
0.9918 900/900 -0.223 0.000 0.0250 0.0082 1.086 1.086 
0.9958 1000/1000 -0.223 0.000 0.0250 0.0042 1.086 1.086 

 

You can compare these power values with those shown above in Example1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 460  

Equivalence of 
Two Independent 
Means using their 
Difference 
Introduction 
This procedure allows you to study the power and sample size of equivalence tests of the means of 
two independent groups using the two-sample t-test. Schuirmann’s (1987) two one-sided tests 
(TOST) approach is used to test equivalence. Only a brief introduction to the subject will be 
given here. For a comprehensive discussion, refer to Chow and Liu (1999).  

Measurements are made on individuals that have been randomly assigned to one of two groups. 
This parallel-groups design may be analyzed by a TOST equivalence test to show that the means 
of the two groups do not differ by more than a small amount, called the margin of equivalence. 

The definition of equivalence has been refined in recent years using the concepts of 
prescribability and switchability. Prescribability refers to ability of a physician to prescribe either 
of two drugs at the beginning of the treatment. However, once prescribed, no other drug can be 
substituted for it. Switchability refers to the ability of a patient to switch from one drug to another 
during treatment without adverse effects. Prescribability is associated with equivalence of 
location and variability. Switchability is associated with the concept of individual equivalence. 
This procedure analyzes average equivalence. Thus, it partially analyzes prescribability. It does 
not address equivalence of variability or switchability. 

Parallel-Group Design 
In a parallel-group design, subjects are assigned at random to either of two groups. Group 1 is the 
treatment group and group 2 is the reference group.  



460-2  Equivalence using Difference of Means  

Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). Let μ μ2 = T  be the test group mean, μ μ1 = R  the reference group mean, and εL  and εU  
the lower and upper bounds on D T= R− = −μ μ μ μ2 1 that define the region of equivalence. The 
null hypothesis of non-equivalence is 

H D or H DL U0 0: :≤ ≥ε ε  

and the alternative hypothesis of equivalence is  

H DL U1: ε ε< < . 

Two-Sample T-Test 
This test assumes that the two groups of normally-distributed values have the same variance. The 
calculation of the two one-sided test statistics uses the following equations.  

( )T
X X

sL
L

X X

=
− −

−

2 1

1 2

ε
 and 

( )T
X X

sU
U

X X

=
− −

−

2 1

1 2

ε
 

where 

X
X

Nk

ki
i

N

k

k

= =
∑

1  

( ) ( )
s

X X X X

N N N NX X

i i
i

N

i

N

1 2

21

1 1
2

2 2
2

11

1 2 1 22
1 1

−
===

− + −

+ −
+

⎛
⎝
⎜

⎞
⎠
⎟

∑∑
 

df N N= + −1 2 2  

The null hypothesis is rejected if  and TL − TU  are greater than or equal to t .  N N1 21 2− + −α ,

The power of this test is given by 

Pr( ), ,T t   and  T t | , ,L N N U N N T R≥ ≤ −− + − − + −1 2 1 2
2

1 2 1 2α α μ μ σ 1  

where  and T   are distributed as the bivariate, noncentral t distribution with noncentrality 
parameters  and  given by 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N1 for sample size determination. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment that has already been run. 

|EU| Upper Equivalence Limit 
This value gives upper limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are considered equivalent. 

Note that EL<0 and EU>0. Also, you must have EL<D<EU. 

-|EL| Lower Equivalence Limit 
This value gives lower limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are. 

If you want symmetric limits, enter -UPPER LIMIT for EL to force EL = -|EU|.  

Note that EL<0 and EU>0. Also, you must have EL<D<EU. Finally, the scale of these numbers 
must match the scale of S. 

D (True Difference) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between the equivalence limits EL 
and EU. 

S (Standard Deviation) 
Specify the within-group standard deviation, σ . The standard deviation is assumed to be the 
same for both groups. 
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Alpha (Significance Level) 
This option specifies one or more values for the significance level, alpha. A type-I error occurs 
when you reject the null hypothesis of non-equivalent means when in fact the means are 
nonequivalent.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha, but 
some statisticians recommend a value of 0.1 or even 0.2 in equivalence trials. An alpha of 0.05 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of nonequivalent means when in fact the 
means are equivalent. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Now the use of 0.10 is standard. You should pick a value for beta that represents the risk of a 
type-II error you are willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

N1 (Sample Size Reference Group) 
Specify the number of subjects in the reference group. The total number of subjects in the 
experiment is equal to N1 + N2. 

You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Treatment Group) 
Specify one or more values for the number of subjects in the treatment group. Alternatively, enter 
Use R to base N2 on the value of N1. You may also enter a range of values such as 10 to 100 by 
10. 

Use R 

When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and [Y] means take the first integer greater than or equal 
to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2= [R(N1)] where [Y] means take the 
next integer greater than or equal to Y. Note that setting R = 1.0 forces N1 = N2. 
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Example1 - Parallel-Group Design 
A parallel-group is to be used to compare influence of two drugs on diastolic blood pressure. The 
diastolic blood pressure is known to be close to 96 mmHg with the reference drug and is thought 
to be 92 mmHg with the experimental drug. Based on similar studies, the within-group standard 
deviation is set to 18mmHg. Following FDA guidelines, the researchers want to show that the 
diastolic blood pressure with the experimental drug is within 20% of the diastolic blood pressure 
with the reference drug. Note that 20% of 96 is 19.2. They decide to calculate the power for a 
range of sample sizes between 3 and 60. The significance level is 0.05. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Upper Equivalence Limit ...................19.2 
Lower Equivalence Limit ...................-Upper Limit 
D........................................................-4 
Alpha .................................................0.05 
Beta...................................................Ignored 
S........................................................18 
N1......................................................3 5 8 10 15 20 30 40 50 60 
N2......................................................Use R 
R........................................................1.0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Parallel-Group Design 
 
 Reference Treatment      
 Group Group      
 Sample Sample Lower Upper    
 Size Size Equiv. Equiv. True Standard   
Power (N1) (N2) Limit Limit Difference Deviation Alpha Beta 
0.0386 3 3 -19.20 19.20 -4.00 18.00 0.0500 0.9614 
0.0928 5 5 -19.20 19.20 -4.00 18.00 0.0500 0.9072 
0.2887 8 8 -19.20 19.20 -4.00 18.00 0.0500 0.7113 
0.4391 10 10 -19.20 19.20 -4.00 18.00 0.0500 0.5609 
0.6934 15 15 -19.20 19.20 -4.00 18.00 0.0500 0.3066 
0.8266 20 20 -19.20 19.20 -4.00 18.00 0.0500 0.1734 
0.9433 30 30 -19.20 19.20 -4.00 18.00 0.0500 0.0567 
0.9820 40 40 -19.20 19.20 -4.00 18.00 0.0500 0.0180 
0.9946 50 50 -19.20 19.20 -4.00 18.00 0.0500 0.0054 
0.9984 60 60 -19.20 19.20 -4.00 18.00 0.0500 0.0016 
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Report Definitions 
Power is the probability of rejecting non-equivalence when they are equivalent. 
N1 is the number of subjects in the reference group. 
N2 is the number of subjects in the treatment group. 
The Upper & Lower Limits are the maximum allowable differences that result in equivalence. 
True Difference is the anticipated actual difference between the means. 
The Standard Deviation is the average S.D. within the two groups. 
Alpha is the probability of rejecting non-equivalence when they are non-equivalent. 
Beta is the probability of accepting non-equivalence when they are equivalent. 
 
 
Summary Statements 
An equivalence test of means using two one-sided tests on data from a parallel-group design 
with sample sizes of 3 in the reference group and 3 in the treatment group achieves 4% power at 
a 5% significance level when the true difference between the means is -4.00, the standard 
deviation is 18.00, and the equivalence limits are -19.20 and 19.20. 
 
 

This report shows the power for the indicated parameter configurations. Note that when the 
parameters are specified as percentages, they are displayed in the output with percent signs.  

Note that the desired 80% power occurs for a per group sample size between 15 and 20. 

Plot Section 
 

 

Power vs N1 with RM=0.00 TM=-4.00 S=18.00
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This plot shows the power versus the sample size. 
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Example2 - Parallel-Group Validation 
Using Machin 
Machin et al. (1997) page 107 present an example of determining the sample size for a parallel-
group design in which the reference mean is 96, the treatment mean is 94, the standard deviation 
is 8, the limits are plus or minus 5, the power is 80%, and the significance level is 0.05. They 
calculate the sample size to be 88. It is important to note that Machin et al. use an approximation, 
so their results should not be expected to exactly match PASS’s. 

We will now setup this example in PASS. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N1 
D........................................................-2 
Upper Equivalence Limit ...................5 
Lower Equivalence Limit ...................-Upper Limit 
Alpha .................................................0.05 
Beta...................................................0.20 
S........................................................8 
N1......................................................Ignored 
N2......................................................Use R 
R........................................................1.0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Reference Treatment      
 Group Group      
 Sample Sample Lower Upper    
 Size Size Equiv. Equiv. True Standard   
Power (N1) (N2) Limit Limit Difference Deviation Alpha Beta 
0.8015 89 89 -5.00 5.00 -2.00 8.00 0.0500 0.1985 

 

Note that PASS has obtained a sample size of 89 which is very close to the approximate value of 
88 that Machin calculated. 

 



460-8  Equivalence using Difference of Means  

 

 

 

 



  465-1 

Chapter 465  

Equivalence of 
Two Means using 
Simulation 
This procedure allows you to study the power and sample size of an equivalence test comparing two 
means from independent groups. Schuirmann’s (1987) two one-sided tests (TOST) approach is 
used to test equivalence. The t-test is commonly used in this situation, but other tests have been 
developed for use when the t-test assumptions are not met. These additional tests include the Mann-
Whitney U test, Welch’s unequal variance test, and trimmed versions of the t-test and the Welch 
test.  

Measurements are made on individuals that have been randomly assigned to, or randomly chosen 
from, one of two groups. This parallel-groups design may be analyzed by a TOST equivalence 
test to show that the means of the two groups do not differ by more than a small amount, called 
the margin of equivalence. 

The two-sample t-test is commonly used in this situation. When the variances of the two groups are 
unequal, Welch’s t-test is often used. When the data are not normally distributed, the Mann-Whitney 
(Wilcoxon signed-ranks) U test and, less frequently, the trimmed t-test may be used. 

The details of the power analysis of equivalence test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 
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Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are as follows. 

1. Specify how the test is carried out. This includes indicating how the test statistic is calculated 
and how the significance level is specified. 

2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s power.  

3. Generate random samples from the distributions specified by the null hypothesis. Calculate each 
test statistic from the simulated data and determine if the null hypothesis is accepted or rejected. 
Tabulate the number of rejections and use this to calculate the test’s significance level.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated data 
leads to a rejection of the null hypothesis. The power is the proportion of simulated samples in 
step 2 that lead to rejection. The significance level is the proportion of simulated samples in step 
3 that lead to rejection. 

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draw the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  
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Simulating Data for an Equivalence Test 
Simulating equivalence data is more complex than simulating data for a regular two-sided test. An 
equivalence test essentially reverses the roles of the null and alternative hypothesis. The null 
hypothesis becomes 

( ) ( )H D or D0 1 2 1 2: μ μ μ μ− ≤ − − ≥  

where D is the margin of equivalence. Thus the null hypothesis is made up of two simple 
hypotheses:  

( )H D01 1 2: μ μ− ≤ −  

( )H D02 1 2: μ μ− ≥  

The additional complexity comes in deciding which of the two null hypotheses are used to 
simulate data for the null hypothesis situation. The choice becomes more problematic when 
asymmetric equivalence limits are chosen. In this case, you may want to try simulating using each 
simple null hypothesis in turn. 

To generate data for the null hypotheses, generate data for each group. The difference in the 
means of these two groups will become one of the equivalence limits. The other equivalence limit 
will be determined by symmetry and will always have a sign that is the opposite of the first 
equivalence limit.  

Test Statistics 
This section describes the test statistics that are available in this procedure. Note that these test 
statistics are computed on the differences. Thus, when the equation refers to an X value, this X 
value is assumed to be a difference between two individual variates. 

Two-Sample T-Test 
The t-test assumes that the data are simple random samples from populations of normally-
distributed values that have the same mean and variance. This assumption implies that the data 
are continuous and their distribution is symmetric. The calculation of the t statistic is as follows.  
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The significance of the test statistic is determined by computing a p-value which is based on the t 
distribution with appropriate degrees of freedom. If this p-value is less than a specified level 
(often 0.05), the null hypothesis is rejected. Otherwise, no conclusion can be reached. 

Welch’s T-Test 
Welch (1938) proposed the following test for use when the two variances are not assumed to be 
equal. 

( ) ( )
t

X X
sf

X X

*
*=

− − −

−

1 2 1 2

1 2

μ μ
 

where 

( )
( )

( )
( )

s
X X

N N

X X

N NX X

i
i

N

i
i

N

1 2

1 2

1 1
2

1

1 1

2 2
2

1

2 21 1−
= ==

−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+
−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∑ ∑
*  

( ) ( )

f

s
N

s
N

s
N N

s
N N

=
+

⎛
⎝
⎜

⎞
⎠
⎟

−
+

−

1
2

1

2
2

2

2

1
4

1
2

1

2
4

2
2

21 1

 

( )
s

X X

N

i
i

N

1

1 1
2

1

1

1

1
=

−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
∑

,
( )

s
X X

N

i
i

N

2

2 2
2

1

2

2

1
=

−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
∑

 



 Equivalence of Two Means using Simulation  465-5 

Trimmed T-Test assuming Equal Variances 
The notion of trimming off a small proportion of possibly outlying observations and using the 
remaining data to form a t-test was first proposed for one sample by Tukey and McLaughlin 
(1963). Tukey and Dixon (1968) consider a slight modification of this test, called Winsorization, 
which replaces the trimmed data with the nearest remaining value. The two-sample trimmed t-test 
was proposed by Yuen and Dixon (1973). 

Assume that the data values have been sorted from lowest to highest. The trimmed mean is 
defined as 

X
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N g
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where h = N – 2g and g = [N(G/100)]. Here we use [Z] to mean the largest integer smaller than Z 
with the modification that if G is non-zero, the value of  [N(G/100)] is at least one. G is the 
percent trimming and should usually be less than 25%, often between 5% and 10%. Thus, the g 
smallest and g largest observation are omitted in the calculation.  

To calculate the modified t-test, calculate the Winsorized mean and the Winsorized sum of 
squared deviations as follows. 
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Using the above definitions, the two-sample trimmed t-test is given by 
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The distribution of this t statistic is approximately that of a t distribution with degrees of freedom 
equal to . This approximation is often reasonably accurate if both sample sizes are 
greater than 6. 

h h1 2 2+ −
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Trimmed T-Test assuming Unequal Variances 
Yuen (1974) combines trimming (see above) with Welch’s (1938) test. The resulting trimmed 
Welch test is resistant to outliers and seems to alleviate some of the problems that occur because 
of skewness in the underlying distributions. Extending the results from above, the trimmed 
version of Welch’s t-test is given by 
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Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions for 
this test are that the distributions are at least ordinal and that they are identical under H0. This 
means that ties (repeated values) are not acceptable. When ties are present, an approximation can 
be used, but the theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator of z is negative or -0.5 otherwise. The 
value of z is then compared to the standard normal distribution. 
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Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, although the shape parameters are constant, the 
standard deviations, which are based on both the shape parameter and the mean, are not. Thus the 
distributions not only have different means, but different standard deviations! 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be calculated using the values of the other parameters. 
Under most conditions, you would select either Power or N1. 

Select Power when you want to estimate the power for a specific scenario.  

Select N1 when you want to determine the sample size needed to achieve a given power and 
alpha level. This option is computationally intensive and may take a long time to complete. 

Simulations 
This option specifies the number of iterations, M, used in the simulation. The larger the number 
of iterations, the longer the running time, and, the more accurate the results. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  
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Equiv. Limit 
Equivalence limits are defined as the positive and negative limits around zero that define a zone 
of equivalence. This zone of equivalence is a set of difference values that define a region in which 
the two means are ‘close enough’ so that they are considered to be the same for practical 
purposes. 

Rather than define these limits explicitly, they are set implicitly. This is done as follows. One 
limit is found by subtracting the Group 2 Dist’n|H0 mean from the Group 1 Dist’n|H0 mean. If 
the limits are symmetric, the other limit is this difference times -1. To obtain symmetric limits, 
enter ‘Symmetric’ here. 

If asymmetric limits are desired, a numerical value is specified here. It is given the sign (+ or -) 
that is opposite the difference of the means discussed above. 

For example, if the mean of group 1 under H0 is 5, the mean of group 2 under H0 is 4, and 
Symmetric is entered here, the equivalence limits will be 5 - 4 = 1 and -1. However, if the value 
1.25 is entered here, the equivalence limits are 1 and -1.25. 

If you do not have a specific value in mind for the equivalence limit, a common value for an 
equivalence limit is 20% or 25% of the group 1 (reference) mean. 

Test Statistic 
Specify which test statistic is to be used in the simulation. Although the t-test is the most 
commonly used test statistic, it is based on assumptions that may not be viable in many situations. 
For your data, you may find that one of the other tests are more accurate (actual alpha = target 
alpha) and more precise (better power). 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Group 1 (and 2) Dist’n | H0 
These options specify the distributions of the two groups under the null hypothesis, H0. The 
difference between the means of these two distributions is the value of one of the equivalence 
limits.  

Group 1 is often called the reference (or standard) distribution. Group 2 is often called the 
treatment distribution. These options specify these two distributions under the null hypothesis, 
H0. The difference between the means of these two distributions is, by definition, one of the 
equivalence limits. Thus, you set the equivalence limit by specifying the two means. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The characters M0 and M1 are to be used for the means 
of the distributions of groups 1 and 2 under H0, respectively. An equivalence limit is then M0 - 
M1, which must be non-zero.  

For example, suppose you entered N(M0 S) for group 1 and N(M1 S) for group 2. Also, you set 
M0 equal to 5 and M1 equal to 4. The upper (positive) equivalence limit would be 5 – 4 = 1.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean of a Specified Distribution 
The distributions have been parameterized in terms of their means, since this is the parameter 
being tested. The mean of a distribution created as a linear combination of other distributions is 
found by applying the linear combination to the individual means. However, the mean of a 
distribution created by multiplying or dividing other distributions is not necessarily equal to 
applying the same function to the individual means. For example, the mean of 4N(4, 5) + 2N(5, 
6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 4*4*2*5 = 160 (although 
it is close). 
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Group 1 ( and 2) Dist’n | H1 
These options specify the distributions of the two groups under the alternative hypothesis, H1. 
The difference between the means of these two distributions is the difference that is assumed to 
be the true value of the difference.  

Usually, the mean difference is specified by entering M0 for the mean parameter in the 
distribution expression for group 1 and M1 for the mean parameter in the distribution expression 
for group 2. The mean difference under H1 then becomes the value of M0– M0 = 0. If you want a 
non-zero value, you specify it by specifying unequal values for the two distribution means. For 
example, you could enter A for the mean of group 2. The mean difference will then be M0 – A.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean of 
group 2 under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

M0 (Mean | H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean | H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 
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Parameter Values (S, A, B) 
Enter the numeric value(s) of parameter listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values using the syntax ‘0 2 3’ or ‘0 to 3 by 1.’ 

You can also change the letter than is used as the name of this parameter. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Commonly, the value of 0.05 is used for equivalence tests.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject a false null hypothesis. Values must be between zero and one. 
Historically, the value of 0.20 was used for beta. Now, 0.10 is more common. However, you 
should pick a value for beta that represents the risk of a type-II error you are willing to take. 

Power is defined as one minus beta. Hence, specifying beta also specifies the power. For 
example, if you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding 
power values of 0.95, 0.90, and 0.80, respectively.  

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the sample size, N1, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Random Number Pool Size 
This is the size of the pool of values from which the random samples will be drawn. Pools should 
be at least the maximum of 10,000 and twice the number of simulations. You can enter Automatic 
and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 

Percent Trimmed at Each End 
Specify the percent of each end of the sorted data that is to be trimmed (constant G above) when 
using the trimmed means procedures. This percentage is applied to the sample size to determine 
how many of the lowest and highest data values are to be trimmed by the procedure. For example, 
if the sample size (N1) is 27 and you specify 10 here, then [27*10/100] = 2 observations will be 
trimmed at the bottom and the top. For any percentage, at least one observation is trimmed from 
each end of the sorted dataset. 

The range of possible values is 0 to 25.  
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Example1 - Power at Various Sample 
Sizes 
Researchers are planning an experiment to determine if the response to a new drug is equivalent 
to the response to the standard drug. The average response level to the standard drug is known to 
be 63 with a standard deviation of 5.  The researchers decide that if the average response level to 
the new drug is between 60 and 66, they will consider it to be equivalent to the standard drug. 

The researchers decide to use a parallel-group design. The response level for the standard drug 
will be measured for each subject. They will analyze the data using an equivalence test based on 
the t-test with an alpha level of 0.05. They want to compare the power at sample sizes of 10, 30, 
50, and 70. They assume that the data are normally distributed and that the true difference 
between the mean response of the two drugs is zero. Since this is an exploratory analysis, the 
number of simulation iterations is set to 2000. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations........................................2000 
Equiv. Limit........................................Symmetric 
Test Statistic......................................T-Test 
N1......................................................10 30 50 70 
N2......................................................Use R 
R........................................................1.0 
Group 1 Dist’n | H0............................N(M0 S) 
Group 2 Dist’n | H0............................N(M1 S) 
Group 1 Dist’n | H1............................N(M0 S) 
Group 2 Dist’n | H1............................N(M0 S) 
M0 (Mean under H0) .........................63 
M1 (Mean under H1) .........................66 
S........................................................5 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S) & Normal(M1 S) 
H1 Dist's: Normal(M0 S) & Normal(M0 S) 
Test Statistic: T-Test 
   Lower Upper 
  H1 Equiv. Equiv. Target Actual   
Power N1/N2 Diff1 Limit Limit Alpha Alpha Beta M0 M1 S 
0.009 10/10 0.0 -3.0 3.0 0.050 0.005 0.991 63.0 66.0 5.0 
(0.004) [0.005 0.013]    (0.003) [0.002 0.008]   
 
0.477 30/30 0.0 -3.0 3.0 0.050 0.053 0.524 63.0 66.0 5.0 
(0.022) [0.455 0.498]    (0.010) [0.043 0.062]   
 
0.816 50/50 0.0 -3.0 3.0 0.050 0.061 0.184 63.0 66.0 5.0 
(0.017) [0.799 0.833]    (0.010) [0.050 0.071]   
 
0.944 70/70 0.0 -3.0 3.0 0.050 0.050 0.056 63.0 66.0 5.0 
(0.010) [0.934 0.954]    (0.010) [0.040 0.060]   
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 21.61 seconds. 
 
 
Summary Statements 
Group sample sizes of 10 and 10 achieve 1% power to detect equivalence when the margin of 
equivalence is from -3.0 to 3.0 and the actual mean difference is 0.0. The significance level 
(alpha) is 0.050 using two one-sided T-Tests. These results are based on 2000 Monte Carlo 
samples from the null distributions: Normal(M0 S) and Normal(M1 S), and the alternative 
distributions: Normal(M0 S) and Normal(M0 S). 
 
 
Chart Section 
 

Power vs N1 with M0=63.0 M1=66.0 S=5.0
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha). The second row shows 
two 95% confidence intervals in brackets: the first for the power and the second for the 
significance level. Half the width of each confidence interval is given in parentheses as a 
fundamental measure of the accuracy of the simulation. As the number of simulations is 
increased, the width of the confidence intervals will decrease. 
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Example2 - Finding the Sample Size 
Continuing with Example1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N1 
Simulations........................................2000 
Equiv. Limit........................................Symmetric 
Test Statistic......................................T-Test 
N1......................................................Ignored since this is the Find setting 
N2......................................................Use R 
R........................................................1.0 
Group 1 Dist’n | H0............................N(M0 S) 
Group 2 Dist’n | H0............................N(M1 S) 
Group 1 Dist’n | H1............................N(M0 S) 
Group 2 Dist’n | H1............................N(M0 S) 
M0 (Mean under H0) .........................63 
M1 (Mean under H1) .........................66 
S........................................................5 
Alpha .................................................0.05 
Beta...................................................0.10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S) & Normal(M1 S) 
H1 Dist's: Normal(M0 S) & Normal(M0 S) 
Test Statistic: T-Test 
   Lower Upper 
  H1 Equiv. Equiv. Target Actual   
Power N1/N2 Diff1 Limit Limit Alpha Alpha Beta M0 M1 S 
0.911 61/61 0.0 -3.0 3.0 0.050 0.044 0.089 63.0 66.0 5.0 
(0.012) [0.899 0.923]    (0.009) [0.035 0.053]   
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 49.81 seconds. 
   

The required sample size is 61 per group. 
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Example3 – Comparative results when 
the data contain outliers  
Continuing Example1, this example will investigate the impact of outliers on the characteristics 
of the various test statistics. The two-sample t-test is known to be robust to the violation of some 
assumptions, but it is susceptible to inaccuracy when the data contains outliers. This example will 
investigate the impact of outliers on the power and precision of the five test statistics available in 
PASS. 

A mixture of two normal distributions will be used to randomly generate outliers. The mixture 
will draw 95% of the data from a standard distribution. The other 5% of the data will come from a 
normal distribution with the same mean but with a standard deviation that is one, five, and ten 
times larger than that of the standard. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations .......................................2000 
Equiv. Limit .......................................Symmetric 
Test Statistic .....................................T-Test 
N1 .....................................................40 
N2 .....................................................Use R 
R .......................................................1.0 
Group 1 Dist’n | H0............................N(M0 S)[95];N(M0 A)[5] 
Group 2 Dist’n | H0............................N(M1 S)[95];N(M1 A)[5] 
Group 1 Dist’n | H1............................N(M0 S)[95];N(M0 A)[5] 
Group 2 Dist’n | H1............................N(M0 S)[95];N(M0 A)[5] 
M0 (Mean under H0).........................63 
M1 (Mean under H1).........................66 
S........................................................5 
A........................................................5 25 50 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Reports Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Power Comparison for Testing Equivalence.   Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M1 S)[95];Normal(M1 A)[5] 
H1 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M0 S)[95];Normal(M0 A)[5] 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Power Power Power Power Power M0 M1 S A 
40/40 0.0 -3.0 3.0 0.050 0.708 0.708 0.657 0.656 0.672 63.0 66.0 5.0 5.0 
40/40 0.0 -3.0 3.0 0.050 0.247 0.247 0.543 0.543 0.539 63.0 66.0 5.0 25.0 
40/40 0.0 -3.0 3.0 0.050 0.073 0.072 0.509 0.508 0.510 63.0 66.0 5.0 50.0 
 
Alpha Comparison for Testing Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S A 
40/40 0.0 -3.0 3.0 0.050 0.050 0.050 0.058 0.058 0.056 63.0 66.0 5.0 5.0 
40/40 0.0 -3.0 3.0 0.050 0.030 0.030 0.041 0.041 0.044 63.0 66.0 5.0 25.0 
40/40 0.0 -3.0 3.0 0.050 0.008 0.008 0.042 0.042 0.044 63.0 66.0 5.0 50.0 
Pool Size: 10000. Simulations: 2000. Run Time: 2.90 minutes. Percent Trimmed: 10. 
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When A = 5, there are no outliers and the power of the nonparametric test and the trimmed tests 
are a little less than that of the t-test. When A = 25, the distortion of the t-test caused by the 
outliers becomes apparent. In this case, the powers of the standard t-test and Welch’s t-test are 
0.247, but the powers of the nonparametric Mann-Whitney test and the trimmed tests are about 
0.54. When A = 50, the standard t-test only achieves a power of 0.073, but the trimmed and 
nonparametric tests achieve powers of about 0.51!  

Looking at the second table, we see that the true significance level of the t-test is distorted by the 
outliers, while the significance levels of the other tests remain close to the target value. 
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Example4 – Selecting a test statistic 
when the data are skewed  
Continuing Example3, this example will investigate the impact of skewness in the underlying 
distribution on the characteristics of the various test statistics.  

Tukey’s lambda distribution will be used because it allows the amount of skewness to be 
gradually increased. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations .......................................2000 
Equiv. Limit .......................................Symmetric 
Test Statistic .....................................T-Test 
N1 .....................................................40 
N2 .....................................................Use R 
R .......................................................1.0 
Group 1 Dist’n | H0............................L(M0 S G 0) 
Group 2 Dist’n | H0............................L(M1 S G 0) 
Group 1 Dist’n | H1............................L(M0 S G 0) 
Group 2 Dist’n | H1............................L(M0 S G 0) 
M0 (Mean under H0).........................63 
M1 (Mean under H1).........................66 
S........................................................5 
G .......................................................0 0.5 0.9 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Reports Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Power Comparison for Testing Equivalence.   Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M1 S)[95];Normal(M1 A)[5] 
H1 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M0 S)[95];Normal(M0 A)[5] 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Power Power Power Power Power M0 M1 S G 
40/40 0.0 -3.0 3.0 0.050 0.685 0.685 0.626 0.625 0.635 63.0 66.0 5.0 0.0 
40/40 0.0 -3.0 3.0 0.050 0.708 0.708 0.773 0.772 0.893 63.0 66.0 5.0 0.5 
40/40 0.0 -3.0 3.0 0.050 0.747 0.746 0.940 0.939 0.996 63.0 66.0 5.0 0.9 

 
Alpha Comparison for Testing Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S G 
40/40 0.0 -3.0 3.0 0.050 0.048 0.048 0.049 0.049 0.051 63.0 66.0 5.0 0.0 
40/40 0.0 -3.0 3.0 0.050 0.043 0.043 0.043 0.042 0.047 63.0 66.0 5.0 0.5 
40/40 0.0 -3.0 3.0 0.050 0.055 0.055 0.058 0.057 0.056 63.0 66.0 5.0 0.9 
 
Pool Size: 10000. Simulations: 2000. Run Time: 3.01 minutes. Percent Trimmed: 10. 
 
 

Power vs G by Test with M0=63.0 M1=66.0 S=5.0
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We see that as the degree of skewness is increased, the power of the t-test increases slightly, but 
the powers of the trimmed and nonparametric tests improve dramatically. The significance levels 
do not appear to be adversely impacted. 
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Example5 – Validation using Machin 
Machin et al. (1997) page 107 present an example of determining the sample size for a parallel-
group design in which the reference mean is 96, the treatment mean is 94, the standard deviation 
is 8, the limits are plus or minus 5, the power is 80%, and the significance level is 0.05. They 
calculate the sample size to be 88. It is important to note that Machin et al. use an approximation, 
so their results cannot be expected to exactly match those of PASS. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example5 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N1 
Simulations .......................................2000 
Equiv. Limit .......................................Symmetric 
Test Statistic .....................................T-Test 
N1 ..................................................... Ignored since this is the Find setting 
N2 .....................................................Use R 
R .......................................................1.0 
Group 1 Dist’n | H0............................N(M0 S) 
Group 2 Dist’n | H0............................N(91 S) 
Group 1 Dist’n | H1............................N(M0 S) 
Group 2 Dist’n | H1............................N(94 S) 
M0 (Mean under H0).........................96 
S........................................................8 
Alpha.................................................0.05 
Beta...................................................0.20 
Click the Run button to perform the calculations and generate the following output. 

H0 Dist's: Normal(M0 S) & Normal(91 S) 
H1 Dist's: Normal(M0 S) & Normal(94 S) 
Test Statistic: T-Test 
 
   Lower Upper 
  H1 Equiv. Equiv. Target Actual   
Power N1/N2 Diff1 Limit Limit Alpha Alpha Beta M0 S   
0.807 87/87 2.0 -5.0 5.0 0.050 0.049 0.193 96.0 8.0  
(0.017) [0.790 0.824]    (0.009) [0.039 0.058]    

 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 60.05 seconds. 

 

The sample size of 87 per group is reasonably close to the analytic answer of 88. 
 



 470-1 

Chapter 470  

Equivalence of 
Two Independent 
Means using their 
Ratio  
Introduction 
This procedure calculates power and sample size of statistical tests for equivalence tests from 
parallel-group design with two groups. This routine deals with the case in which the statistical 
hypotheses are expressed in terms of mean ratios rather than mean differences.  

The details of testing the equivalence of two treatments using a parallel-group design are given in 
another chapter and they will not be repeated here. If the logarithms of the responses can be assumed 
to follow a normal distribution, hypotheses about equivalence in terms of the ratio can be 
transformed into hypotheses about the difference. The details of this analysis are given in Julious 
(2004). They will only be summarized here.  
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Equivalence Testing Using Ratios 
It will be convenient to adopt the following specialize notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

φ φL U,  RL, RU Margin of equivalence. These limits define an interval of 
the ratio of the means in which their difference is so 
small that it may be ignored.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of non-equivalence is 

H or0 1 1: , .φ φ φ φ φ φ≤ ≥ < >L U L Uwhere  

and the alternative hypothesis of equivalence is  

H1:φ φ φL U< <  
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Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 

( ) ( ) ( ){ } ( )

φ φ φ

φ μ
μ

φ

φ μ μ

L U

L
T

R
U

L T R φU

≤ ≤

⇒ ≤
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⎨
⎩

⎫
⎬
⎭
≤

⇒ ≤ − ≤ln ln ln ln

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

When performing an equivalence test on the difference between means, the usual procedure is to 
set the equivalence limits symmetrically above and below zero. Thus the equivalence limits will 
be plus or minus an appropriate amount. The common practice is to do the same when the data 
are being analyzed on the log scale. However, when symmetric limits are set on the log scale, 
they do not translate to symmetric limits on the original scale. Instead, they translate to limits that 
are the inverses of each other. 

Perhaps these concepts can best be understood by considering an example. Suppose the 
researchers have determined that the lower equivalence limit should be 80% on the original scale. 
Since they are planning to use a log scale for their analysis, they transform this limit to the log 
scale by taking the logarithm of 0.80. The result is -0.223144. Wanting symmetric limits, they set 
the upper equivalence limit to 0.223144. Exponentiating this value, they find that exp(0.223144) 
= 1.25. Note that 1/(0.80) = 1.25. Thus, the limits on the original scale are 80% and 125%, not 
80% and 120%.  

Using this procedure, appropriate equivalence limits for the ratio of two means can be easily 
determined. Here are a few sets of equivalence limits. 
 Lower Upper Lower Upper 
Specified Limit Limit  Limit Limit 
Percent Original Original  Log Log 
Change Scale Scale Scale Scale 
-25% 75.0% 133.3% -0.287682 0.287682 
+25% 80.0% 125.0% -0.223144 0.223144 
-20% 80.0% 125.0% -0.223144 0.223144 
+20% 83.3% 120.0% -0.182322 0.182322 
-10% 90.0% 111.1% -0.105361 0.105361 
+10% 90.9% 110.0% -0.095310 0.095310 

Note that negative percent-change values specify the lower limit first, while positive percent-
change values specify the upper limit first. After the first limit is found, the other limit is 
calculated as its inverse. 
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

σY
2
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σ μ
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Y Y

e

e
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From this relationship, the coefficient of variation of Y can be expressed as  

( )
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σ d

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented another chapter and are not duplicated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N1 for sample size determination. 

RU (Upper Equiv. Limit) 
Enter the upper equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RL, the two means are said to be equivalent. The value must be greater 
than one. A popular choice is 1.25. Note that this value is not a percentage. 

If you enter 1/RL, then 1/RL will be calculated and used here. This choice is commonly used 
because RL and 1/RL give limits that are of equal magnitude on the log scale. 

RL (Lower Equiv. Limit) 
Enter the lower equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RU, the two means are said to be equivalent. The value must be less than 
one. A popular choice is 0.80. Note that this value is not a percentage. 

If you enter 1/RU, then 1/RU will be calculated and used here. This choice is commonly used 
because RU and 1/RU give limits that are of equal magnitude on the log scale. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger sample size. 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related. The relationship between these 
quantities is . 

$σw
2

σ d
2 σw

2

σ σd w
2 22=
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N1 (Sample Size Ref. Group) 
Enter a value (or range of values) for the sample size of group 1(the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 
10 to 100 by 10. 

N2 (Sample Size Trt. Group) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Alpha (Significance Level) 
Specify one or more values of alpha, the probability of a type-I error which is rejecting the null 
hypothesis of non-equivalence when in fact the groups are equivalent. Note that the valid range is 
0 to 1, but typical values are between 0.01 and 0.20. 

You can enter a range of values such as 0.05, 0.10, 0.15 or 0.05 to 0.15 by 0.01.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of non-equivalence when in fact the 
treatment mean is equivalent. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Currently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  
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Example1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
equivalent to the standard drug. A parallel-group design will be used to test the equivalence of the 
two drugs.  

Researchers have decided to set the lower limit of equivalence at 0.80. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.05. The power will be computed 
assuming that the true ratio is either 1.00 or 1.05. Sample sizes between 50 and 550 will be 
included in the analysis. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
RU .....................................................1/RL 
RL......................................................0.80 
R1......................................................1.0 1.05 
COV ..................................................1.50 
N1......................................................50 to 550 by 100 
N2......................................................Use R 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Testing Equivalence Using a Parallel-Group Design 
 
 Reference Treatment      
 Group Group Lower Upper  Coefficient  
 Sample Sample Equiv. Equiv. True of  
 Size Size Limit Limit Ratio Variation   
Power (N1) (N2) (RL) (RU) (R1) (COV) Alpha Beta 
0.0000 50 50 0.80 1.25 1.00 1.50 0.0500 1.0000 
0.1088 150 150 0.80 1.25 1.00 1.50 0.0500 0.8912 
0.4863 250 250 0.80 1.25 1.00 1.50 0.0500 0.5137 
0.7170 350 350 0.80 1.25 1.00 1.50 0.0500 0.2830 
0.8494 450 450 0.80 1.25 1.00 1.50 0.0500 0.1506 
0.9221 550 550 0.80 1.25 1.00 1.50 0.0500 0.0779 
0.0000 50 50 0.80 1.25 1.05 1.50 0.0500 1.0000 
0.1010 150 150 0.80 1.25 1.05 1.50 0.0500 0.8990 
0.4360 250 250 0.80 1.25 1.05 1.50 0.0500 0.5640 
0.6366 350 350 0.80 1.25 1.05 1.50 0.0500 0.3634 
0.7602 450 450 0.80 1.25 1.05 1.50 0.0500 0.2398 
0.8396 550 550 0.80 1.25 1.05 1.50 0.0500 0.1604 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when they are equivalent. 
N1 is the number of subjects in the first group. 
N2 is the number of subjects in the second group. 
RU & RL are the maximum allowable ratios that result in equivalence. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale.  
Alpha is the probability of rejecting non-equivalence when the means are non-equivalent. 
Beta is the probability of accepting non-equivalence when the means are equivalent. 
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Summary Statements 
An equivalence test of means using two one-sided tests on data from a parallel-group design 
with sample sizes of 50 in the reference group and 50 in the treatment group achieves 0% power 
at a 5% significance level when the true ratio of the means is 1.00, the coefficient of 
variation on the original, unlogged scale is 1.50, and the equivalence limits of the mean ratio 
are 0.80 and 1.25. 
 

 

This report shows the power for the indicated scenarios.  

Plot Section 
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This plot shows the power versus the sample size. 
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Example2 –Validation using Julious 
Julious (2004) page 1971 presents an example of determining the sample size for a parallel-group 
design in which the actual ratio is 1.0, the coefficient of variation is 0.80, the equivalence limits 
are 0.80 and 1.25, the power is 90%, and the significance level is 0.05. He calculates the per 
group sample size to be 216.  

Setup 
Load the panel. You can enter the following parameter values or load Example2. 

Option Value
Data Tab 
Find ...................................................N1 
RU .....................................................1/RL 
RL......................................................0.80 
R1......................................................1.0  
COV ..................................................0.80 
N1......................................................Ignored since this is the Find setting 
N2......................................................Use R 
R........................................................1 
Alpha .................................................0.05 
Beta...................................................0.10 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Parallel-Group Design 
 
 Reference Treatment      
 Group Group Lower Upper  Coefficient  
 Sample Sample Equiv. Equiv. True of  
 Size Size Limit Limit Ratio Variation   
Power (N1) (N2) (RL) (RU) (R1) (COV) Alpha Beta 
0.9012 216 216 0.80 1.25 1.00 0.80 0.0500 0.0988 

 

PASS has also calculated the per group sample size to be 216 which matches Julious’s result.  

 



470-10  Equivalence of Means using their Ratio  

 

 



  475-1 

Chapter 475  

Group Sequential 
Tests of Two 
Means 
Introduction 
Clinical trials are longitudinal. They accumulate data sequentially through time. The participants 
cannot be enrolled and randomized on the same day. Instead, they are enrolled as they enter the 
study. It may take several years to enroll enough patients to meet sample size requirements. 
Because clinical trials are long term studies, it is in the interest of both the participants and the 
researchers to monitor the accumulating information for early convincing evidence of either harm 
or benefit. This permits early termination of the trial.  

Group sequential methods allow statistical tests to be performed on accumulating data while a 
phase III clinical trial is ongoing. Statistical theory and practical experience with these designs 
have shown that making four or five interim analyses is almost as effective in detecting large 
differences between treatment groups as performing a new analysis after each new data value. 
Besides saving time and resources, such a strategy can reduce the experimental subject’s 
exposure to an inferior treatment and make superior treatments available sooner.  

When repeated significance testing occurs on the same data, adjustments have to be made to the 
hypothesis testing procedure to maintain overall significance and power levels. The landmark 
paper of Lan & DeMets (1983) provided the theory behind the alpha spending function approach 
to group sequential testing. This paper built upon the earlier work of Armitage, McPherson, & 
Rowe (1969), Pocock (1977), and O’Brien & Fleming (1979). PASS implements the methods 
given in Reboussin, DeMets, Kim, & Lan (1992) to calculate the power and sample sizes of 
various group sequential designs. 

This module calculates sample size and power for group sequential designs used to compare two 
treatment means. Other modules perform similar analyses for the comparison of proportions and 
survival functions. The program allows you to vary the number and times of interim tests, the 
type of alpha spending function, and the test boundaries. It also gives you complete flexibility in 
solving for power, significance level, sample size, or effect size. The results are displayed in both 
numeric reports and informative graphics.  

Technical Details 
Suppose the means of two samples of N1 and N2 individuals will be compared at various stages 
of a trial using the  statistic: zk
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The subscript k indicates that the computations use all data that are available at the time of the kth 
interim analysis or kth look (k goes from 1 to K). This formula computes the standard z test that is 
appropriate when the variances of the two groups are different. The statistic, , is assumed to be 
normally distributed.  

zk

Spending Functions 
Lan and DeMets (1983) introduced alpha spending functions, ( )α τ , that determine a set of 
boundaries b b for the sequence of test statistics . These boundaries are the 
critical values of the sequential hypothesis tests. That is, after each interim test, the trial is 
continued as long as 

bK1 2, , ,L z z zK1 2, , ,L

z bk k< z bk k≥. When , the hypothesis of equal means is rejected and the 
trial is stopped early.  

τThe time argument either represents the proportion of elapsed time to the maximum duration of 
the trial or the proportion of the sample that has been collected. When elapsed time is being used 
it is referred to as calendar time. When time is measured in terms of the sample, it is referred to 
as information time. Since it is a proportion,τ can only vary between zero and one. 

Alpha spending functions have the characteristics: 

( )
( )

α

α α
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α  level when the trial is complete. That is,  The last characteristic guarantees a fixed 

( ) ( )Pr z b or z b or or z bk k1 1 2 2≥ ≥ ≥ =L α τ  

This methodology is very flexible since neither the times nor the number of analyses must be 
specified in advance. Only the functional form of ( )α τ  must be specified.  

PASS provides five popular spending functions plus the ability to enter and analyze your own 
boundaries. These are calculated as follows: 
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2.  Pocock      ( )( )α τln 1 1+ −e
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3.  Alpha * time     ατ  
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4.  Alpha * time^1.5      ατ 3 2/
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5.  Alpha * time^2      ατ 2
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6.  User Supplied 

A custom set of boundaries may be entered. 

The O’Brien-Fleming boundaries are commonly used because they do not significantly increase 
the overall sample size and because they are conservative early in the trial. Conservative in the 
sense that the means must be extremely different before statistical significance is indicated. The 
Pocock boundaries are nearly equal for all times. The Alpha*t boundaries use equal amounts of 
alpha when the looks are equally spaced. You can enter your own set of boundaries using the 
User Supplied option. 
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Theory 
A detailed account of the methodology is contained in Lan & DeMets (1983), DeMets & Lan 
(1984), Lan & Zucker (1993), and DeMets & Lan (1994). The theoretical basis of the method will 
be presented here.  

Group sequential procedures for interim analysis are based on their equivalence to discrete 
boundary crossing of a Brownian motion process with drift parameter θ . The test statistics  

follow the multivariate normal distribution with means 

zk

θ τ k  and, for , covariances j k≤

τ τk / j . The drift parameter is related to the parameters of the z-test through the equation 
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Hence, the algorithm is as follows: 

1.  Compute boundary values based on a specified spending function and alpha value. 

2.  Calculate the drift parameter based on those boundary values and a specified power value. 

3.  Use the drift parameter and estimates of the other parameters in the above equation to 
calculate the appropriate sample size. 
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Procedure Tabs 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains the parameters associated with the z test such as the means, variances, 
sample sizes, alpha, and beta. 

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Mean1, Mean2, Alpha, Beta, N1 or N2. Under most situations, you will 
select either Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment that has already been run 
since power is equal to one minus beta.  

Mean1 
Enter value(s) for the mean of the first group under both hypotheses and the mean of the second 
group under the null hypothesis of equal means. Note that only the difference between the two 
means is used in the calculations. You may enter a range of values such as 10,20,30 or 0 to 100 
by 25. 

If you want to use a single difference rather than the two means, enter the value of the difference 
as Mean2 and zero for Mean1 (or vice versa). 

Mean2 
Enter value(s) for the mean of the second group under the alternative hypothesis. Note that only 
the difference between the two means is used in the calculations. You may enter a range of values 
such as 10,20,30 or 0 to 100 by 25. 

If you want to use a single difference rather than the two means, enter the value of the difference 
as Mean2 and zero for Mean1 (or vice versa). 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 
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N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 

When Use R is entered here, N2 is calculated using the formula  

N2 = [R N1] 

where R is the Sample Allocation Ratio and [Y] is the first integer greater than or equal to Y. For 
example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2=[R N1] where [Y] is the next integer 
greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided hypothesis is selected, the 
value of alpha is halved. Everything else remains the same. 

Note that the accepted procedure is to use Two Sided option unless you can justify using a one-
sided test.  

Alpha 
This option specifies one or more values for the probability of a type-I error, alpha. This is also 
called the significance level or test size. A type-I error occurs when you reject the null hypothesis 
of equal means when in fact the means are equal. 

Values of alpha must be between zero and one. Often, the value of 0.05 is used for alpha since 
this value is spread across several interim tests. This means that about one trial in twenty will 
falsely reject the null hypothesis. You should pick a value for alpha that represents the risk of a 
type-I error that you are willing to take.  

Beta (1-Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal means when in fact they are 
different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Now, 0.10 is more common. You should pick a value that represents the risk of a type-II error 
you are willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80.  
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S1 (Std Deviation Group 1) 
Enter an estimate of the standard deviation of group 1. The standard deviation must be a positive 
number. Refer to the chapter on Estimating the Standard Deviation for more information on 
estimating the standard deviation. Press the SD button to obtain a special window designed to 
help you obtain a realistic value for the standard deviation. 

Above all else, remember that the experience of consulting statisticians is that researchers tend to 
underestimate the standard deviation! 

S2 (Std Deviation Group 2) 
Enter an estimate of the standard deviation of group 2. The standard deviation must be a positive 
number. Refer to the chapter on Estimating the Standard Deviation for more information on 
estimating the standard deviation. Press the SD button to obtain a special window designed to 
help you obtain a realistic value for the standard deviation.  

You can enter S1 here if you want to assume that the standard deviations are equal and use the 
value entered for S1. 

Sequential Tab 
The Sequential tab contains the parameters associated with Group Sequential Design such as the 
type of spending function, the times, and so on. 

Number of Looks 
This is the number of interim analyses (including the final analysis). For example, a five here 
means that four interim analyses will be run in addition to the final analysis. 

Spending Function 
Specify which alpha spending function to use. The most popular is the O'Brien-Fleming boundary 
that makes early tests very conservative. Select User Specified if you want to enter your own set 
of boundaries. 

Boundary Truncation 
You can truncate the boundary values at a specified value. For example, you might decide that no 
boundaries should be larger than 4.0. If you want to implement a boundary limit, enter the value 
here. 

If you do not want a boundary limit, enter None here. 
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Times 
Enter a list of time values here at which the interim analyses will occur. These values are scaled 
according to the value of the Max Time option. 

For example, suppose a 48-month trial calls for interim analyses at 12, 24, 36, and 48 months. 
You could set Max Time to 48 and enter 12,24,36,48 here or you could set Max Time to 1.0 and 
enter 0.25,0.50,0.75,1.00 here.  

The number of times entered here must match the value of the Number of Looks. 

Equally Spaced 

If you are planning to conduct the interim analyses at equally spaced points in time, you can enter 
Equally Spaced and the program will generate the appropriate time values for you. 

Max Time 
This is the total running time of the trial. It is used to convert the values in the Times box to 
fractions. The units (months or years) do not matter, as long as they are consistent with those 
entered in the Times box. 

For example, suppose Max Time = 3 and Times = 1, 2, 3. Interim analyses would be assumed to 
have occurred at 0.33, 0.67, and 1.00. 

Informations 
You can weight the interim analyses on the amount of information obtained at each time point 
rather than on actual calendar time. If you would like to do this, enter the information amounts 
here. Usually, these values are the sample sizes obtained up to the time of the analysis. 

For example, you might enter 50, 76, 103, 150 to indicate that 50 individuals where included in 
the first interim analysis, 76 in the second, and so on. 

Upper and Lower Boundaries 
If the Spending Function is set to User Supplied you can enter a set of lower test boundaries, one 
for each interim analysis. The lower boundaries should be negative and the upper boundaries 
should be positive. Typical entries are 4,3,3,3,2 and 4,3,2,2,2. 

Symmetric 

If you only want to enter the upper boundaries and have them copied with a change in sign to the 
lower boundaries, enter Symmetric for the lower boundaries. 
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Options Tab 
The Options tab controls the convergence of the various iterative algorithms used in the 
calculations. 

Max Iterations 1 
Specify the maximum number of iterations to be run before the search for the criterion of interest 
(Alpha, Beta, etc.) is aborted. When the maximum number of iterations is reached without 
convergence, the criterion is left blank. 

Recommended: 500 (or more). 

Max Iterations 2 
This is the maximum number of iterations used in the Lan-DeMets algorithm during its search 
routine. We recommend a value of at least 200. 

Probability Tolerance 
During the calculation of the probabilities associated with a set of boundary values, probabilities 
less than this are assumed to be zero. 

We suggest a value of 0.00000000001. 

Power Tolerance 
This is the convergence level for the search for the spending function values that achieve a certain 
power. Once the iteration changes are less than this amount, convergence is assumed. We suggest 
a value of 0.0000001. 

If the search is too time consuming, you might try increasing this value. 

Alpha Tolerance 
This is the convergence level for the search for a given alpha value. Once the changes in the 
computed alpha value are less than this amount, convergence is assumed and iterations stop. We 
suggest a value of 0.0001. 
This option is only used when you are searching for alpha. 

If the search is too time consuming, you can try increasing this value. 

Bnd Axes Tab 
The Bnd Axes tab, short for Boundary Axes tab, allows the axes of the spending function plots to 
be set separately from those of the power plots. The options are identical to those of the Axes tab. 
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Example1 - Finding the Sample Size 
A clinical trial is to be conducted over a two-year period to compare the mean response of a new 
treatment with the current treatment. The current mean is 127 with a standard deviation of 55.88. 
The health community will be interested in the new treatment if the mean response rate is 
increased by 20%. So that the sample size requirements for different effect sizes can be 
compared, it is also of interest to compute the sample size at 10%, 30%, 40%, 50%, 60%, and 
70% increases in the response rates. 

Testing will be done at the 0.05 significance level and the power should be set to 0.10. A total of 
four tests are going to be performed on the data as they are obtained. The O’Brien-Fleming 
boundaries will be used.  

Find the necessary sample sizes and test boundaries assuming equal sample sizes per arm and 
two-sided hypothesis tests. 

We could enter these amounts directly into the Group Sequential Means window. Since the base 
mean is 127, a 20% increase would translate to a new mean response of 127(120/100) = 152.4. 
The other mean response rates could be computed similarly. However, to make the results more 
meaningful, we will scale the input by dividing by the current mean. The scaled standard 
deviation will be 100(55.88)/127 = 44.00. We set Mean1 to zero since we are only interested in 
the changes in Mean2. The values of Mean2 will then be 10, 20, 30, 40, 50, 60, and 70. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................N1 
Mean1 ...............................................0 
Mean2 ...............................................10 to 70 by 10 
N1......................................................Ignored 
N2......................................................Use R 
R........................................................1.0 
Alternative Hypothesis ...................... Two-Sided 
Alpha .................................................0.05 
Beta...................................................0.10 
S1......................................................44 
S2......................................................S1 

Sequential Tab 
Number of Looks...............................4 
Spending Function ............................O’Brien-Fleming 
Times ................................................Equally Spaced 
Max Time ..........................................2 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.9005 415 415 0.0500 0.0995 0.00 10.00 44.00 44.00 
0.9012 104 104 0.0500 0.0988 0.00 20.00 44.00 44.00 
0.9058 47 47 0.0500 0.0942 0.00 30.00 44.00 44.00 
0.9012 26 26 0.0500 0.0988 0.00 40.00 44.00 44.00 
0.9071 17 17 0.0500 0.0929 0.00 50.00 44.00 44.00 
0.9116 12 12 0.0500 0.0884 0.00 60.00 44.00 44.00 
0.9170 9 9 0.0500 0.0830 0.00 70.00 44.00 44.00 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from groups 1 and 2. 
Alpha is the probability of rejecting a true null hypothesis in at least one of the sequential tests. 
Beta is the probability of accepting a false null hypothesis at the conclusion of all tests. 
Mean1 is the mean of populations 1 and 2 under the null hypothesis of equality. 
Mean2 is the mean of population 2 under the alternative hypothesis. The mean of population 1 is unchanged. 
S1 and S2 are the population standard deviations of groups 1 and 2. 
 
Summary Statements 
Sample sizes of 415 and 415 achieve 90% power to detect a difference of 10.00 between the group 
means with standard deviations of 44.00 and 44.00 at a significance level (alpha) of 0.0500 
using a two-sided z-test. These results assume that 4 sequential tests are made using the 
O'Brien-Fleming spending function to determine the test boundaries. 
 

This report shows the values of each of the parameters, one scenario per row. Note that 104 
participants in each arm of the study are required to meet the 90% power requirement when the 
mean increase is 20%. 

The values from this table are in the chart below. Note that this plot actually occurs further down 
in the report. 

Plots Section 
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This plot shows that a large increase in sample size is necessary to test mean differences below 
20%. 
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Details Section 
 
Details when Spending = O'Brien-Fleming, N1 = 415, N2 =415, S1 = 44.00, S2 = 44.00, Diff = -10.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.50 -4.33263 4.33263 0.000015 0.000015 0.000015 0.003512 0.003512  
2 1.00 -2.96311 2.96311 0.003045 0.003036 0.003051 0.254998 0.258510  
3 1.50 -2.35902 2.35902 0.018323 0.016248 0.019299 0.427601 0.686111 
4 2.00 -2.01406 2.01406 0.044003 0.030701 0.050000 0.214371 0.900483  
Drift 3.27383 
 

This report shows information about the individual interim tests. One report is generated for each 
scenario. 

Look 
These are the sequence numbers of the interim tests. 

Time 
These are the time points at which the interim tests are conducted. Since the Max Time was set to 
2 (for two years), these time values are in years. Hence, the first interim test is at half a year, the 
second at one year, and so on. 

We could have set Max Time to 24 so that the time scale was in months. 

Lower and Upper Boundary 
These are the test boundaries. If the computed value of the test statistic z is between these values, 
the trial should continue. Otherwise, the trial can be stopped.  

Nominal Alpha 
This is the value of alpha for these boundaries if they were used for a single, standalone, test. 
Hence, this is the significance level that must be found for this look in a standard statistical 
package that does not adjust for multiple looks.  

Inc Alpha 
This is the amount of alpha that is spent by this interim test. It is close to, but not equal to, the 
value of alpha that would be achieved if only a single test was conducted. For example, if we 
lookup the third value, 2.35902, in normal probability tables, we find that this corresponds to a 
(two-sided) alpha of 0.0183. However, the entry is 0.0162. The difference is due to the correction 
that must be made for multiple tests. 

Total Alpha 
This is the total amount of alpha that is used up to and including the current test.  

Inc Power 
These are the amounts that are added to the total power at each interim test. They are often called 
the exit probabilities because they give the probability that significance is found and the trial is 
stopped, given the alternative hypothesis.  

Total Power 
These are the cumulative power values. They are also the cumulative exit probabilities. That is, 
they are the probability that the trial is stopped at or before the corresponding time. 
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Drift 
This is the value of the Brownian motion drift parameter. 

Boundary Plots 
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This plot shows the interim boundaries for each look. This plot shows very dramatically that the 
results must be extremely significant at early looks, but that they are near the single test boundary 
(1.96 and -1.96) at the last look. 
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Example2 - Finding the Power 
A clinical trial is to be conducted over a two-year period to compare the mean response of a new 
treatment with the current treatment. The current mean is 127 with a standard deviation of 55.88. 
The health community will be interested in the new treatment if the mean response rate is 
increased by 20%. The researcher wishes to calculate the power of the design at sample sizes 20, 
60, 100, 140, 180, and 220. Testing will be done at the 0.01, 0.05, 0.10 significance levels and the 
overall power will be set to 0.10. A total of four tests are going to be performed on the data as 
they are obtained. The O’Brien-Fleming boundaries will be used. Find the power of these sample 
sizes and test boundaries assuming equal sample sizes per arm and two-sided hypothesis tests. 

Proceeding as in Example1, we decide to translate the mean and standard deviation into a percent 
of mean scale. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Mean1 ...............................................0 
Mean2 ...............................................20 
N1......................................................20 to 220 by 40 
N2......................................................Use R 
R........................................................1.0 
Alternative Hypothesis ...................... Two-Sided 
Alpha .................................................0.01, 0.05, 0.10 
Beta...................................................Ignored 
S1......................................................44 
S2......................................................S1 

Sequential Tab 
Number of Looks...............................4 
Spending Function ............................O’Brien-Fleming 
Times ................................................Equally Spaced 
Max Time ..........................................2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.9005 415 415 0.0500 0.0995 0.00 10.00 44.00 44.00 
0.1256 20 20 0.0100 0.8744 0.00 20.00 44.00 44.00 
0.4605 60 60 0.0100 0.5395 0.00 20.00 44.00 44.00 
0.7335 100 100 0.0100 0.2665 0.00 20.00 44.00 44.00 
0.8871 140 140 0.0100 0.1129 0.00 20.00 44.00 44.00 
0.9572 180 180 0.0100 0.0428 0.00 20.00 44.00 44.00 
0.9851 220 220 0.0100 0.0149 0.00 20.00 44.00 44.00 
0.2948 20 20 0.0500 0.7052 0.00 20.00 44.00 44.00 
0.6929 60 60 0.0500 0.3071 0.00 20.00 44.00 44.00 
0.8897 100 100 0.0500 0.1103 0.00 20.00 44.00 44.00 
0.9650 140 140 0.0500 0.0350 0.00 20.00 44.00 44.00 
0.9898 180 180 0.0500 0.0102 0.00 20.00 44.00 44.00 
0.9972 220 220 0.0500 0.0028 0.00 20.00 44.00 44.00 
0.4094 20 20 0.1000 0.5906 0.00 20.00 44.00 44.00 
0.7909 60 60 0.1000 0.2091 0.00 20.00 44.00 44.00 
0.9368 100 100 0.1000 0.0632 0.00 20.00 44.00 44.00 
0.9827 140 140 0.1000 0.0173 0.00 20.00 44.00 44.00 
0.9956 180 180 0.1000 0.0044 0.00 20.00 44.00 44.00 
0.9989 220 220 0.1000 0.0011 0.00 20.00 44.00 44.00 
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These data show the power for various sample sizes and alphas. It is interesting to note that once 
the sample size is greater than 150, the value of alpha makes little difference on the value of 
power. 
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Example3 - Effect of Number of Looks 
Continuing with examples one and two, it is interesting to determine the impact of the number of 
looks on power. PASS allows only one value for the Number of Looks parameter per run, so it 
will be necessary to run several analyses. To conduct this study, set alpha to 0.05, N1 to 100, and 
leave the other parameters as before. Run the analysis with Number of Looks equal to 1, 2, 3, 4, 
6, 8, 10, and 20. Record the power for each run. 

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Mean1 ...............................................0 
Mean2 ...............................................20 
N1......................................................100 
N2...................................................... Use R 
R........................................................1.0 
Alternative Hypothesis ......................Two-Sided 
Alpha .................................................0.05 
Beta...................................................Ignored 
S1......................................................44 
S2......................................................S1 

Sequential Tab 
Number of Looks...............................1 (Also run with 2, 3, 4, 6, 8, 10, and 20) 
Spending Function ............................O’Brien-Fleming 
Times ................................................Equally Spaced 
Max Time ..........................................2 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 Looks 
0.8951 100 100 0.0500 0.1049 0.00 20.00 44.00 44.00 1 
0.8941 100 100 0.0500 0.1059 0.00 20.00 44.00 44.00 2 
0.8916 100 100 0.0500 0.1084 0.00 20.00 44.00 44.00 3 
0.8897 100 100 0.0500 0.1103 0.00 20.00 44.00 44.00 4 
0.8871 100 100 0.0500 0.1129 0.00 20.00 44.00 44.00 6 
0.8856 100 100 0.0500 0.1144 0.00 20.00 44.00 44.00 8 
0.8845 100 100 0.0500 0.1155 0.00 20.00 44.00 44.00 10 
0.8820 100 100 0.0500 0.1180 0.00 20.00 44.00 44.00 20 
 
 

This analysis shows how little the number of looks impact the power of the design. The power of 
a study with no interim looks is 0.8951. When twenty interim looks are made, the power falls just 
0.0131, to 0.8820—a very small change. 
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Example4 - Studying a Boundary Set 
Continuing with the previous examples, suppose that you are presented with a set of boundaries 
and want to find the quality of the design (as measured by alpha and power). This is easy to do 
with PASS. Suppose that the analysis is to be run with five interim looks at equally spaced time 
points. The upper boundaries to be studied are 3.5, 3.5, 3.0, 2.5, 2.0. The lower boundaries are 
symmetric. The analysis would be run as follows. 

Setup 
You can enter these values yourself or load the Example4 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Mean1 ...............................................0 
Mean2 ...............................................20 
N1 .....................................................100 
N2 .....................................................Use R 
R .......................................................1.0 
Alternative Hypothesis ......................  Two-Sided 
Alpha.................................................0.05 (will be calculated from boundaries) 
Beta................................................... Ignored 
S1......................................................44 
S2......................................................S1 

Sequential Tab 
Number of Looks...............................5 
Spending Function ............................User Supplied 
Times ................................................Equally Spaced 
Lower Boundaries .............................Symmetric 
Upper Boundaries .............................3.5, 3.5, 3.0, 2.5, 2.0 
Max Time ..........................................2 
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Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.8898  100 100 0.0482 0.1102 0.00 20.00 44.00 44.00 

 
Details when Spending = User Supplied, N1 = 100, N2 =100, S1 = 44.00, S2 = 44.00, Diff = -20.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.40 -3.50000 3.50000 0.000465 0.000465 0.000465 0.019576 0.019576  
2 0.80 -3.50000 3.50000 0.000465 0.000408 0.000874 0.058835 0.078411  
3 1.20 -3.00000 3.00000 0.002700 0.002410 0.003284 0.232486 0.310897  
4 1.60 -2.50000 2.50000 0.012419 0.010331 0.013615 0.339966 0.650863  
5 2.00 -2.00000 2.00000 0.045500 0.034542 0.048157 0.238928 0.889791  
Drift 3.21412 
 

The power for this design is about 0.89. This value depends on both the boundaries and the 
sample size. The alpha level is 0.048157. This value only depends on the boundaries. 

Example5 - Validation Using O’Brien-
Fleming Boundaries 
Reboussin (1992) presents an example for normally distributed data for a design with two-sided 
O’Brien-Fleming boundaries, looks = 5, alpha = 0.05, beta = 0.10, Mean1 = 220, Mean2 = 200, 
standard deviation = 30. They compute a drift of 3.28 and a sample size of 48.41 per group. The 
upper boundaries are: 4.8769, 3.3569, 2.6803, 2.2898, 2.0310. 

To test that PASS provides the same result, enter the following. 

Setup 
You can enter these values yourself or load the Example5 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................N1 
Mean1 ...............................................220 
Mean2 ...............................................200 
N1......................................................Ignored 
N2......................................................Use R 
R........................................................1.0 
Alternative Hypothesis ...................... Two-Sided 
Alpha .................................................0.05 
Beta...................................................0.10 
S1......................................................30 
S2......................................................S1 
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Sequential Tab 
Number of Looks...............................5 
Spending Function ............................O’Brien-Fleming 
Times ................................................Equally Spaced 
Lower Boundaries .............................blank 
Upper Boundaries .............................  
Max Time ..........................................1 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.903623 49 49 0.050000 0.096377 220.00 200.00 30.00 30.00 
 
Details when Spending = O'Brien-Fleming, N1 = 49, N2 =49, S1 = 30.00, S2 = 30.00, Diff = 20.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.20 -4.87688 4.87688 0.000001 0.000001 0.000001 0.000336 0.000336  
2 0.40 -3.35695 3.35695 0.000788 0.000787 0.000788 0.101727 0.102062  
3 0.60 -2.68026 2.68026 0.007357 0.006828 0.007616 0.350673 0.452735  
4 0.80 -2.28979 2.28979 0.022034 0.016807 0.024424 0.299186 0.751921  
5 1.00 -2.03100 2.03100 0.042255 0.025576 0.050000 0.151702 0.903623  
Drift 3.29983 
 
 

The slight difference in the power and the drift parameter is attributable to the rounding of the 
sample size from 48.41 to 49. 
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Example6 - Validation with Pocock 
Boundaries 
Reboussin (1992) presents an example for normally distributed data for a design with two-sided 
Pocock boundaries, looks = 5, alpha = 0.05, beta = 0.10, Mean1 = 220, Mean2 = 200, standard 
deviation = 30. They compute a drift of 3.55 and a sample size of 56.71 per group. The upper 
boundaries are: 2.4380, 2.4268, 2.4101, 2.3966, and 2.3859. 

To test that PASS provides the same result, enter the following. 

Setup 
You can enter these values yourself or load the Example6 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................N1 
Mean1 ...............................................220 
Mean2 ...............................................200 
N1......................................................Ignored 
N2......................................................Use R 
R........................................................1.0 
Alternative Hypothesis ......................Two-Sided 
Alpha .................................................0.05 
Beta...................................................0.10 
S1......................................................30 
S2......................................................S1 

Sequential Tab 
Number of Looks...............................5 
Spending Function ............................Pocock 
Times ................................................Equally Spaced 
Lower Boundaries .............................blank 
Upper Boundaries ............................. 
Max Time ..........................................1 
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Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.903263 57 57 0.050000 0.096737 220.00 200.00 30.00 30.00 
 
Details when Spending = O'Brien-Fleming, N1 = 49, N2 =49, S1 = 30.00, S2 = 30.00, Diff = 20.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.20 -2.43798 2.43798 0.014770 0.014770 0.014770 0.198712 0.198712  
2 0.40 -2.42677 2.42677 0.015234 0.011387 0.026157 0.260597 0.459308  
3 0.60 -2.41014 2.41014 0.015946 0.009269 0.035426 0.214118 0.673426  
4 0.80 -2.39658 2.39658 0.016549 0.007816 0.043242 0.143792 0.817218  
5 1.00 -2.38591 2.38591 0.017037 0.006758 0.050000 0.086045 0.903263  
Drift 3.55903 
 

The slight difference in the power and the drift parameter is attributable to the rounding of the 
sample size from 56.71 to 57. 
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Chapter 480  

Two Means -
Cluster 
Randomization 
Introduction 
Cluster Randomization refers to the situation in which the means of two groups, made up of M 
clusters of N individuals each, are to be tested using a modified t test. In this case, the basic 
experimental unit is a cluster instead of an individual.  

Technical Details 
Our formulation comes from Donner and Klar (1996). Denote an observation by where i = 
1,2 is the group, j = 1,2,…,M is a cluster in group i, and k = 1,2,…N is an individual in cluster j of 
group i. Each cluster mean,

Xijk

Xij , has a population mean ofμi  and variance  
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where  is the variance of  and σ 2 Xijk ρ  is the intracluster correlation coefficient. This correlation 
made be thought of as the simple correlation between any two observations on the same individual. 
It may also be thought of as the proportion of total variance in the observations that can be attributed 
to difference between clusters. 

The power for the two-sided, two-sample t test using the above formulation is calculated by 

Power P t t df P t t df= − ≤ + ≤ −1 2 2( , , ) ( , , )/ /α αλ λ  
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are D, S, M, N, Alpha, and Beta (or Power).  

Under most situations, you will select either Beta to calculate power or N to calculate sample size. 

Note that the value selected here always appears as the vertical axis on the charts. 

The program is set up to evaluate beta directly. For the other parameters, a search is made using 
an iterative procedure until an appropriate value is found.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis when in fact it is true. 

Values between 0.001 and 0.100 are acceptable. The value of 0.05 has become the standard. This 
means that about one test in twenty will falsely reject the null hypothesis. Although 0.05 is the 
standard value, you should pick a value for alpha that represents the risk of a type-I error you are 
willing to take. 

Note that you can enter a range of values such as 0.01,0.05 or 0.01 to 0.05 by 0.01. 

Beta (1 - Power) 
This option specifies one or more values for beta (the probability of accepting a false null 
hypothesis). Since statistical power is equal to one minus beta, specifying beta implicitly specifies 
the power. For example, setting beta at 0.20 also sets the power to 0.80. 

Values must be between zero and one. The value of 0.20 has often used for beta. However, you 
should pick a value for beta that represents the risk of this type of error you are willing to take. 

Note that you can enter a range of values such as 0.10,0.20 or 0.05 to 0.20 by 0.05. 

If your only interest is in determining the appropriate sample size for a confidence interval, set 
beta to 0.5. 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. A two-sided hypothesis states that the values 
are not equal without specifying which is greater. If you do not have any special reason to do 
otherwise, you should use the two-sided option.  

When a two-sided hypothesis is selected, the value of alpha is split in half. Everything else 
remains the same.  
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D (Difference between Means) 
This is the absolute value of the difference between the two group means. This value, divided by 
the standard deviation, becomes the effect size. 

R (Intracluster Correlation) 
Enter a value (or range of values) for the intracluster correlation. This correlation made be thought 
of as the simple correlation between any two observations on the same individual. It may also be 
thought of as the proportion of total variance in the observations that can be attributed to difference 
between clusters.  

Although the actual range for this value is from zero to one, typical values range from 0.002 to 
0.010. 

S (Standard Deviation) 
Enter a value (or range of values) for the standard deviation. This value is only used as the divisor 
of the effect size. Hence, if you do not know the standard deviation, you can enter a one here and 
use effect size units for D, the difference.  

Remember, this is the standard deviation that occurs when the same individual is measured over 
and over. 

M (Number of Clusters) 
Enter a value (or range of values) for the number of clusters, M, per group.  

You may enter a range of values such as 2,4,6 or 2 to 12 by 2. 

N (Individuals Per Cluster) 
Enter a value (or range of values) for the number of individuals, N, per cluster. 

You may enter a range of values such as 100,200,300 or 100 to 300 by 50. 

Options Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example1 - Calculating Power 
Suppose that a study is to be conducted in which D = 0.2; S = 1.0; R = 0.01; M = 6; Alpha = 0.01, 
0.05; and N = 50 to 300 by 50 and beta is to be calculated. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Alpha.................................................0.01, 0.05 
Beta................................................... Ignored since this is the Find parameter 
Alternative Hypothesis ......................Two-Sided 
D .......................................................0.2 
R .......................................................0.01 
S........................................................1.0 
M .......................................................6 
N .......................................................50 to 300 by 50 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
 M N  R S 
 Number of Individuals D Intracluster Standard 
Power Clusters Per Clusters Difference Correlation  Deviation Alpha Beta 
0.18754 6 50 0.200 0.01000 1.000 0.01000 0.81246  
0.44200 6 50 0.200 0.01000 1.000 0.05000 0.55800  
0.30320 6 100 0.200 0.01000 1.000 0.01000 0.69680  
0.60128 6 100 0.200 0.01000 1.000 0.05000 0.39872  
0.37332 6 150 0.200 0.01000 1.000 0.01000 0.62668  
0.67912 6 150 0.200 0.01000 1.000 0.05000 0.32088  
0.41910 6 200 0.200 0.01000 1.000 0.01000 0.58090  
0.72389 6 200 0.200 0.01000 1.000 0.05000 0.27611  
0.45101 6 250 0.200 0.01000 1.000 0.01000 0.54899  
0.75259 6 250 0.200 0.01000 1.000 0.05000 0.24741  
0.47443 6 300 0.200 0.01000 1.000 0.01000 0.52557  
0.77242 6 300 0.200 0.01000 1.000 0.05000 0.22758 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
M is the number of clusters per group. There are two groups. 
N is the number of individuals per cluster. 
D is difference between the group means. 
R is intracluster correlation. 
S is standard deviation within an individual. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
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Summary Statements 
A sample size of 6 clusters per group with 50 individuals per cluster achieves 19% power to 
detect a difference of 0.200 between the group means when the standard deviation is 1.000 and 
the intracluster correlation is 0.01000 using a two-sided T-test with a significance level of 
0.01000. 
 

This report shows the power for each of the scenarios.  

Plot Section 
 

 

Power vs N by Alpha with D=0.200 R=0.010 S=1.000
M=6 2-Sided T Test
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This plot shows the power versus the cluster size for the two alpha values. 
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Example2 - Validation using Donner and 
Klar 
Donner and Klar (1996) page 436 provide a table in which several power values are calculated. 
When alpha is 0.05, D is 0.2, R is 0.001, S is 1.0, and M is 3, they calculate a power of 0.43 for an 
N of 100, 0.79 for an N of 300, and 0.91 for an N of 500. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find parameter 
Alternative Hypothesis ......................Two-Sided 
D .......................................................0.2 
R .......................................................0.001 
S........................................................1.0 
M .......................................................3 
N .......................................................100 300 500 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
 M N  R S 
 Number of Individuals D Intracluster Standard 
Power Clusters Per Clusters Difference Correlation  Deviation Alpha Beta 
0.43008 3 100 0.200 0.00100 1.000 0.05000 0.56992  
0.79236 3 300 0.200 0.00100 1.000 0.05000 0.20764  
0.90905 3 500 0.200 0.00100 1.000 0.05000 0.09095 
 

As you can see, PASS has calculated the same power values as Donner and Klar (1996).  
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Chapter 490  

Tests of Paired 
Means using 
Simulation 
This procedure allows you to study the power and sample size of several statistical tests of the null 
hypothesis that the difference between two correlated means is equal to a specific value versus the 
alternative that it is greater than, less than, or not-equal to that value. The paired t-test is commonly 
used in this situation. Other tests have been developed for the case when the data are not normally 
distributed. These additional tests include the Wilcoxon signed-ranks test, the sign test, and the 
computer-intensive bootstrap test.  

Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other, often 
demographic, variables. Hypothesis tests on paired data can be analyzed by considering the 
differences between the paired items. The distribution of differences is usually symmetric. In fact, 
the distribution must be symmetric if the individual distributions of the two items are identical. 
Hence, the paired t-test and the Wilcoxon signed-rank test are appropriate for paired data even when 
the distributions of the individual items are not normal. 

The details of the power analysis of the paired t-test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 
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Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify the test procedure and the test statistic. This includes the significance level, sample size, 
and underlying data distributions. 

2. Generate a random sample  from the distribution specified by the X X Xn1 2, , ,K alternative 
hypothesis. Calculate the test statistic from the simulated data and determine if the null 
hypothesis is accepted or rejected. These samples are used to calculate the power of the test. In 
the case of paired data, the individual values are simulated as the difference between two other 
random variables. These samples are constructed so that they exhibit a certain amount of 
correlation. 

3. Generate a random sample Y Y  from the distribution specified by the Yn1 2, , ,K null hypothesis. 
Calculate the test statistic from the simulated data and determine if the null hypothesis is 
accepted or rejected. These samples are used to calculate the significance-level of the test. In the 
case of paired data, the individual values are simulated as the difference between two other 
random variables. These samples are constructed so that they exhibit a certain amount of 
correlation. 

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated data 
leads to a rejection of the null hypothesis. The power is the proportion of simulated samples in 
step 2 that lead to rejection. The significance level is the proportion of simulated samples in step 
3 that lead to rejection. 

Simulating Paired Distributions 
Paired data occur when two observations are correlated. Examples of paired designs are pre – post 
designs, cross-over designs, and matched pair designs.  

In order to simulate paired data, the simulation should mimic the actual data generation process as 
closely as possible. Since paired data are analyzed by creating the individual difference between 
each pair, the simulation should also create data as the difference between two variates. Paired data 
exhibit a correlation between the two variates. As this correlation between the variates increases, the 
variance of the difference decreases. Thus it is important not only to specify the distributions of the 
two variates that will be differenced, but to also specify their correlation. 

Obtaining paired samples from arbitrary distributions with a set correlation is difficult because the 
joint, bivariate distribution must be specified and simulated. Rather than specify the bivariate 
distribution, PASS requires the specification of the two marginal distributions and the correlation 
between them. 
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Monte Carlo samples with given marginal distributions and correlation are generated using the 
method suggested by Gentle (1998). The method begins by generating a large population of random 
numbers from the two distributions. Each of these populations is evaluated to determine if their 
means are within a small relative tolerance (0.0001) of the target mean. If the actual mean is not 
within the tolerance of the target mean, individual members of the population are replaced with new 
random numbers if the new random number moves the mean towards its target. Only a few hundred 
such swaps are required to bring the actual mean to within tolerance of the target mean.  

The next step is to obtain the target correlation. This is accomplished by permuting one of the 
populations until they have the desired correlation.  

The above steps provide a large pool of random numbers that exhibit the desired characteristics. 
This pool is then sampled at random using the uniform distribution to obtain the random numbers 
used in the simulation.  

This algorithm may be stated as follows. 

1. Draw individual samples of size M from the two distributions where M is a large number, 
usually over 10,000. Adjust these samples so that they have the specified mean and standard 
deviation. Label these samples A and B. Create an index of the values of A and B according to 
the order in which they are generated. Thus, the first value of A and the first value of B are 
indexed as one, the second values of A and B are indexed as two, and so on up to the final set 
which is indexed as M. 

2. Compute the correlation between the two generated variates. 

3. If the computed correlation is within a small tolerance (usually less than 0.001) of the specified 
correlation, go to step 7. 

4. Select two indices (I and J) at random using uniform random numbers.  

5. Determine what will happen to the correlation if  is swapped with . If the swap will 
result in a correlation that is closer to the target value, swap the indices and proceed to step 6. 
Otherwise, go to step 4. 

BI BJ

6. If the computed correlation is within the desired tolerance of the target correlation, go to step 
7. Otherwise, go to step 4. 

7. End with a population with the required marginal distributions and correlation.  

Now, to complete the simulation, random samples of the designated size are drawn from this 
population.  
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Test Statistics 
This section describes the test statistics that are available in this procedure. Note that these test 
statistics are computed on the differences. Thus, when the equation refers to an X value, this X 
value is assumed to be a difference between two individual variates. 

One-Sample t-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 
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and M0 is the value of the difference hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps. 

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to their 
absolute values.  

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 
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where ti represents the number of times the ith value occurs. 

4. Compute the z value using 
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For cases when n is less than 38, the significance level is found from a table of exact probabilities 
for the Wilcoxon test. When n is greater than or equal to 38, the significance of the test statistic is 
determined by computing the p-value using the standard normal distribution. If this p-value is less 
than a specified level (usually 0.05), the null hypothesis is rejected in favor of the alternative 
hypothesis. Otherwise, no conclusion can be reached. 

Sign Test  
The sign test is popular because it is simple to compute. It assumes that the data follow the same 
distribution. The test is computed using the following steps.  

1. Count the number of values strictly greater than M0. Call this value X. 

2. Count the number of values strictly less than M0. Call this value Y. 

3. Set m = X + Y. 

4. Under the null hypothesis, X is distributed as a binomial random variable with a proportion of 
0.5 and sample size of m.  

The significance of X is calculated using binomial probabilities. 

Bootstrap Test  
The one-sample bootstrap procedure for testing whether the mean is equal to a specific value is 
given in Efron & Tibshirani (1993) pages 224-227. The bootstrap procedure is as follows.  

1. Compute the mean of the sample. Call it X . 

2. Compute the t-value using the standard t-test. The formula for this computation is 

t X M
sX

X

=
− 0

 

3. Draw a random, with-replacement sample of size n from the original X values. Call this 
sample .  Y Y Yn1 2, , ,L

4. Compute the t-value of this bootstrap sample using the formula 

t Y X
sY

Y
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5. For a two-tailed test, if t tY > x  then add one to a counter variable A. 

6. Repeat steps 3 – 5 B times. B may be anywhere from 100 to 10,000. 

7. Compute the p-value of the bootstrap test as (A + 1) / (B + 1) 

8. Steps 1 – 7 complete one simulation iteration. Repeat these steps M times, where M is the 
number of simulations. The power and significance level is equal to the percent of the time 
the p-value is less than the nominal alpha of the test. 

Note that the bootstrap test is a time-consuming test to run, especially if you set B to a value 
larger than 100.  
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The Problem of Differing Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, note that although the shape parameters are 
constant, the standard deviations are not. Thus the null and alternatives not only have different 
means, but different standard deviations! 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that will be of interest. 

Find 
This option specifies whether you want to find Power or N from the simulation. Select Power 
when you want to estimate the power of a certain scenario. Select N when you want to determine 
the sample size needed to achieve a given power and alpha error level. Finding N is very 
computationally intensive, and so it may take a long time to complete. 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  
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H1 (Alternative) 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0: Diff = Diff0. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

Difference <> Diff0. This is the most common selection. It yields a two-tailed test. Use this 
option when you are testing whether the mean is different from a specified value Diff0, but you 
do not want to specify beforehand whether it is smaller or larger. Most scientific journals require 
two-tailed tests. 

Difference < Diff0. This option yields a one-tailed test. Use it when you want to test whether the 
true mean is less than Diff0. 

Difference > Diff0. This option yields a one-tailed test. Use it when you want to test whether the 
true mean is greater than Diff0. Note that this option could be used for a non-inferiority test.  

Test Statistic 
Specify which test statistic (t-test, Wilcoxon test, sign test, or bootstrap test) is to be simulated. 
Although the t-test is the most commonly used test statistic, it is based on assumptions that may 
not be viable in many situations. For your data, you may find that one of the other tests is more 
accurate (actual alpha = target alpha) and more precise (better power). 

Note that the bootstrap test is computationally intensive, so it can be very slow to calculate. 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of subjects in the study. 
The paired design assumes that a pair of observations will be obtained from each subject. Thus 
there will be 2N observations simulated, resulting in N differences.  

This value must be an integer greater than one. You may enter a list of values using the syntax 50 
100 150 200 250 or 50 to 250 by 50.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you falsely reject the null hypothesis. Values must be between zero and one. 
Commonly, the value of 0.05 is used for two-tailed tests and 0.025 is used for one-tailed tests.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal means when in fact the means are 
different.  

Values must be between zero and one. Historically, the value of 0.20 was used for beta. Now, 
0.10 is more common. However, you should pick a value for beta that represents the risk of a 
type-II error you are willing to take. 

Power is defined as one minus beta. Hence, specifying beta also specifies the power. For 
example, if you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding 
power values of 0.95, 0.90, and 0.80, respectively.  
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Item A (and B) Distribution | H0 
These options specify the distributions of the two items making up the pair under the null 
hypothesis, H0. The difference between the means of these two distributions is the difference that 
is tested, Diff0.  

Usually, you will want Diff0 = 0. This zero difference is specified by entering M0 for the mean 
parameter in each of the distributions and then entering an appropriate value for the M0 
parameter below.  

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to test whether the mean of a normal distributed variable is five, you could enter N(5, S) 
or N(M0, S) here. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 
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Item A (and B) Distribution | H1 
These options specify the distributions of the two items making up the pair under the alternative 
hypothesis, H1. The difference between the means of these two distributions is the difference that 
is assumed to be the true value of the difference. That is, this is the difference at which the power 
is computed. 

Usually, the mean difference is specified by entering M1 for the mean parameter in the 
distribution expression for item A and M0 for the mean parameter in the distribution expression 
for item B. The mean difference under H1 then becomes the value of M1 – M0.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean under 
the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

M0 (Item Mean Assuming H0) 
These values are substituted for the M0 in the four distribution specifications given above. M0 is 
intended to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Item Mean Assuming H1) 
These values are substituted for the M1 in the four distribution specifications given above. M1 is 
intended to be the value of the mean hypothesized by the alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

R (Correlation of Items A & B) 
Specify the value of the correlation between items (variates) A and B of the pair.  

Since this is a correlation, it must be between -1 and 1. However, some distributions (such as the 
multinomial distribution) have a maximum possible correlation that is far less than one. 

Typical values are between 0 and 0.4. 



 Paired Means using Simulation  490-11 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Bootstrap Iterations 
Specify the number of iterations used in the bootstrap hypothesis test. This value is only used if 
the bootstrap test is displayed on the reports. The running time of the procedure depends heavily 
on the number of iterations specified here.  

Recommendations by authors of books discussing the bootstrap are from 100 to 10,000. If you 
enter a large (greater than 500) value, the simulation may take several hours to run. 

Maximum Switches 
This option specifies the maximum number of index switches that can be made while searching 
for a permutation of item B that yields a correlation within the specified range. A value near 
5,000,000 may be necessary when the correlation is near one.  

Correlation Tolerance 
Specify the amount above and below the target correlation that will still let a particular index-
permutation to be selected for the population. For example, if you have selected a correlation of 
0.3 and you set this tolerance to 0.001, then only populations with a correlation between 0.299 
and 0.301 will be used. The recommended is 0.001 or smaller. Valid values are between 0 and 
0.999.  

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Populations of at least 10,000 should be used. Also, the value should be about twice the number 
of simulations. You can enter Automatic and an appropriate value will be calculated. 

Note that values over 50,000 may take a long time to permute to achieve the target means and 
correlation.  
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Example1 - Power at Various Sample 
Sizes 
Researchers are planning a pre-post experiment to test whether the difference in response to a 
certain drug is different from zero. The researchers will use a paired t-test with an alpha level of 
0.05. They want to compare the power at sample sizes of 50, 100, and 150 when the shift in the 
means is 0.6 from pre-test to post-test. They assume that the data are normally distributed with a 
standard deviation of 2 and that the correlation between the pre-test and post-test values is 0.20. 
Since this is an exploratory analysis, they set the number of simulation iterations to 2000. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations .......................................2000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic .....................................T-Test 
N .......................................................50 100 150 
R .......................................................0.2 
Item A Distribution Assuming H0 ......N(M0 S) 
Item B Distribution Assuming H0 ......N(M0 S) 
Item A Distribution Assuming H1 ......N(M0 S) 
Item B Distribution Assuming H1 ......N(M1 S) 
M0 (Mean under H0).........................0 
M1 (Mean under H1).........................0.6 
S........................................................2 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M0 S) 
H1 Dist'n: Normal(M0 S) - Normal(M1 S) 
Test Statistic: Paired T-Test 
 
  H0 H1 Corr Target Actual   
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S   
0.393 50 0.0 -0.6 0.200 0.050 0.055 0.608 0.0 0.6 2.0   
(0.021) [0.371 0.414]    (0.010) [0.045 0.064]    

  
0.734 100 0.0 -0.6 0.200 0.050 0.050 0.266 0.0 0.6 2.0   
(0.019) [0.715 0.753]    (0.010) [0.040 0.060]     
 
0.808 150 0.0 -0.6 0.200 0.050 0.058 0.193 0.0 0.6 2.0   
(0.017) [0.790 0.825]    (0.010) [0.048 0.068]     
 
Notes: 
Number of Monte Carlo Samples: 2000.   Simulation Run Time: 19.33 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Diff0 is the paired-difference mean (A-B) assuming the null hypothesis, H0. This is the value being tested. 
Diff1 is the paired-difference mean (A-B) assuming the alternative hypothesis, H1. This is the true value. 
R is the correlation between the paired items. 
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
 
Summary Statements 
A sample size of 50 achieves 39% power to detect a difference of -0.6 between the null 
hypothesis mean difference of 0.0 and the actual mean difference of -0.6 at the 0.050 
significance level (alpha) using a two-sided Paired T-Test. These results are based on 2000 
Monte Carlo samples from the null distribution: Normal(M0 S) - Normal(M0 S) and the alternative 
distribution: Normal(M0 S) - Normal(M1 S). 
 
Plots Section 

Power vs N with M0=0.0 M1=-0.6 S=2.0 Alpha=0.05
R=0.20 2-Sided Paired T-Test
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  

The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 



490-14  Paired Means using Simulation 

Example2 - Finding the Sample Size 
Continuing with Example1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90? 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N 
Simulations .......................................2000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic .....................................T-Test 
N ....................................................... Ignored since this is the Find setting 
R .......................................................0.2 
Alpha.................................................0.05 
Beta...................................................0.10 
Item A Distribution Assuming H0 ......N(M0 S) 
Item B Distribution Assuming H0 ......N(M0 S) 
Item A Distribution Assuming H1 ......N(M0 S) 
Item B Distribution Assuming H1 ......N(M1 S) 
M0 (Mean under H0).........................0 
M1 (Mean under H1).........................0.6 
S........................................................2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results of Search for N 
 

  H0 H1 Corr Target Actual   
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S   
0.885 193 0.0 -0.6 0.200 0.050 0.057 0.115 0.0 0.6 2.0   
(0.016) [0.869 0.901]    (0.010) [0.046 0.067]     
Notes: 
Number of Monte Carlo Samples: 2000.   Simulation Run Time: 95.53 seconds. 

   
The required sample size of 193 achieved a power of 0.885. The power of 0.885 is less than the 
target value of 0.900 because the sample size search algorithm re-simulates the power for the 
final sample size. Thus it is possible for the search algorithm to converge to a sample size which 
exhibits the desired power, but then on a succeeding simulation to achieve a power that is slightly 
less than the target. To achieve more accuracy, a reasonable strategy would be to run simulations 
to obtain the powers using N’s from 190 to 200 using a simulation size of 5000. 
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Example3 – Comparative results  
Continuing with Example2, the researchers want to study the characteristics of alternative test 
statistics. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations........................................2000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic......................................T-Test 
N........................................................50 100 150 200 
R........................................................0.2 
Item A Distribution Assuming H0 ......N(M0 S) 
Item B Distribution Assuming H0 ......N(M0 S) 
Item A Distribution Assuming H1 ......N(M0 S) 
Item B Distribution Assuming H1 ......N(M1 S) 
M0 (Mean under H0) .........................0 
M1 (Mean under H1) .........................0.6 
S........................................................2 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Reports Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M0 S) 
H1 Dist'n: Normal(M0 S) - Normal(M1 S) 
 
 H0 H1       
 Diff Diff Corr Target T-Test Wilcxn Sign   
N (Diff0) (Diff1) (R) Alpha Power Power Power M0 M1 S 
50 0.0 -0.6 0.200 0.050 0.367 0.356 0.206 0.0 0.6 2.0 
100 0.0 -0.6 0.200 0.050 0.661 0.664 0.467 0.0 0.6 2.0 
150 0.0 -0.6 0.200 0.050 0.755 0.740 0.532 0.0 0.6 2.0 
200 0.0 -0.6 0.200 0.050 0.960 0.960 0.849 0.0 0.6 2.0 
Number of Monte Carlo Iterations: 2000.   Simulation Run Time: 36.70 seconds. 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M0 S) 
H1 Dist'n: Normal(M0 S) - Normal(M1 S) 
 
 H0 H1       
 Diff Diff Corr Target T-Test Wilcxn Sign   
N (Diff0) (Diff1) (R) Alpha Alpha Alpha Alpha M0 M1 S 
50 0.0 -0.6 0.200 0.050 0.062 0.060 0.041 0.0 0.6 2.0 
100 0.0 -0.6 0.200 0.050 0.046 0.045 0.040 0.0 0.6 2.0 
150 0.0 -0.6 0.200 0.050 0.045 0.049 0.047 0.0 0.6 2.0 
200 0.0 -0.6 0.200 0.050 0.041 0.039 0.041 0.0 0.6 2.0 
Number of Monte Carlo Iterations: 2000.   Simulation Run Time: 36.70 seconds. 

   
These results show that for paired data, the t-test and Wilcoxon test have very similar power and 
alpha values. The sign test is less accurate and less powerful. 
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Example4 - Validation 
We will validate this procedure by comparing its results to those of the regular one-sample t-test, 
a procedure that has already by validated. For this run, we will use the settings of Example1: M0 
= 0, M1 = 0.6, alpha = 0.05, N = 50, R = 0.2, and S = 2.  

Note that to run this example using the regular one-sample t-test procedure, the variance will have 
to be altered to account for the correlation of 0.20. The adjusted standard deviation is equal to S 
times the square root of 2(1 – R), which, in this case, is 2.530. Running this through the regular 
One Mean procedure yields a power of 0.376. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations........................................10000 
H1 (Alternative) .................................Diff<>Diff0 
Test Statistic......................................T-Test 
N........................................................50 
R........................................................0.2 
Item A Distribution Assuming H0 ......N(M0 S) 
Item B Distribution Assuming H0 ......N(M0 S) 
Item A Distribution Assuming H1 ......N(M0 S) 
Item B Distribution Assuming H1 ......N(M1 S) 
M0 (Mean under H0) .........................0 
M1 (Mean under H1) .........................0.6 
S........................................................2 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Options Tab 
Random Number Pool Size...............50000 (Increase to 5 times Simulations) 
Click the Run button to perform the calculations and generate the following output. 
 

  H0 H1 Corr Target Actual   
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S   
0.373 50 0.0 -0.6 0.200 0.050 0.049 0.627 0.0 0.6 2.0  
(0.009) [0.363 0.382]    (0.004) [0.045 0.053]     
 
Notes: 
Number of Monte Carlo Samples: 10000.   Simulation Run Time: 30.97 seconds. 

 

The power matches the exact value of 0.376 quite well. We re-ran the procedure several times 
and obtained power values from 0.370 to 0.396. 
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Example5 – Non-Inferiority Test 
A non-inferiority test is appropriate when you want to show that a new treatment is no worse than 
the standard. For example, suppose that a standard diagnostic test has an average score of 70. 
Unfortunately, this diagnostic test is expensive. A promising new diagnostic test must be 
compared to the standard. Researchers want to show that it is no worse than the standard.  

Because of many benefits from the new test, clinicians are willing to adopt it even if it is slightly 
less accurate than the current test. How much less can the score of the new treatment be and still 
be adopted? Should it be adopted if the difference is -1? -2? -5? -10? There is an amount below 0 
at which the difference between the two treatments is no longer considered ignorable. After 
thoughtful discussion with several clinicians, the margin of equivalence is set to -5.  

The developers decided to use a paired t-test. They must design an experiment to test the 
hypothesis that the average difference between the two tests is greater than -5. The statistical 
hypothesis to be tested is 

H A B0 5: − ≤ −  versus H A B1 5: − > −  

where A represents the mean of the new test and B represents the mean of the standard test. 
Notice that when the null hypothesis is rejected, the conclusion is that the average difference is 
greater than -5.  

Past experience has shown that the standard deviation is 5.0 and the correlation is 0.2. Following 
proper procedure, the researchers decide to use a significance level of 0.025 for this one-sided test 
to keep it comparable to the usual value of 0.05 for a two-sided test. They decide to look at the 
power for sample sizes of 5, 10, 15, 20, and 25 subjects. They decide to compute the power for 
the case when the two tests are actually equal. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example5 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations .......................................2000 
H1 (Alternative) .................................Diff>Diff0 
Test Statistic .....................................T-Test 
N .......................................................5 10 15 20 25 
R .......................................................0.2 
Item A Distribution Assuming H0 ......N(M0 S) 
Item B Distribution Assuming H0 ......N(M1 S) 
Item A Distribution Assuming H1 ......N(M0 S) 
Item B Distribution Assuming H1 ......N(M0 S) 
M0 (Mean under H0).........................0 
M1 (Mean under H1).........................5 
S........................................................5 
Alpha.................................................0.025 
Beta................................................... Ignored since this is the Find setting 
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Click the Run button to perform the calculations and generate the following output. 
Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 
 
  H0 H1 Corr Target Actual 
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S 
0.308 5 -5.0 0.0 0.200 0.025 0.023 0.692 0.0 5.0 5.0 
(0.020) [0.288 0.328]    (0.007) [0.016 0.030] 
 
0.617 10 -5.0 0.0 0.200 0.025 0.024 0.383 0.0 5.0 5.0 
(0.021) [0.596 0.638]    (0.007) [0.017 0.030] 
 
0.816 15 -5.0 0.0 0.200 0.025 0.027 0.184 0.0 5.0 5.0 
(0.017) [0.799 0.833]    (0.007) [0.019 0.034] 
 
0.916 20 -5.0 0.0 0.200 0.025 0.022 0.085 0.0 5.0 5.0 
(0.012) [0.903 0.928]    (0.006) [0.016 0.028] 
 
0.968 25 -5.0 0.0 0.200 0.025 0.025 0.032 0.0 5.0 5.0 
(0.008) [0.960 0.976]    (0.007) [0.018 0.031] 
 
Notes: 
Number of Monte Carlo Samples: 2000.   Simulation Run Time: 13.34 seconds. 

 
We see that a power of 0.8 is achieved at about 15 subjects, while a power of 0.9 requires about 
20 subjects. 
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Chapter 495  

Equivalence of 
Paired Means 
Using Simulation 
This procedure allows you to study the power and sample size of tests of equivalence of means of 
two correlated variables. Schuirmann’s (1987) two one-sided tests (TOST) approach is used to test 
equivalence. The paired t-test is commonly used in this situation. Other tests have been developed 
for the case when the data are not normally distributed. These additional tests include the Wilcoxon 
signed-ranks test, the sign test, and the computer-intensive bootstrap test.  

Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other, often 
demographic, variables. Hypothesis tests on paired data can be analyzed by considering the 
differences between the paired items. The distribution of differences is usually symmetric. In fact, 
the distribution must be symmetric if the individual distributions of the two items are identical. 
Hence, the paired t-test and the Wilcoxon signed-rank test are appropriate for paired data even when 
the distributions of the individual items are not normal. 

The details of the power analysis of the paired t-test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 
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Technical Details 
Computer simulation allows us to estimate the power and significance-level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are as follows. 

1. Specify the test procedure and the test statistic. This includes the significance level, sample size, 
and underlying data distributions. 

2. Generate a random sample  from the distribution specified by the X X Xn1 2, , ,K alternative 
hypothesis. Calculate the test statistic from the simulated data and determine if the null 
hypothesis is accepted or rejected. These samples are used to calculate the power of the test. In 
the case of paired data, the individual values are simulated as the difference between two other 
random variables. These samples are constructed so that they exhibit a certain amount of 
correlation. 

3. Generate a random sample Y Y  from the distribution specified by the Yn1 2, , ,K null hypothesis. 
Calculate the test statistic from the simulated data and determine if the null hypothesis is 
accepted or rejected. These samples are used to calculate the significance-level of the test. In the 
case of paired data, the individual values are simulated as the difference between two other 
random variables. These samples are constructed so that they exhibit a certain amount of 
correlation. 

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated data 
leads to a rejection of the null hypothesis. The power is the proportion of simulation samples in 
step 2 that lead to rejection. The significance-level is the proportion of simulated samples in step 
3 that lead to rejection. 

Simulating Paired Distributions 
Paired data occur when two observations are correlated. Examples of paired designs are pre – post 
designs, cross-over designs, and matched pair designs. 

In order to simulate paired data, the simulation should mimic the actual data generation process as 
closely as possible. Since paired data are analyzed by creating the individual difference between 
each pair, the simulation should also create data as the difference between two variates. Paired data 
exhibit a correlation between the two variates. As this correlation between the variates increases, the 
variance of the difference decreases. Thus it is important not only to specify the distributions of the 
two variates that will be differenced, but to also specify their correlation. 

Obtaining paired samples from arbitrary distributions with a set correlation is difficult because the 
joint, bivariate distribution must be specified and simulated. Rather than specify the bivariate 
distribution, PASS requires the specification of the two marginal distributions and the correlation 
between them. 
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Monte Carlo samples with given marginal distributions and correlation are generated using the 
method suggested by Gentle (1998). The method begins by generating a large population of random 
numbers from the two distributions. Each of these populations is evaluated to determine if their 
means are within a small relative tolerance (0.0001) of the target mean. If the actual mean is not 
within the tolerance of the target mean, individual members of the population are replaced with new 
random numbers if the new random number moves the mean towards its target. Only a few hundred 
such swaps are required to bring the actual mean to within tolerance of the target mean.  

The next step is to obtain the target correlation. This is accomplished by permuting one of the 
populations until they have the desired correlation.  

The above steps provide a large pool of random numbers that exhibit the desired characteristics. 
This pool is then sampled at random using the uniform distribution to obtain the random numbers 
used in the simulation.  

This algorithm may be stated as follows. 

1. Draw individual samples of size M from the two distributions where M is a large number, 
usually over 10,000. Adjust these samples so that they have the specified mean and standard 
deviation. Label these samples A and B. Create an index of the values of A and B according to 
the order in which they are generated. Thus, the first value of A and the first value of B are 
indexed as one, the second values of A and B are indexed as two, and so on up to the final set 
which is indexed as M. 

2. Compute the correlation between the two generated variates. 

3. If the computed correlation is within a small tolerance (usually less than 0.001) of the specified 
correlation, go to step 7. 

4. Select two indices (I and J) at random using uniform random numbers.  

5. Determine what will happen to the correlation if  is swapped with . If the swap will 
result in a correlation that is closer to the target value, swap the indices and proceed to step 6. 
Otherwise, go to step 4. 

BI BJ

6. If the computed correlation is within the desired tolerance of the target correlation, go to step 
7. Otherwise, go to step 4. 

7. End with a population with the required marginal distributions and correlation.  

Now, to complete the simulation, random samples of the designated size are drawn from this 
population. 

Simulating Data for an Equivalence Test 
Simulating equivalence data is more complex than simulating data for a regular two-sided test. An 
equivalence test essentially reverses the roles of the null and alternative hypothesis. In so doing, the 
null hypothesis becomes 

( ) ( )H D or D0 1 2 1 2: μ μ μ μ− ≤ − − ≥  

where D is the margin of equivalence. Thus the null hypothesis is made up of two simple 
hypotheses:  

( )H D01 1 2: μ μ− ≤ −  

( )H D02 1 2: μ μ− ≥  
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The additional complexity comes in deciding which of the two simple null hypotheses are used to 
simulate data for the null hypothesis situation. The choice becomes more problematic when 
asymmetric equivalence limits are chosen. In that case, you may want to try simulating using 
each simple null hypothesis in turn. 

To generate data for the null hypotheses, you generate data for each group. The difference in the 
means of these two groups will become one of the equivalence limits. The other equivalence limit 
will be determined by symmetry and will always have a sign that is the negative of the first 
equivalence limit.  

Test Statistics 
This section describes the test statistics that are available in this procedure. Note that these test 
statistics are computed on the differences. Thus, when the equation refers to an X value, this X 
value is assumed to be a difference between two individual variates. 

One-Sample t-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 

t X M
sn

X
− =

−
1
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and M0 is the value of the difference hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 
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Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps.  

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to their 
absolute values. 

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 

( )
nW

n n+
μ =

1
4

 and 
( )( )

nW

3n n+ n+
 -  t - t

σ =
∑ ∑1 2 1

24 48
 

where ti represents the number of times the ith value occurs. 

4. Compute the z value using 

z
W

W
W

W

n

n

=
− μ
σ

 

For cases when n is less than 38, the significance level is found from a table of exact probabilities 
for the Wilcoxon test. When n is greater than or equal to 38, the significance of the test statistic is 
determined by computing the p-value using the standard normal distribution. If this p-value is less 
than a specified level (usually 0.05), the null hypothesis is rejected in favor of the alternative 
hypothesis. Otherwise, no conclusion can be reached. 

Sign Test  
The sign test is popular because it is simple to compute. It assumes that the data follow the same 
distribution. The test is computed using the following steps.  

1. Count the number of values strictly greater than M0. Call this value X. 

2. Count the number of values strictly less than M0. Call this value Y. 

3. Set m = X + Y. 

4. Under the null hypothesis, X is distributed as a binomial random variable with a proportion of 
0.5 and sample size of m.  

The significance of X is calculated using binomial probabilities. 



495-6  Equivalence of Paired Means using Simulation 

Bootstrap Test  
The one-sample bootstrap procedure for testing whether the mean is equal to a specific value is 
given in Efron & Tibshirani (1993) pages 224-227. The bootstrap procedure is as follows.  

1. Compute the mean of the sample. Call it X . 

2. Compute the t-value using the standard t-test. The formula for this computation is 

t X M
sX

X

=
− 0

 

3. Draw a random, with-replacement sample of size n from the original X values. Call this 
sample .  Y Y Yn1 2, , ,L

4. Compute the t-value of this bootstrap sample using the formula 

t Y X
sY

Y

=
−

 

5. For a two-tailed test, if t tY > x  then add one to a counter variable A. 

6. Repeat steps 3 – 5 B times. B may be anywhere from 100 to 10,000. 

7. Compute the p-value of the bootstrap test as (A + 1) / (B + 1) 

8. Steps 1 – 7 complete one simulation iteration. Repeat these steps M times, where M is the 
number of simulations. The power and significance level is equal to the percent of the time 
the p-value is less than the nominal alpha of the test. 

Note that the bootstrap test is a time-consuming test to run, especially if you set B to a value 
larger than 100.  

The Problem of Differing Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, note that although the shape parameters are 
constant, the standard deviations are not. Thus the null and alternatives not only have different 
means, but different standard deviations! 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies whether you want to find Power or N from the simulation. Select Power 
when you want to estimate the power of a certain scenario. Select N when you want to determine 
the sample size needed to achieve a given power and alpha error level. Finding N is very 
computationally intensive, and so it may take a long time to complete. 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  
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Equiv. Limit 
Equivalence limits are defined as the positive and negative limits around zero that define a zone 
of equivalence. This zone of equivalence is a set of difference values that define a region in which 
the two means are ‘close enough’ so that they are considered to be the same for practical 
purposes.  

Rather than define these limits explicitly, they are set implicitly. This is done as follows. One 
limit is found by subtracting the Item B mean | H0 from the Item A mean | H0. If the limits are 
symmetric, the other limit is this difference times -1. To obtain symmetric limits, enter 
‘Symmetric’ here. 

If asymmetric limits are desired, a numerical value is specified here. It will be given the sign (+ or 
-) that is opposite the difference in the means discussed above. 

For example, if the mean of A under H0 is 5, the mean of B under H0 is 4, and ‘Symmetric’ is 
entered here, the equivalence limits will be 5 - 4 = 1 and -1. However, if the value ‘1.25’ is 
entered here, the equivalence limits are 1 and -1.25. 

If you do not have a specific value in mind for the equivalence limit, a common value for an 
equivalence limit is 20% or 25% of the Item A (reference) mean. 

Test Statistic 
Specify which test statistic (t-test, Wilcoxon test, sign test, or bootstrap test) is to be simulated. 
Although the t-test is the most commonly used test statistic, it is based on assumptions that may 
not be viable in many situations. For your data, you may find that one of the other tests is more 
accurate (actual alpha = target alpha) and more precise (better power). 

Note that the bootstrap test is computationally intensive, so it can be very slow to calculate. 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of subjects in the study. 
The paired design assumes that a pair of observations will be obtained from each subject. Thus 
there will be 2N observations simulated, resulting in N differences.  

This value must be an integer greater than one. You may enter a list of values using the syntax 50 
100 150 200 250 or 50 to 250 by 50.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you falsely reject the null hypothesis. Values must be between zero and one. 
Commonly, the value of 0.05 is used for two-tailed tests and 0.025 is used for one-tailed tests.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject a false null hypothesis.  

Values must be between zero and one. Historically, the value of 0.20 was used for beta. Now, 
0.10 is more common. However, you should pick a value for beta that represents the risk of a 
type-II error you are willing to take. 

Power is defined as one minus beta. Hence, specifying beta also specifies the power. For 
example, if you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding 
power values of 0.95, 0.90, and 0.80, respectively.  
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Item A (and B) Distribution | H0 
These options specify the distributions of the two items making up the pair under the null 
hypothesis, H0. The difference between the means of these two distributions is the difference that 
is tested, Diff0.  

Usually, you will want Diff0 = 0. This zero difference is specified by entering M0 for the mean 
parameter in each of the distributions and then entering an appropriate value for the M0 
parameter below.  

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to test whether the mean of a normal distributed variable is five, you could enter N(5, S) 
or N(M0, S) here. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 
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Item A (and B) Distribution | H1 
These options specify the distributions of the two items making up the pair under the alternative 
hypothesis, H1. The difference between the means of these two distributions is the difference that 
is assumed to be the true value of the difference. That is, this is the difference at which the power 
is computed. 

Usually, the mean difference is specified by entering M1 for the mean parameter in the 
distribution expression for item A and M0 for the mean parameter in the distribution expression 
for item B. The mean difference under H1 then becomes the value of M1 – M0.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean under 
the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

M0 (Item A, or Reference, Mean) 
These values are substituted for the M0 in the four distribution specifications given above. M0 is 
intended to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Item B, or Treatment, Mean) 
These values are substituted for the M1 in the four distribution specifications given above. M1 is 
intended to be the value of the mean hypothesized by the alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 
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R (Correlation of Items A & B) 
Specify the value of the correlation between items (variates) A and B of the pair.  

Since this is a correlation, it must be between -1 and 1. However, some distributions (such as the 
multinomial distribution) have a maximum possible correlation that is far less than one. 

Typical values are between 0 and 0.4. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 
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Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Bootstrap Iterations 
Specify the number of iterations used in the bootstrap hypothesis test. This value is only used if 
the bootstrap test is displayed on the reports. The running time of the procedure depends heavily 
on the number of iterations specified here.  

Recommendations by authors of books discussing the bootstrap are from 100 to 10,000. If you 
enter a large (greater than 500) value, the simulation may take several hours to run. 

Maximum Switches 
This option specifies the maximum number of index switches that can be made while searching 
for a permutation of item B that yields a correlation within the specified range. A value near 
5,000,000 may be necessary when the correlation is near one.  

Correlation Tolerance 
Specify the amount above and below the target correlation that will still let a particular 
permutation to be selected for the population. For example, if you have selected a correlation of 
0.3 and you set this tolerance to 0.001, then only populations with a correlation between 0.299 
and 0.301 will be used. The recommended is 0.001 or smaller. Valid values are between 0 and 
0.999. 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Populations of at least 10,000 should be used. Also, the value should be about twice the number 
of simulations. You can enter Automatic and an appropriate value will be calculated. 

Note that values over 50,000 may take a long time to permute to achieve the target means and 
correlation.  
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Example1 - Power at Various Sample 
Sizes 
Researchers are planning an experiment to determine if the response to a new drug is equivalent 
to the response to the standard drug. The average response level to the standard drug is 63 with a 
standard deviation of 5.  The researchers decide that if the average response level to the new drug 
is between 60 and 66, they will consider it to be equivalent to the standard drug.  

The researchers decide to use a paired design so that each subject can serve as their own control. 
The response level for the standard drug will be measured for each subject. Then, followed by an 
appropriate wash-out period of two days, the response level to the new drug will be measured. 
From previous studies, they know that the correlation between the two response levels will be 
between 0.1 and 0.20. 

The researchers will analyze the data using an equivalence test based on the paired t-test with an 
alpha level of 0.05. They want to compare the power at sample sizes of 10, 30, 50, and 70. They 
assume that the data are normally distributed and that the true difference between the response 
level of the two drugs is zero. Since this is an exploratory analysis, they set the number of 
simulation iterations to 2000. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations........................................2000 
Equiv. Limit........................................Symmetric 
Test Statistic......................................T-Test 
N........................................................10 30 50 70 
R........................................................0.1 0.2 
Item A (Reference) Dist’n|H0 ............N(M0 S) 
Item B (Treatment) Dist’n|H0.............N(M1 S) 
Item A (Reference) Dist’n|H1 ............N(M0 S) 
Item B (Treatment) Dist’n|H1.............N(M0 S) 
M0 (Item A Mean) .............................63 
M1 (Item B Mean) .............................66 
S........................................................5 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 
 
   Lower Upper 
  H1 Equiv. Equiv. Corr Target Actual  
Power N Diff1 Limit Limit R Alpha Alpha M0 M1 S 
0.030 10 0.0 -3.0 3.0 0.100 0.050 0.009 63.0 66.0 5.0 
(0.007) [0.022 0.037]     (0.004) [0.005 0.013] 
 
0.055 10 0.0 -3.0 3.0 0.200 0.050 0.019 63.0 66.0 5.0 
(0.010) [0.045 0.065]     (0.006) [0.013 0.025] 
 
0.560 30 0.0 -3.0 3.0 0.100 0.050 0.050 63.0 66.0 5.0 
(0.022) [0.538 0.581]     (0.010) [0.040 0.060] 
 
Population Size: 10000. Number of Monte Carlo Samples: 2000.   Simulation Run Time: 30.02 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Diff1 is the paired-difference mean (A-B) assuming the alternative hypothesis, H1. This is the true value. 
Lower Equiv Limit is the lower limit on a difference (A-B) that is considered as equivalent. 
Upper Equiv Limit is the upper limit on a difference (A-B) that is considered as equivalent. 
Diff0 is the paired-difference mean (A-B) assuming the null hypothesis, H0. This is one of the equivalence limits. 
R is the correlation between the paired items. 
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
 
Summary Statements 
A sample size of 10 pairs with a correlation of 0.100 achieves 3% power to detect equivalence 
when the margin of equivalence is from -3.0 to 3.0 and the actual mean difference is 0.0. The 
significance level (alpha) is 0.050 using two one-sided Paired T-Tests. These results are based 
on 2000 Monte Carlo samples from the null distribution: Normal(M0 S) - Normal(M1 S) and the 
alternative distribution: Normal(M0 S) - Normal(M0 S). 
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Chart Section 
 

Power vs N by R with M0=-3.0 M1=0.0 S=5.0
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  

The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 
We see that a sample size of about 50 is needed to obtain a reasonable power level. 
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Example2 - Finding the Sample Size 
Continuing with Example1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90? They decide to use a correlation of 0.10, since that will result in a larger, 
more conservative, sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N 
Simulations .......................................2000 
Equiv. Limit .......................................Symmetric 
Test Statistic .....................................T-Test 
N ....................................................... Ignored since this is the Find setting 
R .......................................................0.1 0.2 
Item A (Reference) Dist’n|H0 ............N(M0 S) 
Item B (Treatment) Dist’n|H0 ............N(M1 S) 
Item A (Reference) Dist’n|H1 ............N(M0 S) 
Item B (Treatment) Dist’n|H1 ............N(M0 S) 
M0 (Item A Mean) .............................63 
M1 (Item B Mean) .............................66 
S........................................................5 
Alpha.................................................0.05 
Beta...................................................0.1  

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 
 
   Lower Upper 
  H1 Equiv. Equiv. Corr Target Actual  
Power N Diff1 Limit Limit R Alpha Alpha M0 M1 S 
0.899 54 0.0 -3.0 3.0 0.100 0.050 0.044 63.0 66.0 5.0 
(0.013) [0.885 0.912]     (0.009) [0.035 0.052] 
 

The required sample size was 54 which achieved a power of 0.899.  

The power of 0.899 is slightly less than the target value of 0.900 because the sample size search 
algorithm re-simulates the power for the final sample size. Thus it is possible for the search 
algorithm to converge to a sample size which exhibits the desired power, but then on the second 
simulation, achieves a power that is slightly less than the target. To obtain more accuracy, a 
reasonable strategy would be to run simulations to obtain the powers using N’s from 50 to 60 
using a simulation size of 5000. 

Example3 – Comparing Test Statistics  
Continuing with Example2, the researchers want to study the characteristics of alternative test 
statistics. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations........................................2000 
Equiv. Limit........................................Symmetric 
Test Statistic......................................T-Test 
N........................................................10 30 50 70 
R........................................................0.1 
Item A (Reference) Dist’n|H0 ............N(M0 S) 
Item B (Treatment) Dist’n|H0.............N(M1 S) 
Item A (Reference) Dist’n|H1 ............N(M0 S) 
Item B (Treatment) Dist’n|H1.............N(M0 S) 
M0 (Item A Mean) .............................63 
M1 (Item B Mean) .............................66 
S........................................................5 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Reports Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Power Comparison for Testing Equivalence.   Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
 
 H1 Lower Upper      
 Diff Equiv. Equiv. Corr Target T-Test Wilcxn Sign   
N (Diff1) Limit Limit (R) Alpha Power Power Power M0 M1 S 
10 0.0 -3.0 3.0 0.100 0.050 0.034 0.024 0.002 63.0 66.0 5.0 
30 0.0 -3.0 3.0 0.100 0.050 0.537 0.494 0.275 63.0 66.0 5.0 
50 0.0 -3.0 3.0 0.100 0.050 0.870 0.855 0.500 63.0 66.0 5.0 
70 0.0 -3.0 3.0 0.100 0.050 0.966 0.953 0.768 63.0 66.0 5.0 
 
Alpha Comparison for Testing Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
 
 H1 Lower Upper      
 Diff Equiv. Equiv. Corr Target T-Test Wilcxn Sign   
N (Diff1) Limit Limit (R) Alpha Alpha Alpha Alpha M0 M1 S 
10 0.0 -3.0 3.0 0.100 0.050 0.010 0.009 0.001 63.0 66.0 5.0 
30 0.0 -3.0 3.0 0.100 0.050 0.057 0.056 0.052 63.0 66.0 5.0 
50 0.0 -3.0 3.0 0.100 0.050 0.052 0.049 0.024 63.0 66.0 5.0 
70 0.0 -3.0 3.0 0.100 0.050 0.044 0.045 0.041 63.0 66.0 5.0 
 

Power vs N by Test with M0=-3.0 M1=0.0 S=5.0
Alpha=0.05 R=0.10
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These results show that for paired data, the t-test and Wilcoxon test have very similar power and 
alpha values. The sign test is less accurate and less powerful. 
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Example4 - Validation 
We will validate this procedure by comparing its results to those of Chow et. al. (2003) page 55 
in which the parameter values are: M0 = 0, M1 = 0.05, alpha = 0.05, N = 35, R = 0.0, and S = 
0.070711. For these parameters, the power is given as 0.800. 

Note that they give the standard deviation of the differences as 0.1. Since the correlation is 0.0, 
the standard deviation of the individual data values is given by 0.1/Sqrt(2) = 0.070711. 

In order to understand the accuracy of the simulation, we will re-run the analysis five times. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Power 
Simulations........................................2000 
Equiv. Limit........................................Symmetric 
Test Statistic......................................T-Test 
N........................................................35 35 35 35 35 
R........................................................0.0 
Item A (Reference) Dist’n|H0 ............N(M0 S) 
Item B (Treatment) Dist’n|H0.............N(M1 S) 
Item A (Reference) Dist’n|H1 ............N(M0 S) 
Item B (Treatment) Dist’n|H1.............N(M0 S) 
M0 (Item A Mean) .............................0 
M1 (Item B Mean) .............................0.05 
S........................................................0.070711 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 

 
   Lower Upper 
  H1 Equiv. Equiv. Corr Target Actual  
Power N Diff1 Limit Limit R Alpha Alpha M0 M1 S 
0.813 35 0.0 -0.1 0.1 0.000 0.050 0.050 0.0 0.1 0.1 
(0.017) [0.795 0.830]     (0.010) [0.040 0.059] 
 
0.813 35 0.0 -0.1 0.1 0.000 0.050 0.045 0.0 0.1 0.1 
(0.017) [0.796 0.830]     (0.009) [0.036 0.054] 
 
0.803 35 0.0 -0.1 0.1 0.000 0.050 0.051 0.0 0.1 0.1 
(0.017) [0.785 0.820]     (0.010) [0.041 0.061] 
 
0.799 35 0.0 -0.1 0.1 0.000 0.050 0.045 0.0 0.1 0.1 
(0.018) [0.781 0.816]     (0.009) [0.035 0.054] 
 
0.826 35 0.0 -0.1 0.1 0.000 0.050 0.051 0.0 0.1 0.1 
(0.017) [0.809 0.843]     (0.010) [0.041 0.060] 
 
Notes: 
Population Size: 10000. Number of Monte Carlo Samples: 2000.   Simulation Run Time: 16.80 seconds. 
 

The powers match the analytic value of 0.800 quite well. Note how informative the confidence 
intervals are. 
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Chapter 500  

2x2 Cross-Over 
Designs for 
Comparing the 
Difference of Two 
Means 
Introduction 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carry-over effect.  

A 2x2 cross-over design contains to two sequences (treatment orderings) and two time periods 
(occasions). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry over to the second. Thus, the groups in this design are 
defined by the sequence in which the drugs are administered, not by the treatments they receive. 
Indeed, higher-order cross-over designs have been used in which the same treatment is used at 
both occasions. 

Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 
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Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment into the study may 
be easier because each patient will receive both treatments. Finally, it is often more difficult to 
obtain a subject than to obtain a measurement. 

Disadvantages 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. It may be difficult to separate the treatment 
effect from the period effect, the carry-over effect of the previous treatment, and the interaction 
between period and treatment. 

The design cannot be used when the treatment (or the measurement of the response) alters the 
subject permanently. Hence, it should not be used to compare treatments that are intended to 
provide a cure. 

Because subjects must be measured at least twice, it is often more difficult to keep patients 
enrolled in the study. It is arguably simpler to measure a subject once than to obtain their 
measurement twice. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Technical Details 
The 2x2 crossover design may be described as follows. Randomly assign the subjects to one of 
two sequence groups so that there are  subjects in sequence one and  subjects in sequence 
two. In order to achieve design balance, the sample sizes  and  are assumed to be equal so 
that . 

N1 N2

N1 N2

N N N1 2 2= = /

Sequence one is given treatment A followed by treatment B. Sequence two is given treatment B 
followed by treatment A. The sequence is replicated m times. So, if m = 3, the sequences are 
ABABAB and BABABA. 

The usual method of analysis is the analysis of variance. However, the power and sample size 
formulas that follow are based on the t-test, not the F-test. This is done because, in the balanced 
case, the t-test and the analysis of variance F-test are equivalent. Also, the F-test is limited to a 
two-sided hypothesis, while the t-test allows both one-sided and two-sided hypotheses. This is 
important because one-sided hypotheses are used for non-inferiority and equivalence testing. 



 2x2 Cross-Over Design for Mean Differences  500-3 

Cross-Over Analysis 
The following discussion summarizes the presentation of Chow and Liu (1999). The general 
linear model for the standard 2x2 cross-over design is 

( ) ( )Y S P Cijkl ik j j k j k ijkle= + + + + +−μ μ , ,1  

where i represents a subject (1 to ), j represents the period (1 or 2), k represents the sequence 
(1 or 2), and l represents the replicate. The  represent the random effects of the subjects. The 

 represent the effects of the two periods. The 

Nk

Sik

Pj ( )μ j k,  represent the means of the two treatments. 

In the case of the 2x2 cross-over design 

( )μ
μ
μj k

if k j
if k j, =

=
≠

⎧
⎨
⎩

1

2

 

where the subscripts 1 and 2 represent treatments A and B, respectively. 

The  represent the carry-over effects. In the case of the 2x2 cross-over design (C j k−1, )

( )C
C if j k
C if j k

otherwise
j k− =

= =
= =

⎧

⎨
⎪

⎩
⎪

1

1

2

2 1
2 2

0
,

,
,  

where the subscripts 1 and 2 represent treatments A and B, respectively.  

Assuming that the average effect of the subjects is zero, the four means from the 2x2 cross-over 
design can be summarized using the following table. 

Sequence Period Period
AB P P C
BA P P C

1 2
1
2

11 1 1 21 2 2 1

12 1 2 22 2 1 2

( )
( )

μ μ μ μ μ μ
μ μ μ μ μ μ

= + + = + + +
= + + = + + +

 

where  and C CP P1 2 0+ = 1 2 0+ = . 
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Test Statistic  
The presence of a treatment effect can be studied by testing whether μ μ δ1 2− =  using a t-test or 
an F-test. If the F-test is used, only a two-sided test is possible. The t statistic is calculated as 
follows 

( )

N

xxt

w

RT
d 2σ̂

δ−−
=  

where  is the within mean square error from the appropriate ANOVA table.  $σw
2

The two-sided null hypothesis is rejected at the α  significance level if t td > −α / ,2 N 2

σ d
2

. Similar 
results are available for a one-sided hypothesis test. 

The F-test is calculated using a standard repeated-measures analysis of variance table in which 
the between factor is the sequence and the within factor is the treatment. The within mean square 
error provides an estimate of the within-subject variance . If prior studies used a t-test rather 
than an ANOVA to analyze the data, you may not have a direct estimate of . Instead, you will 

have an estimate of the variance of the period differences from the t-test, .The two variances, 

 and , are functionally related by . Either variance can be entered. 

σw
2

σw
2

2ˆdσ
σ d

2 σw
2 σw

2 2=

Computing the Power 
The power is calculated as follows for a directional alternative (one-sided test). 

1. Find tα  such that , where ( )1− =T tdf α α ( )T xdf  is the area left of x under a central-t curve 
and df = N - 2. 

2. Calculate the noncentrality parameter: 
2w

N
σ
δλ = . 

3. Calculate: Power = , where ( )1− ′T tdf ,λ α ( )′T xdf ,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom df and noncentrality parameter λ . 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment that has already been run.  

Diff0 (Mean Difference|H0) 
Enter the difference between the treatment means under the null (H0) hypothesis. This is the 
value that is to be rejected when the t-test is significant. This value is commonly set to zero. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 

Diff1 (Mean Difference|H1) 
Enter the difference between the population means under the alternative (H1) hypothesis. This is 
the value of the difference at which the power is calculated. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 

N (Sample Size of Both Groups) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  
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Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always : Diff0 = Diff1. H0

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

H1: DIFF0 <> DIFF1. This is the most common selection. It yields the two-sided t-test. Use this 
option when you are testing whether the means are different but you do not want to specify 
beforehand which mean is larger. Many scientific journals require two-sided tests. 

H1: DIFF0 > DIFF1. This option yields a one-sided t-test. Use it when you are only interested in 
the case in which the actual difference is less than Diff0. 

H1: DIFF0 < DIFF1. This option yields a one-sided t-test. Use it when you are only interested in 
the case in which actual difference is greater than Diff0. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (false positive). A 
type-I error occurs when you reject the null hypothesis when in fact it is true.  

Usually the value of 0.05 is used for a two-sided test and 0.025 for a one-sided test.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (false negative). A 
type-II error occurs when you fail to reject the null hypothesis of equal means when in fact the 
means are different. You cannot make both a type-I and a type-II error in a single hypothesis test. 

Values must be between zero and one. Usually, the values of 0.10 or 0.20 are used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as one minus beta. Hence, specifying the beta error level also specifies the 
power level. For example, if you specify beta values of 0.05, 0.10, and 0.20, you are specifying 
the corresponding power values of 0.95, 0.90, and 0.80, respectively.  

Specify S as Sw or Sd 
Specify the form of the standard deviation that is entered in the box below.  

Sw 
Specify S as the square root of the within mean square error from a repeated measures ANOVA. 
This is the most common method since cross-over designs are usually analyzed using ANOVA. 

Sd 
Specify S as the standard deviation of the individual differences created for each subject. This 
option is used when you have previous studies that have produced this value. 
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S (Value of Sw or Sd) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in Specify S as Sw or Sd above. If S=Sw is selected, this is the value of Sw which is 
SQR(WMSE) where WMSE is the within mean square error from the ANOVA table used to 
analyze the Cross-Over design. If S = Sd is selected, this is the value of Sd which is the standard 
deviation of the period differences—pooled from both sequences. 

These values must be positive. A list of values may be entered.  

You can press the SD button to load the Standard Deviation Estimator window. 
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Example1 - Power Analysis 
Suppose you want to consider the power of a balanced cross-over design that will be analyzed 
using the two-sided t-test approach. The difference between the treatment means under H0 is 0. 
Similar experiments have had a standard deviation of the differences (Sd) of 10. Compute the 
power when the true differences are 5 and 10 at sample sizes between 5 and 50. The significance 
level is 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Beta and Power 
Diff0...................................................0 
Diff1...................................................5 10 
Specify S as Sw or Sd ......................Sd 
S........................................................10 
Alternative Hypothesis ......................H1: Diff0 <> Diff1 
N .......................................................5 10 15 20 30 40 50 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Cross-Over Design 
Null Hypothesis: Diff0=Diff1     Alternative Hypothesis: Diff0<>Diff1 
 
       Effect 
Power N Diff0 Diff1 Alpha Beta Sd Size 
0.0691 5 0.000 5.000 0.0500 0.9309 10.000 0.500 
0.1077 10 0.000 5.000 0.0500 0.8923 10.000 0.500 
0.1463 15 0.000 5.000 0.0500 0.8537 10.000 0.500 
0.1851 20 0.000 5.000 0.0500 0.8149 10.000 0.500 
0.2624 30 0.000 5.000 0.0500 0.7376 10.000 0.500 
0.3379 40 0.000 5.000 0.0500 0.6621 10.000 0.500 
0.4101 50 0.000 5.000 0.0500 0.5899 10.000 0.500 
0.1266 5 0.000 10.000 0.0500 0.8734 10.000 1.000 
0.2863 10 0.000 10.000 0.0500 0.7137 10.000 1.000 
0.4339 15 0.000 10.000 0.0500 0.5661 10.000 1.000 
0.5620 20 0.000 10.000 0.0500 0.4380 10.000 1.000 
0.7529 30 0.000 10.000 0.0500 0.2471 10.000 1.000 
0.8690 40 0.000 10.000 0.0500 0.1310 10.000 1.000 
0.9337 50 0.000 10.000 0.0500 0.0663 10.000 1.000 



 2x2 Cross-Over Design for Mean Differences  500-9 

 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
Alpha is the probability of a false positive. 
Beta is the probability of a false negative. 
Diff0 is the mean difference under the null hypothesis, H0. 
Diff1 is the mean difference under the alternative hypothesis, H1. 
Sd is the standard deviation of the difference. 
Effect Size, |Diff0-Diff1|/Sd, is the relative magnitude of the effect under the alternative. 
 
Summary Statements 
A two-sided t-test achieves 7% power to infer that the mean difference is not 0.000 when the 
total sample size of a 2x2 cross-over design is 5, the actual mean difference is 5.000, the 
standard deviation of the differences is 10.000, and the significance level is 0.0500. 
 
Chart Section 
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This report shows the values of each of the parameters, one scenario per row. This plot shows the 
relationship between sample size and power. We see that a sample size of about 46 is needed 
when Diff1 = 10 for 90% power, while Diff1 = 5 never reaches 90% power in this range of 
sample sizes. 
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Example2 - Finding the Sample Size 
Continuing with Example1, suppose the researchers want to find the exact sample size necessary 
to achieve 90% power for both values of Diff1.  

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N (Sample Size) 
Diff0...................................................0 
Diff1...................................................5 10 
Specify S as Sw or Sd ......................Sd 
Sd......................................................10 
Alternative Hypothesis ......................H1: Diff0 <> Diff1 
Alpha.................................................0.05 
Beta...................................................0.10 
N ....................................................... Ignored since this is the Find setting  

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Cross-Over Design 
Null Hypothesis: Diff0=Diff1     Alternative Hypothesis: Diff0<>Diff1 
 
       Effect 
Power N Diff0 Diff1 Alpha Beta Sd Size 
0.9032 172 0.000 5.000 0.0500 0.0968 10.000 0.500 
0.9125 46 0.000 10.000 0.0500 0.0875 10.000 1.000 
 

This report shows the exact sample size necessary for each scenario.  

Note that the search for N is conducted across only even values of N since the design is assumed 
to be balanced. 
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Example3 - Validation using Julious 
Julious (2004) page 1933 presents an example in which Diff0 = 0.0, Diff1 = 10, Sw = 20, alpha = 
0.05, and beta = 0.10. Julious obtains a sample size of 86. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N (Sample Size) 
Diff0...................................................0 
Diff1...................................................10 
Specify S as Sw or Sd.......................Sw 
S........................................................20 
Alternative Hypothesis ......................H1: Diff0 <> Diff1 
N........................................................Ignored since this is the Find setting  
Alpha .................................................0.05 
Beta...................................................0.10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

       Effect 
Power N Diff0 Diff1 Alpha Beta Sw Size 
0.906483 88 0.000 10.000 0.050000 0.093435 20.000 0.500 
 

PASS obtained a sample size of 88, two higher than that obtained by Julious (2004). However, if 
you look at the power achieved by an N of 86, you will find that it is 0.899997—slightly less than 
the goal of 0.90. 
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Chapter 505  

2x2 Cross-Over 
Designs: Tests 
using Ratios 
Introduction 
This procedure calculates power and sample size for a 2x2 cross-over design in which the logarithm 
of the outcome is a continuous normal random variable. This routine deals with the case in which 
the statistical hypotheses are expressed in terms of ratios of means instead of differences of means.  

The details of testing two treatments using data from a 2x2 cross-over design are given in another 
chapter and they will not be repeated here. If the logarithms of the responses can be assumed to 
follow a normal distribution, hypotheses stated in terms of the ratio can be transformed into 
hypotheses about the difference. The details of this analysis are given in Julious (2004). They will 
only be summarized here. 

Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment (group 2) mean. T

μR  Not used Reference mean. This is the reference (group 1) mean.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 

The null hypothesis is 

H0 0:φ φ=  

and the alternative hypothesis is  

H1 0:φ φ≠  
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Log Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as percentages, but differences must 
be interpreted as actual amounts in their original scale. Hence, it has become a common practice 
to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 

( ) ( ) ( ){ }

φ φ

φ μ
μ

φ μ μ

=

⇒ =
⎧
⎨
⎩

⎫
⎬
⎭

⇒ ≠ −

0

T

R

T Rln ln ln

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

σY
2
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Y Y
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From this relationship, the coefficient of variation of Y can be found to be  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Find 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Beta for a power analysis or N1 for sample size determination. 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. Possible selections are: 

H1: R1 <> R0. This is the most common selection. It yields the two-tailed t-test. Use this option 
when you are testing whether the means are different, but you do not want to specify beforehand 
which mean is larger. 

H1: R1 < R0. This option yields a one-tailed t-test. Use it when you are only interested in the 
case in which Mean1 is greater than Mean2. 

H1: R1 > R0. This option yields a one-tailed t-test. Use it when you are only interested in the 
case in which Mean1 is less than Mean2. 

R0 (Ratio Under H0) 
This is the value of the ratio of the two means assumed by the null hypothesis, H0. Usually, R0 = 
1.0 which implies that the two means are equal. However, you may test other values of R0 as 
well. Strictly speaking, any positive number is valid, but, usually, 1.0 is used. 

Warning: you cannot use the same value for both R0 and R1. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Often, a 
range of values will be tried. For example, you might try the four values: 

1.05 1.10 1.15 1.20 

Strictly speaking, any positive number is valid. However, numbers between 0.50 and 2.00 are 
usually used. 

Warning: you cannot use the same value for both R0 and R1. 
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COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not log) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related by . 

$σw
2

σ d
2 σw

2 σ σd w
2 22=

N (Total Sample Size) 
This option specifies one or more values of the total sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50 100 150 200 250 or 50 to 250 by 50.  

Alpha (Significance Level) 
Specify one or more values of alpha, the probably of a type-I error which is rejecting the null 
hypothesis of equality when in fact the groups are different. Note that the valid range is 0 to 1, 
but typical values are between 0.01 and 0.20. 

You can enter a range of values such as 0.05 0.10 0.15 or 0.5 to 0.15 by 0.05.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal means when in fact the means are 
different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  
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Example1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
better than the standard drug. Responses for either treatment are assumed to follow a lognormal 
distribution. A 2x2 cross-over design will be used and the logged data will be analyzed using an 
appropriate analysis of variance. Note that using an analysis of variance instead of a t-test to 
analyze the data forces the researchers to use two-sided tests. 

Past experience leads the researchers to set the COV to 0.50. The significance level is 0.05. The 
power will be computed for R1 equal to 1.10 and 1.20. Sample sizes between 20 and 220 will be 
included in the initial analysis. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Alternative Hypothesis ......................R1<>R0 (Two-Sided) 
R0 .....................................................1.0 
R1 .....................................................1.1  1.2 
COV ..................................................0.50 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
N .......................................................20 to 220 by 40 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for 2x2 Cross-Over Design Using Ratios 
H0: R1=R0.  H1: R1<>R0. 
 
 Total Mean Mean  Coefficient   
 Sample Ratio Ratio Effect of Significance  
 Size Under H0 Under H1 Size Variation Level  
Power (N) (R0) (R1) (ES) (COV) (Alpha) Beta 
0.0928 20 1.000 1.100 0.143 0.500 0.0500 0.9072 
0.1925 60 1.000 1.100 0.143 0.500 0.0500 0.8075 
0.2925 100 1.000 1.100 0.143 0.500 0.0500 0.7075 
0.3885 140 1.000 1.100 0.143 0.500 0.0500 0.6115 
0.4777 180 1.000 1.100 0.143 0.500 0.0500 0.5223 
0.5627 220 1.000 1.100 0.143 0.500 0.0500 0.4373 
0.2116 20 1.000 1.200 0.273 0.500 0.0500 0.7884 
0.5474 60 1.000 1.200 0.273 0.500 0.0500 0.4526 
0.7711 100 1.000 1.200 0.273 0.500 0.0500 0.2289 
0.8937 140 1.000 1.200 0.273 0.500 0.0500 0.1063 
0.9537 180 1.000 1.200 0.273 0.500 0.0500 0.0463 
0.9813 220 1.000 1.200 0.273 0.500 0.0500 0.0187 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
R0 is the ratio of the means (Mean2/Mean1) under the null hypothesis, H0. 
R1 is the ratio of the means (Mean2/Mean1) at which the power is calculated. 
ES is the effect size which is |Ln(R0)-Ln(R1)| / (sigma). 
COV is the coefficient of variation on the original scale. The value of sigma is calculated from this. 
Alpha is the probability of a false positive H0. 
Beta is the probability of a false negative H0. 
 
 
Summary Statements 
A two-sided t-test achieves 9% power to infer that the mean ratio is not 1.000 when the total 
sample size of a 2x2 cross-over design is 20, the actual mean ratio is 1.100, the coefficient 
of variation is 0.500, and the significance level is 0.0500. 

 

This report shows the power for the indicated scenarios.  

Plot Section 
 

 

Power vs N by R1 with R0=1.000 CV=0.500
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This plot shows the power versus the sample size. 
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Example2 –Validation 
We will validate this procedure by showing that it gives the identical results to the regular test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example 1. Since the output for this example is shown above, all that we need is the output from 
the procedure that uses differences. 

To run the power analysis on differences, we need the values of Diff1 (which correspond to R1) 
and Sw. The value of Diff0 will be zero. 

( )
( )

Sw COV= +

= +

=

ln

ln .

.

2

2

1

0 5 1

0 472381

 

( )
( )

Diff R1 1

110
0 095310

=

=

=

ln

ln .
.

 

( )
( )

Diff R1 1

120
0182322

=

=

=

ln

ln .
.

 

Setup 
Load the PASS: Means: Two: Cross-Over: 2x2: Inequality: Differences panel. You can enter the 
following parameter values or load Example1c. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Diff0...................................................0 
Diff1...................................................0.095310 0.182322 
N .......................................................20 to 220 by 40 
Alternative Hypothesis ......................H1: DIFF0<>Diff1 
Specify S as Sw or Sd ......................Sw 
Sw .....................................................0.472381 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for 2x2 Cross-Over Design 
Null Hypothesis: Diff0=Diff1     Alternative Hypothesis: Diff0<>Diff1 
       Effect 
Power N Diff0 Diff1 Alpha Beta Sw Size 
0.0928 20 0.000 0.095 0.0500 0.9072 0.472 0.202 
0.1925 60 0.000 0.095 0.0500 0.8075 0.472 0.202 
0.2925 100 0.000 0.095 0.0500 0.7075 0.472 0.202 
0.3885 140 0.000 0.095 0.0500 0.6115 0.472 0.202 
0.4777 180 0.000 0.095 0.0500 0.5223 0.472 0.202 
0.5627 220 0.000 0.095 0.0500 0.4373 0.472 0.202 
0.2116 20 0.000 0.182 0.0500 0.7884 0.472 0.386 
0.5474 60 0.000 0.182 0.0500 0.4526 0.472 0.386 
0.7711 100 0.000 0.182 0.0500 0.2289 0.472 0.386 
0.8937 140 0.000 0.182 0.0500 0.1063 0.472 0.386 
0.9537 180 0.000 0.182 0.0500 0.0463 0.472 0.386 
0.9813 220 0.000 0.182 0.0500 0.0187 0.472 0.386 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 510  

2x2 Cross-Over 
Design: Non-
Inferiority Tests 
using Differences  
Introduction 
This procedure computes power and sample size for non-inferiority and superiority tests in 2x2 
cross-over designs in which the outcome is a continuous normal random variable. The details of 
sample size calculation for the 2x2 cross-over design are presented in the 2x2 Cross-Over 
Designs chapter and they will not be duplicated here. This chapter only discusses those changes 
necessary for non-inferiority and superiority tests. Sample size formulas for non-inferiority and 
superiority tests of cross-over designs are presented in Chow et al. (2003) pages 63-68.  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carry-over effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry-over to the second. Thus, the groups in this design are 
defined by the sequence in which the two drugs are administered, not by the treatments they 
receive. 
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Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size can be calculated using the 2x2 Cross-Over Design procedure. However, 
at the urging of our users, we have developed this module which provides the input and output in 
formats that are convenient for these types of tests. This section reviews the specifics of non-
inferiority and superiority testing. 

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0:μX A≤  versus H1:μX A>  

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tailed 
test because it is rejected in samples in which the difference in sample means is larger than A. 

Following is an example of a lower-tailed test. 

H0:μX A≥  versus H1:μX A<  

 

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum difference that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value is shown to emphasize that this is a 
magnitude. The sign of the value will be determined by 
the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 
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Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than a small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

A superiority test tests that the treatment mean is better than reference mean by more than a small 
equivalence margin. The actual direction of the hypothesis depends on the response variable 
being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. 

H0:μ μ εT R≤ −  versus  H1:μ μ εT R> −  

H0:μ μ εT R− ≤ −   versus  H1:μ μ εT R− > −  

H0:δ ε≤ −   versus  H1:δ ε> −  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. 

H0:μ μ εT R≥ +  versus  H1:μ μ εT R< +  

H0:μ μ εT R− ≥   versus  H1:μ μ εT R− <  

H0:δ ε≥   versus  H1:δ ε<  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of equivalence. The value of δ  must be greater than ε . 

H0:μ μ εT R≤ +  versus  H1:μ μ εT R> +  

H0:μ μ εT R− ≤   versus  H1:μ μ εT R− >  

H0:δ ε≤   versus  H1:δ ε>  
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Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of equivalence. The value of δ  must be less than − ε . 

H0:μ μ εT R≥ −  versus  H1:μ μ εT R< −  

H0:μ μ εT R− ≥ −   versus  H1:μ μ εT R− < −  

H0:δ ε≥ −   versus  H1:δ ε< −  

Test Statistics 
This section describes the test statistic that is used to perform the hypothesis test.  

T-Test 
A t-test is used to analyze the data. When the data are balanced between sequences, the two-sided 
t-test is equivalent to an analysis of variance F-test. The test assumes that the data are a simple 
random sample from a population of normally-distributed values that have the same variance. 
This assumption implies that the differences are continuous and normal. The calculation of the t-
statistic proceeds as follow   

( )

N

xxt

w

RT
d 2σ̂

ε−−
=  

where  is the within mean square error from the appropriate ANOVA table.  $σ w
2

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. That is, the one-sided null 
hypothesis is rejected at the α  significance level if . Otherwise, no conclusion can be 
reached. 

t td N> −α , 2

If prior studies used a t-test rather than an ANOVA to analyze the data, you may not have a direct 
estimate of . Instead, you will have an estimate of the variance of the period differences from 

the t-test, . These variances are functionally related by . Either variance can be 
entered. 

σw
2

2ˆdσ σw
2 2= σ d

2



 2x2 Cross-Over: Non-Inferiority using Differences  510-5 

Computing the Power 
The power is calculated as follows.  

1. Find tα  such that , where ( )1− =T tdf α α ( )T xdf  is the area under a central-t curve to the left 
of x and df = N - 2. 

2. Calculate the noncentrality parameter: 
( )

2w

N
σ
εδλ −

= . 

3. Calculate: Power = ( )1− ′T tdf ,λ α , where ( )′T xdf ,λ  is the area under a noncentral-t curve with 
degrees of freedom df and noncentrality parameter λ  to the left of x. 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment that has already been run.  

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are usually considered 
bad. However, if the response variable is income, higher values are considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
treatment mean is within the margin of equivalence of being no worse than the reference mean. 
Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 

|E| (Equivalence Margin) 
This is the magnitude of the margin of equivalence. It is the smallest difference between the mean 
and the reference value that still results in the conclusion of non-inferiority (or superiority). Note 
that the sign of this value is assigned depending on the selections for Higher Is and Test Type. 

D (True Value) 
This is the actual difference between the mean and the reference value. For non-inferiority tests, 
this value is often set to zero, but it can be non-zero as long as the values are consistent with the 
alternative hypothesis, H1. For superiority tests, this value is usually non-zero. Again, it must be 
consistent with the alternative hypothesis, H1. 
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Specify S as Sw or Sd 
Specify the form of the standard deviation that is entered in the box below.  

Sw 
Specify the standard deviation S as the square root of the within mean square error from a 
repeated measures ANOVA. This is the most common method since cross-over designs are 
usually analyzed using ANOVA. 

Sd 
Specify the standard deviation S as the standard deviation of the individual treatment differences. 
This option is used when you have previous studies that produced this value. 

S (Value of Sw or Sd) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in Specify S as Sw or Sd above. If S=Sw is selected, this is the value of Sw which is 
SQR(WMSE) where WMSE is the within mean square error from the ANOVA table used to 
analyze the Cross-Over design. If S = Sd is selected, this is the value of Sd which is the standard 
deviation of the period differences—pooled from both sequences. 

These values must be positive. A list of values may be entered.  

You can press the SD button to load the Standard Deviation Estimator window. 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of inferiority when in fact the treatment mean is 
non-inferior. Since this is a one-sided test, the value of 0.025 is commonly used for alpha. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject a false null hypothesis. You cannot make both a type-I and a 
type-II error in a single hypothesis test. Values must be between zero and one. The value of 0.10 
is recommended for beta.  

Power is defined as one minus beta. Hence, specifying the beta error level also specifies the 
power level. For example, if you specify beta values of 0.05, 0.10, and 0.20, you are specifying 
the corresponding power values of 0.95, 0.90, and 0.80. 
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Example1 - Power Analysis 
Suppose you want to consider the power of a balanced, cross-over design that will be analyzed 
using the t-test approach. You want to compute the power when the margin of equivalence is 
either 5 or 10 at several sample sizes between 5 and 50. The true difference between the means 
under H0 is assumed to be 0. Similar experiments have had an Sw of 10. The significance level is 
0.025. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Beta and Power 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
|E|......................................................5 10 
D .......................................................0 
Specify S as Sw or Sd ......................Sw 
S........................................................10 
N .......................................................5 10 15 20 30 40 50 
Alpha.................................................0.025 
Beta................................................... Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority T-Test (H0: D <= -|E|; H1: D > -|E|) 
 
 Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (Sw)  
0.08310 5 -5.000 0.000 0.02500 0.91690 10.000 
0.16563 10 -5.000 0.000 0.02500 0.83437 10.000 
0.24493 15 -5.000 0.000 0.02500 0.75507 10.000 
0.32175 20 -5.000 0.000 0.02500 0.67825 10.000 
0.46414 30 -5.000 0.000 0.02500 0.53586 10.000 
0.58682 40 -5.000 0.000 0.02500 0.41318 10.000 
0.68785 50 -5.000 0.000 0.02500 0.31215 10.000 
0.20131 5 -10.000 0.000 0.02500 0.79869 10.000 
0.50245 10 -10.000 0.000 0.02500 0.49755 10.000 
0.71650 15 -10.000 0.000 0.02500 0.28350 10.000 
0.84845 20 -10.000 0.000 0.02500 0.15155 10.000 
0.96222 30 -10.000 0.000 0.02500 0.03778 10.000 
0.99173 40 -10.000 0.000 0.02500 0.00827 10.000 
0.99835 50 -10.000 0.000 0.02500 0.00165 10.000 
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Report Definitions 
H0 (null hypothesis) is that D <= -|E|, where D = Treatment Mean - Reference Mean. 
H1 (alternative hypothesis) is that D > -|E|. 
Power is the probability of rejecting H0 when it is false. It should be close to one. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
Alpha is the probability of a false positive H0. 
Beta is the probability of a false negative H0. 
|E| is the magnitude of the margin of equivalence. It is the largest difference that is not of practical significance. 
D is actual difference between the treatment and reference means. 
Sw is the square root of the within mean square error from the ANOVA table. 
 
Summary Statements 
A total sample size of 5 achieves 8% power to detect non-inferiority using a one-sided t-test 
when the margin of equivalence is -5.000, the true mean difference is 0.000, the significance 
level is 0.02500, and the square root of the within mean square error is 10.000. A 2x2 
cross-over design with an equal number in each sequence is used. 
 
 
Chart Section 
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This report shows the values of each of the parameters, one scenario per row. The plot shows the 
relationship between sample size and power. We see that a sample size of about 20 is needed to 
achieve 80% power when E = -10. 
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Example2 - Finding the Sample Size 
Continuing with Example1, suppose the researchers want to find the exact sample size necessary 
to achieve 90% power for both values of D.  

You can enter the options below or load Example2 from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Sample Size) 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
|E|......................................................5 10 
D .......................................................0 
Specify S as Sw or Sd ......................Sw 
S........................................................10 
Alpha.................................................0.025 
Beta...................................................0.10 
N ....................................................... Ignored since this is the Find setting  

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority T-Test (H0: D <= -|E|; H1: D > -|E|) 
 
 Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (Sw)  
0.90648 88 -5.000 0.000 0.02500 0.09352 10.000 
0.91139 24 -10.000 0.000 0.02500 0.08861 10.000 
 

This report shows the exact sample size necessary for each scenario.  

Note that the search for N is conducted across only even values of N since the design is assumed 
to be balanced. 
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Example3 - Validation using Julious 
Julious (2004) page 1953 presents an example in which D = 0.0, E = 10, Sw = 20.00, alpha = 
0.025, and beta = 0.10. Julious obtains a sample size of 86. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................N (Sample Size) 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| ......................................................10 
D........................................................0 
Specify S as Sw or Sd.......................Sw 
S........................................................20 
N........................................................Ignored since this is the Find setting  
Alpha .................................................0.025 
Beta...................................................0.10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority T-Test (H0: D <= -|E|; H1: D > -|E|) 
 
 Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (Sw)  
0.90657 88 -10.000 0.000 0.02500 0.09343 20.000 
 

PASS obtained a sample size of 88, two higher than that obtained by Julious (2004). However, if 
you look at the power achieved by an N of 86, you will find that it is 0.899997—slightly less than 
the goal of 0.90. 
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Chapter 515  

2x2 Cross-Over 
Designs: Non-
Inferiority Tests 
Using Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests for non-inferiority and 
superiority tests from a 2x2 cross-over design. This routine deals with the case in which the 
statistical hypotheses are expressed in terms mean ratios rather than mean differences.  

The details of testing the non-inferiority of two treatments using data from a 2x2 cross-over design 
are given in another chapter and they will not be repeated here. If the logarithms of the responses 
can be assumed to follow the normal distribution, hypotheses about non-inferiority and superiority 
stated in terms of the ratio can be transformed into hypotheses about the difference. The details of 
this analysis are given in Julious (2004). They will only be summarized here.  
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Non-Inferiority Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  E Margin of equivalence. This is a tolerance value that 
defines the maximum amount that is not of practical 
importance. This is the largest change in the mean ratio 
from the baseline value (usually one) that is still 
considered to be trivial.  

 φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of inferiority is 

H0 1: .φ φ φ≤ <L Lwhere  

and the alternative hypothesis of non-inferiority is  

H1:φ φ> L  
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Log Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter is used to represent the variation in the data because of a unique relationship that it has 
in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X asμX  and , respectively. Similarly, label the mean 
and variance of Y as

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be expressed as  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

 

Thus, the hypotheses can be stated in the original (Y) scale and then power can be analyzed in the 
transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented in another chapter and are not duplicated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are usually considered 
bad. However, if the response variable is income, higher values are probably considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
treatment mean is within the margin of equivalence of being no worse than the reference mean. 
Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 

E (Equivalence Margin) 
This is the magnitude of the relative margin of equivalence. It is the smallest change in the ratio 
of the two means that still results in the conclusion of non-inferiority (or superiority).  

For example, suppose the non-inferiority boundary for the mean ratio is to be 0.80. This value is 
interpreted as follows: if the mean ratio (Treatment Mean / Reference Mean) is greater than 0.80, 
the treatment group is non-inferior to the reference group. In this example, the margin of 
equivalence would be 1.00 - 0.80 = 0.20. 

This example assumed that higher values are better. If higher values are worse, an equivalence 
margin of 0.20 would be translated into a non-inferiority bound of 1.20. In this case, if the mean 
ratio is less than 1.20, the treatment group is non-inferior to the reference group. 

Note that the sign of this value is ignored. Only the magnitude is used. 

Recommended values: 

0.20 is a common value for the parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 0.95 since this will require a larger sample size. 
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COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related. The relationship between these 
quantities is . 

$σw
2

σ d
2 σw

2

σ σd w
2 22=

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Alpha (Significance Level) 
Specify one or more values of alpha (the probably of a type-I error which is rejecting the null 
hypothesis of inferiority) when in fact the treatment group is not inferior to the reference group. 
Note that the valid range is 0 to 1, but typical values are between 0.01 and 0.20. 

You can enter a range of values such as 0.05, 0.10, 0.15 or 0.5 to 0.15 by 0.01.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of inferiority when in fact the treatment 
mean is non-inferior. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

 

 



 2x2 Cross-Over: Non-Inferiority using Ratios  515-7 

Example1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is not 
inferior to standard drug. A 2x2 cross-over design will be used to test the non-inferiority of the 
treatment drug to the reference drug.  

Researchers have decided to set the margin of equivalence to 0.20. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.05. The power will be computed 
assuming that the true ratio is one. Sample sizes between 50 and 550 will be included in the 
analysis. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
High Is ...............................................Good 
Test Type ..........................................Non-Inferiority 
E........................................................0.20 
R1......................................................1.0 
COV ..................................................1.50 
N........................................................50 to 550 by 100 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Ratio Test (H0: R <= 1-E; H1: R > 1-E) 
 
  Relative Ratio      
  Equivalence Equivalence Actual Significance    
  Margin Bound Ratio Level    
Power N (E) (RB) (R1) (Alpha) Beta COV  
0.2638 50 0.2000 0.8000 1.0000 0.0500 0.7362 1.5000 
0.5505 150 0.2000 0.8000 1.0000 0.0500 0.4495 1.5000 
0.7431 250 0.2000 0.8000 1.0000 0.0500 0.2569 1.5000 
0.8584 350 0.2000 0.8000 1.0000 0.0500 0.1416 1.5000 
0.9246 450 0.2000 0.8000 1.0000 0.0500 0.0754 1.5000 
0.9610 550 0.2000 0.8000 1.0000 0.0500 0.0390 1.5000 
 
Report Definitions 
H0 (null hypothesis) is that R <= 1-E, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is that R > 1-E. 
E is the magnitude of the relative margin of equivalence. 
RB is equivalence bound for the ratio. 
R1 is actual ratio between the treatment and reference means. 
COV is the coefficient of variation on the original scale.  
Power is the probability of rejecting H0 when it is false. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
Alpha is the probability of falsely rejecting H0. 
Beta is the probability of not rejecting H0 when it is false. 
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Summary Statements 
A total sample size of 50 achieves 26% power to detect non-inferiority using a one-sided t-test 
when the relative margin of equivalence is 0.2000, the true mean ratio is 1.0000, the 
significance level is 0.0500, and the coefficient of variation on the original, unlogged scale 
is 1.5000. A 2x2 cross-over design with an equal number in each sequence is used. 
 

 

This report shows the power for the indicated scenarios. Note that if they want 90% power, they 
will require a sample of around 450 subjects. 

Plot Section 
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This plot shows the power versus the sample size. 
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Example2 –Validation 
We could not find a validation example for this procedure in the statistical literature. Therefore, 
we will show that this procedure gives the same results as the non-inferiority test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example 1. Since the output for this example is shown above, only the output from the procedure 
that uses differences is shown below. 

To run the inferiority test on differences, we need the values of |E| and Sw. 
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Setup 
Load the PASS: Means: 2x2 Cross-Over: Non-Inferiority: Differences panel. You can enter the 
following parameter values or load Example1a. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| ......................................................0.223144 
D........................................................0 
Specify S as Sw or Sd.......................Sw 
S........................................................1.085659 
N........................................................50 to 550 by 100 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority T-Test (H0: D <= -|E|; H1: D > -|E|) 
 
 Equivalence Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (E) (D) (Alpha) Beta (Sw)  
0.2638 50 -0.223 0.000 0.0500 0.7362 1.086 
0.5505 150 -0.223 0.000 0.0500 0.4495 1.086 
0.7431 250 -0.223 0.000 0.0500 0.2569 1.086 
0.8584 350 -0.223 0.000 0.0500 0.1416 1.086 
0.9246 450 -0.223 0.000 0.0500 0.0754 1.086 
0.9610 550 -0.223 0.000 0.0500 0.0390 1.086 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 520  

2x2 Cross-Over 
Design: Testing 
Equivalence Using 
Differences 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of the means of a 
2x2 cross-over design which is analyzed with a t-test. Schuirmann’s (1987) two one-sided tests 
(TOST) approach is used to test equivalence. Only a brief introduction to the subject will be 
given here. For a comprehensive discussion on the subject, refer to Chow and Liu (1999) and 
Julious (2004).  

Measurements are made on individuals that have been randomly assigned to one of two sequences. 
The first sequence receives the treatment followed by the reference (AB). The second sequence 
receives the reference followed by the treatment (BA). This cross-over design may be analyzed 
by a TOST equivalence test to show that the two means do not differ by more than a small 
amount, called the margin of equivalence. 

The definition of equivalence has been refined in recent years using the concepts of 
prescribability and switchability. Prescribability refers to ability of a physician to prescribe either 
of two drugs at the beginning of the treatment. However, once prescribed, no other drug can be 
substituted for it. Switchability refers to the ability of a patient to switch from one drug to another 
during treatment without adverse effects. Prescribability is associated with equivalence of 
location and variability. Switchability is associated with the concept of individual equivalence. 
This procedure analyzes average equivalence. Thus, it partially analyzes prescribability. It does 
not address equivalence of variability or switchability. 

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carryover effect. 
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A 2x2 cross-over design contains to two sequences (treatment orderings) and two time periods 
(occasions). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry over to the second. Thus, the groups in this design are 
defined by the sequence in which the drugs are administered, not by the treatments they receive. 
Indeed, higher-order cross-over designs have been used in which the same treatment is used at 
both occasions. 

Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment into the study may 
be easier because each patient will receive both treatments. Finally, it is often more difficult to 
obtain a subject than to obtain a measurement. 

Disadvantages 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. It may be difficult to separate the treatment 
effect from the period effect, the carry-over effect of the previous treatment, and the interaction 
between period and treatment. 

The design cannot be used when the treatment (or the measurement of the response) alters the 
subject permanently. Hence, it should not be used to compare treatments that are intended to 
provide a cure. 

Because subjects must be measured at least twice, it is often more difficult to keep patients 
enrolled in the study. It is arguably simpler to measure a subject once than to obtain their 
measurement twice. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 
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Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialize notation for the discussion of these 
tests. 

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum change that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value is shown to emphasize that this is a 
magnitude. The sign of the value will be determined by 
the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

The null hypothesis of non-equivalence is 

H or0 0 0: , .δ ε δ ε ε ε≤ ≥ < >L U L Uwhere  

and the alternative hypothesis of equivalence is  

H1:ε δ εL U< <  
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Test Statistics 
This section describes the test statistic that is used to perform the hypothesis test.   

T-Test 
A t-test is used to analyze the data. The test assumes that the data are a simple random sample 
from a population of normally-distributed values that have the same variance. This assumption 
implies that the differences are continuous and normal. The calculation of the two, one-sided t-
tests proceeds as follow  
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where  is the within mean square error from the appropriate ANOVA table.  $σ w
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The significance of each test statistic is determined by computing the p-value. If this p-value is 
less than a specified level (usually 0.05), the null hypothesis is rejected.  

If prior studies used a t-test rather than an ANOVA to analyze the data, you may not have a direct 
estimate of . Instead, you will have an estimate of the variance of the period differences from 

the t-test, . These variances are functionally related by . Either variance can be 
entered. 
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Power Calculation 
The power of this test is given by 

)  and  (Pr 2,12,1 −−−− −≤≥ NUNL tTtT αα  

where  and T   are distributed as the bivariate, noncentral t distribution with noncentrality 
parameters  and  given by 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment that has already been run. 

|EU| (Upper Equivalence Limit) 
This value gives upper limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are considered equivalent. 

Note that EL<0 and EU>0. Also, you must have EL<D<EU. 

-|EL| (Lower Equivalence Limit) 
This value gives lower limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are. 

If you want symmetric limits, enter -UPPER LIMIT for EL to force EL = -|EU|.  

Note that EL<0 and EU>0. Also, you must have EL<D<EU. Finally, the scale of these numbers 
must match the scale of S. 

D (True Value) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between the equivalence limits EL 
and EU. 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  
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Alpha (Significance Level) 
This option specifies one or more values for the significance level, alpha. A type-I error occurs 
when you reject the null hypothesis of non-equivalent means when in fact the means are 
nonequivalent.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha, but 
some statisticians recommend a value of 0.1 or even 0.2 in equivalence trials. An alpha of 0.05 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of nonequivalent means when in fact the 
means are equivalent. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Now the use of 0.10 is standard. You should pick a value for beta that represents the risk of a 
type-II error you are willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

Specify S as Sw or Sd 
Specify the form of the standard deviation that is entered in the box below.  

Sw 
Specify S as the square root of the within mean square error from a repeated measures ANOVA. 
This is the most common method since cross-over designs are usually analyzed using ANOVA. 

Sd 
Specify S as the standard deviation of the individual treatment differences computed for each 
subject. This option is used when you have previous studies that produced this value. 

S (Value of Sw or Sd) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in Specify S as Sw or Sd above. If S = Sw is selected, this is the value of Sw which is 
SQR(WMSE) where WMSE is the within mean square error from the ANOVA table used to 
analyze the Cross-Over design. If S = Sd is selected, this is the value of Sd which is the standard 
deviation of the period differences—pooled from both sequences. 

These values must be positive. A list of values may be entered.  

You can press the SD button to load the Standard Deviation Estimator window. 
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Example1 – Finding Power 
A cross-over design is to be used to compare the impact of two drugs on diastolic blood pressure. 
The average diastolic blood pressure after administration of the reference drug is known to be 96 
mmHg. Researchers believe this average may drop to 92 mmHg with the use of a new drug. The 
within mean square error of similar studies is 324. Its square root is 18. 

Following FDA guidelines, the researchers want to show that the diastolic blood pressure with the 
new drug is within 20% of the diastolic blood pressure with the reference drug. Thus, the 
equivalence limits of the mean difference of the two drugs are -19.2 and 19.2. They decide to 
calculate the power for a range of sample sizes between 6 and 100. The significance level is 0.05. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
|EU| ...................................................19.2 
-|EL|...................................................-Upper Limit 
D .......................................................-4 
N .......................................................6 10 16 20 40 60 80 100 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Specify S as Sw or Sd ......................Sw 
S........................................................18 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.1470 6 -19.20 19.20 -4.00 18.00 0.0500 0.8530 
0.3873 10 -19.20 19.20 -4.00 18.00 0.0500 0.6127 
0.6997 16 -19.20 19.20 -4.00 18.00 0.0500 0.3003 
0.8104 20 -19.20 19.20 -4.00 18.00 0.0500 0.1896 
0.9804 40 -19.20 19.20 -4.00 18.00 0.0500 0.0196 
0.9983 60 -19.20 19.20 -4.00 18.00 0.0500 0.0017 
0.9999 80 -19.20 19.20 -4.00 18.00 0.0500 0.0001 
1.0000 100 -19.20 19.20 -4.00 18.00 0.0500 0.0000 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects split between both sequences. 
EU & EL are the maximum allowable differences that still result in equivalence. 
D is the difference between the means at which the power is computed. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of rejecting non-equivalence when the means are non-equivalent. 
Beta is the probability of accepting non-equivalence when the means are equivalent. 
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Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-period cross-over 
design, a total sample size of 6 achieves 15% power at a 5% significance level when the true 
difference between the means is -4.00, the square root of the within mean square error is 
18.00, and the equivalence limits are -19.20 and 19.20. 

 

This report shows the power for the indicated scenarios. Note that if they want 90% power, they 
will require a sample of around 30 subjects. 

Plot Section 
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This plot shows the power versus the sample size. 
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Example2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N 
|EU| ...................................................19.2 
-|EL|...................................................-Upper Limit 
D .......................................................-4 
N ....................................................... Ignored since this is the Find setting 
Alpha.................................................0.05 
Beta...................................................0.1 0.2  
Specify S as Sw or Sd ......................Sw 
S........................................................18 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.9032 26 -19.20 19.20 -4.00 18.00 0.0500 0.0968 
0.8104 20 -19.20 19.20 -4.00 18.00 0.0500 0.1896 
 

We note that 20 subjects are needed to achieve 80% power and 26 subjects are needed to achieve 
90% power.  
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Example3 – Validation using Phillips 
Phillips (1990) page 142 presents a table of sample sizes for various parameter values. In this 
table, the treatment mean, standard deviation, and equivalence limits are all specified as 
percentages of the reference mean. We will reproduce the second line of the table in which the 
square root of the within mean square error is 20%; the equivalence limits are 20%; the treatment 
mean is 100%, 95%, 90%, and 85%; the power is 70%; and the significance level is 0.05. Phillips 
reports total sample size as 16, 20, 40, and 152 corresponding to the four treatment mean 
percentages. We will now setup this example in PASS. 

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N 
|EU| ...................................................20 
-|EL|...................................................-Upper Limit 
D........................................................0 -5 -10 -15 
N........................................................Ignored since this is the Find setting 
Alpha .................................................0.05 
Beta...................................................0.3  
Specify S as Sw or Sd.......................Sw 
S........................................................20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.7001 152 -20.00 20.00 -15.00 20.00 0.0500 0.2999 
0.7092 40 -20.00 20.00 -10.00 20.00 0.0500 0.2908 
0.7221 20 -20.00 20.00 -5.00 20.00 0.0500 0.2779 
0.7031 16 -20.00 20.00 0.00 20.00 0.0500 0.2969 

 

Note that PASS has obtained the same samples sizes as Phillips (1990).  
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Example4 –Validation using Machin 
Machin et al. (1997) page 107 present an example of determining the sample size for a cross-over 
design in which the reference mean is 35.03, the treatment mean is 35.03, the standard deviation, 
entered as the square root of the within mean square error, is 40% of the reference mean, the 
limits are plus or minus 20% of the reference mean, the power is 80%, and the significance level 
is 0.10. Machin et al. calculate the total sample size to be 54.  

When the parameters are given as percentages of the reference mean, it is easy enough to 
calculate the exact amounts by applying those percentages. However, the percentages can all be 
entered directly as long as all parameters (EU, EL, D, and Sw) are specified as percentages. 

Setup 
You can enter these values yourself or load the Example4 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N 
|EU| ...................................................20 
-|EL|...................................................-Upper Limit 
D .......................................................0 
N ....................................................... Ignored since this is the Find setting 
Alpha.................................................0.10 
Beta...................................................0.2  
Specify S as Sw or Sd ......................Sw 
S........................................................40 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.8050 54 -20.00 20.00 0.00 40.00 0.1000 0.1950 
 

Note that PASS also has obtained a sample size of 54.  
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Example5 –Validation using Chow and 
Liu 
Chow and Liu (1999) page 153 present an example of determining the sample size for a cross-
over design in which the reference mean is 82.559, the treatment mean is 82.559, the standard 
deviation, entered as the square root of the within mean square error,  is 15.66%, the limits are 
plus or minus 20%, the power is 80%, and the significance level is 0.05. They calculate a sample 
size of 12. PASS calculates a sample size of 13. To see why PASS has increased the sample size 
by one, we will evaluate the power at sample sizes of 10, 12, 13, 14, and 16. 

Setup 
Option Value
Data Tab 
Find ...................................................Beta and Power 
|EU| ...................................................20 
-|EL|...................................................-Upper Limit 
D........................................................0 
N........................................................10 12 13 14 16 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Specify S as Sw or Sd.......................Sw 
S........................................................15.66 
You can enter these values yourself or load the Example5 template from the Template tab. 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.6643 10 -20.00 20.00 0.00 15.66 0.0500 0.3357 
0.7932 12 -20.00 20.00 0.00 15.66 0.0500 0.2068 
0.8363 13 -20.00 20.00 0.00 15.66 0.0500 0.1637 
0.8752 14 -20.00 20.00 0.00 15.66 0.0500 0.1248 
0.9258 16 -20.00 20.00 0.00 15.66 0.0500 0.0742 

 

The power for N = 12 is 0.7932. The power for N = 13 is 0.8363. Hence, to achieve better than 
80% power, a sample size of 13 is necessary. However, 0.7932 is sufficiently close to 0.800 to 
make N = 12 a reasonable choice (as Chow and Liu did). 
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Example6 –Validation using Senn 
Senn (1993) page 217 presents an example of determining the sample size for a cross-over design 
in which the reference mean is equal to the treatment mean, the standard deviation, entered as the 
square root of the within mean square error, is 45, the equivalence limits are plus or minus 30, the 
power is 80%, and the significance level is 0.05. He calculates a sample size of 40. 

Setup 
You can enter these values yourself or load the Example6 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N 
|EU| ...................................................30 
-|EL|...................................................-Upper Limit 
D .......................................................0 
N ....................................................... Ignored since this is the Find setting 
Alpha.................................................0.05 
Beta...................................................0.2  
Specify S as Sw or Sd ......................Sw 
S........................................................45 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.8004 40 -30.00 30.00 0.00 45.00 0.0500 0.1996 
 

PASS also calculates a sample size of 40. 
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Chapter 525  

2x2 Cross-Over 
Design: Testing 
Equivalence using 
Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of the means from 
a 2x2 cross-over design which is analyzed with a t-test. This routine deals with the case in which the 
statistical hypotheses are expressed in terms mean of ratios rather than mean differences.  

The details of testing the equivalence of two treatments using data from a 2x2 cross-over design are 
given in another chapter and will not be repeated here. If the logarithms of the responses can be 
assumed to follow the normal distribution, hypotheses about the equivalence of two means stated in 
terms of the ratio can be transformed into hypotheses about the difference. The details of this 
analysis are given in Julious (2004). They will only be summarized here.  
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Equivalence Testing Using Ratios 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialized notation for the discussion of 
these tests. 

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

φ φL U,  RL, RU Margin of equivalence. These limits that define an 
interval of the ratio of the means in which their 
difference is so small that it may be ignored.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of non-equivalence is 

H or0 1 1: , .φ φ φ φ φ φ≤ ≥ < >L U L Uwhere  

and the alternative hypothesis of equivalence is  

H1:φ φ φL U< <  
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Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 

( ) ( ) ( ){ } ( )

φ φ φ
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φ

φ μ μ

L U
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R
U

L T R φU
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≤
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

When performing an equivalence test on the difference between means, the usual procedure is to 
set the equivalence limits symmetrically above and below zero. Thus the equivalence limits will 
be plus or minus an appropriate amount. The common practice is to do the same when the data 
are being analyzed on the log scale. However, when symmetric limits are set on the log scale, 
they do not translate to symmetric limits on the original scale. Instead, they translate to limits that 
are the inverses of each other. 

Perhaps these concepts can best be understood by considering an example. Suppose the 
researchers have determined that the lower equivalence limit should be 80% on the original scale. 
Since they are planning to use a log scale for their analysis, they transform this limit to the log 
scale by taking the logarithm of 0.80. The result is -0.223144. Wanting symmetric limits, they set 
the upper equivalence limit to 0.223144. Exponentiating this value, they find that exp(0.223144) 
= 1.25. Note that 1/(0.80) = 1.25. Thus, the limits on the original scale are 80% and 125%, not 
80% and 120%.  

Using this procedure, appropriate equivalence limits for the ratio of two means can be easily 
determined. Here are a few sets of equivalence limits. 
 Lower Upper Lower Upper 
Specified Limit Limit  Limit Limit 
Percent Original Original  Log Log 
Change Scale Scale Scale Scale 
-25% 75.0% 133.3% -0.287682 0.287682 
+25% 80.0% 125.0% -0.223144 0.223144 
-20% 80.0% 125.0% -0.223144 0.223144 
+20% 83.3% 120.0% -0.182322 0.182322 
-10% 90.0% 111.1% -0.105361 0.105361 
+10% 90.9% 110.0% -0.095310 0.095310 

Note that negative percent-change values specify the lower limit first, while positive percent-
change values specify the upper limit first. After the first limit is found, the other limit is 
calculated as its inverse. 
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be expressed as  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented in another chapter and are not duplicated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

RU (Upper Equiv. Limit) 
Enter the upper equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RL, the two means are said to be equivalent. The value must be greater 
than one. A popular choice is 1.25. Note that this value is not a percentage. 

If you enter 1/RL, then 1/RL will be calculated and used here. This choice is commonly used 
because RL and 1/RL give limits that are of equal magnitude on the log scale. 

RL (Lower Equiv. Limit) 
Enter the lower equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RU, the two means are said to be equivalent. The value must be less than 
one. A popular choice is 0.80. Note that this value is not a percentage. 

If you enter 1/RU, then 1/RU will be calculated and used here. This choice is commonly used 
because RU and 1/RU give limits that are of equal magnitude on the log scale. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger sample size. 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  
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Alpha (Significance Level) 
Specify one or more values of alpha, the probability of a type-I error which is rejecting the null 
hypothesis of non-equivalence when in fact the groups are equivalent. Note that the valid range is 
0 to 1, but typical values are between 0.01 and 0.20. 

You can enter a range of values such as 0.05, 0.10, 0.15 or 0.05 to 0.15 by 0.01.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of non-equivalence when in fact the 
treatment mean is equivalent. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Currently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance using the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related. The relationship between these 
quantities is . 

$σw
2

σ d
2 σw

2

σ σd w
2 22=
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Example1 – Finding Power 
A company has opened a new manufacturing plant and wants to show that the drug produced in 
the new plant is equivalent to that produced in an older plant. A cross-over design will be used to 
test the equivalence of drugs produced at the two plants.  

Researchers have decided to set the equivalence limits for the ratio at 0.90 and 1.111 (note that 
1.111 = 1/0.90). Past experience leads the researchers to set the COV to 0.50. The significance 
level is 0.05. The power will be computed assuming that the true ratio is one. Sample sizes 
between 50 and 550 will be included in the analysis. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
RU .....................................................1/RL 
RL......................................................0.90 
R1......................................................1.0 
N........................................................50 to 550 by 100 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
COV ..................................................0.50 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
  Lower Upper    
 Total Equiv. Equiv.  Coefficient  
 Sample Limit Limit True of  
 Size of Ratio of Ratio Ratio Variation   
Power (N) (RL) (RU) (R1) (COV) Alpha Beta 
0.0000 50 0.9000 1.1111 1.0000 0.5000 0.0500 1.0000 
0.2190 150 0.9000 1.1111 1.0000 0.5000 0.0500 0.7810 
0.6037 250 0.9000 1.1111 1.0000 0.5000 0.0500 0.3963 
0.8079 350 0.9000 1.1111 1.0000 0.5000 0.0500 0.1921 
0.9107 450 0.9000 1.1111 1.0000 0.5000 0.0500 0.0893 
0.9598 550 0.9000 1.1111 1.0000 0.5000 0.0500 0.0402 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects split between both sequences. 
RU & RL are the upper and lower equivalence limits. Ratios between these limits are equivalent. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale.  
Alpha is the probability of rejecting non-equivalence when the means are non-equivalent. 
Beta is the probability of accepting non-equivalence when the means are equivalent. 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-period cross-over 
design, a total sample size of 50 achieves 0% power at a 5% significance level when the true 
ratio of the means is 1.0000, the coefficient of variation on the original, unlogged scale is 
0.5000, and the equivalence limits of the mean ratio are 0.9000 and 1.1111. 

 

This report shows the power for the indicated scenarios. Note that if they want 90% power, they 
will require a sample of around 450 subjects. 

Plot Section 
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This plot shows the power versus the sample size. 
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Example2 –Validation using Julious 
Julious (2004) page 1963 presents a table of sample sizes for various parameter values. The 
power is 0.90 and the significance level is 0.05. The COV is set to 0.25, the ‘level of 
bioequivalence’ is set to 10%, 15%, 20%, and 25%, and the true ratio is set to 1.00, the necessary 
sample sizes are 120, 52, 28, and 18. Note that the level of bioequivalence as defined in Julious 
(2004) is equal to 1 – RL. 

We will now setup this example in PASS. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N 
RU .....................................................1/RL 
RL......................................................0.90 0.85 0.80 0.75 
R1......................................................1.00 
N........................................................Ignored since this is the Find setting 
Alpha .................................................0.05 
Beta...................................................0.90 
COV ..................................................0.25 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
  Lower Upper    
 Total Equiv. Equiv.  Coefficient  
 Sample Limit Limit True of  
 Size of Ratio of Ratio Ratio Variation   
Power (N) (RL) (RU) (R1) (COV) Alpha Beta 
0.9121 18 0.7500 1.3333 1.0000 0.2500 0.0500 0.0879 
0.9023 28 0.8000 1.2500 1.0000 0.2500 0.0500 0.0977 
0.9060 52 0.8500 1.1765 1.0000 0.2500 0.0500 0.0940 
0.9012 120 0.9000 1.1111 1.0000 0.2500 0.0500 0.0988 

 

Note that PASS obtains the same samples sizes as Julious (2004).  
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Chapter 530  

Higher-Order 
Cross-Over 
Designs: Non-
Inferiority Tests 
using Differences 
Introduction 
This procedure calculates power and sample size for non-inferiority and superiority tests which use 
the difference in the means of a higher-order cross-over design. Measurements are made on 
individuals that have been randomly assigned to one of several treatment sequences. Only a brief 
introduction to the subject will be given here. For a comprehensive discussion on the subject, 
refer to Chen et al. (1997) and Chow et al. (2003).  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 
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Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 

Sequence Period 1 Period 2
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 

Sequence Period 1 Period 2 Period 3
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 

Sequence Period 1 Period 2 Period 3  Period 4
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 

Sequence Period 1 Period 2 Period 3  Period 4
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

 



 High-Order Cross-Over - Non-Inferiority - Differences  530-3 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Outline of Non-Inferiority Test 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests. Remember 
that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-sided tests are 
defined as  

H0:δ ≤ A  versus H1:δ > A  

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tailed 
test because H0 is rejected only in samples in which the difference in sample means is larger than 
A. 

Following is an example of a lower-tailed test. 

H0:δ ≥ A  versus H1:δ < A  

 

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum difference that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value symbols are shown to emphasize that this 
is a magnitude. The sign of the value will be determined 
by the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than a small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  
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A superiority test tests that the treatment mean is better than the reference mean by more than a 
small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. The null and alternative hypotheses are 

H0:μ μ εT R≤ −  versus  H1:μ μ εT R> −  

H0:μ μ εT R− ≤ −   versus  H1:μ μ εT R− > −  

H0:δ ε≤ −   versus  H1:δ ε> −  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. The null and alternative hypotheses are 

H0:μ μ εT R≥ +  versus  H1:μ μ εT R< +  

H0:μ μ εT R− ≥   versus  H1:μ μ εT R− <  

H0:δ ε≥   versus  H1:δ ε<  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of equivalence. The specified value of δ  must be greater than the specified value of ε . 
The null and alternative hypotheses are 

H0:μ μ εT R≤ +  versus  H1:μ μ εT R> +  

H0:μ μ εT R− ≤   versus  H1:μ μ εT R− >  

H0:δ ε≤   versus  H1:δ ε>  

Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of equivalence. The specified value of δ  must be less than the specified value of − ε . The null 
and alternative hypotheses are 

H0:μ μ εT R≥ −  versus  H1:μ μ εT R< −  

H0:μ μ εT R− ≥ −   versus  H1:μ μ εT R− < −  

H0:δ ε≥ −   versus  H1:δ ε< −  
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Test Statistics 
The analysis for assessing equivalence (and thus non-inferiority) using higher-order cross-over 
designs is discussed in detail in Chapter 9 of Chow and Liu (2000). Unfortunately, their 
presentation is too lengthy to give here. Their method involves the computation of an analysis of 
variance to estimate the error variance. It also describes the construction of confidence limits for 
appropriate contrasts. One-sided confidence limits can be used for non-inferiority tests. Details of 
this approach are given in Chapter 3 of Chow et al. (2003). We refer you to these books for 
details. 

Power Calculation 
The power of the non-inferiority and superiority tests for the case in which higher values are 
better is given by 

Power T
b n
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δ ε
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where T represents the cumulative t distribution, V and b depend on the design, σW is the square 
root of the within mean square error from the ANOVA table used to analyze the cross-over 
design, and n is the average number of subjects per sequence. Note that the constants V and b 
depend on the design as follows.  

The power of the non-inferiority and superiority tests for the case in which higher values are 
worse is given by  
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The constants V and b depend on the design as follows.  

Balaam’s Design 
V = 4n – 3, b = 2. 

Two-Sequence Dual Design 
V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences 
V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences 
V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Beta when you want to calculate the power of an experiment. 

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are often considered 
bad. However, if the response variable is income, higher values are usually considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
treatment mean is within the margin of equivalence of being no worse than the reference mean. 
Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 

|E| (Equivalence Margin) 
This is the magnitude of the margin of equivalence. It is the smallest difference between the 
treatment and reference means that still results in the conclusion of non-inferiority (or 
superiority). The sign of this value is assigned depending on the selections for Higher Is and Test 
Type. 

D (True Value) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between zero and |E|. 
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Sw (Within Std. Error) 
Specify one or more values of Sw, which is SQR(WMSE) where WMSE is the within mean 
square error from the ANOVA table used to analyze the cross-over design. These values must be 
positive.  

You can press the SD button to load the Standard Deviation Estimator window. 

Alpha (Significance Level) 
This option specifies one or more values for the significance level, alpha. A type-I error occurs 
when you reject the null hypothesis when it is true. 

Values must be between zero and one. The value of 0.05 is often used for alpha. An alpha of 0.05 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject a false null hypothesis. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  
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Example1 – Finding Power 
Researchers want to calculate the power of a non-inferiority test using data from a two-sequence, 
dual cross-over design. The margin of equivalence is either 5 or 10 at several sample sizes 
between 6 and 66. The true difference between the means under is assumed to be 0. Similar 
experiments have had a standard deviation (Sw) of 10. The significance level is 0.025. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Design Type......................................2x3 (Two-Sequence Dual) 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
|E|......................................................5 10 
D .......................................................0 
N .......................................................6 to 66 by 10 
Sw.....................................................10 
Alpha.................................................0.025 
Beta................................................... Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Difference 
Design: Two-Sequence Dual Cross-Over. Hypotheses: H0: D <= -|E|; H1: D > -|E|. 
 
 Total Sequences  Difference Standard  
 Sample and Equivalence for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) |E| (D) (Sw) Alpha Beta 
0.1139 6 2x3 5.00 0.00 10.00 0.0250 0.8861 
0.3405 16 2x3 5.00 0.00 10.00 0.0250 0.6595 
0.5282 26 2x3 5.00 0.00 10.00 0.0250 0.4718 
0.6744 36 2x3 5.00 0.00 10.00 0.0250 0.3256 
0.7817 46 2x3 5.00 0.00 10.00 0.0250 0.2183 
0.8571 56 2x3 5.00 0.00 10.00 0.0250 0.1429 
0.9084 66 2x3 5.00 0.00 10.00 0.0250 0.0916 
0.3837 6 2x3 10.00 0.00 10.00 0.0250 0.6163 
0.8832 16 2x3 10.00 0.00 10.00 0.0250 0.1168 
0.9818 26 2x3 10.00 0.00 10.00 0.0250 0.0182 
0.9975 36 2x3 10.00 0.00 10.00 0.0250 0.0025 
0.9997 46 2x3 10.00 0.00 10.00 0.0250 0.0003 
1.0000 56 2x3 10.00 0.00 10.00 0.0250 0.0000 
1.0000 66 2x3 10.00 0.00 10.00 0.0250 0.0000 
 
References 
Chow, S.C. and Liu, J.P. 1999. Design and Analysis of Bioavailability and Bioequivalence Studies. Marcel 
Dekker. New York 
Chow, S.C.; Shao, J.; Wang, H. 2003. Sample Size Calculations in Clinical Research. Marcel Dekker. New York. 
Chen, K.W.; Chow, S.C.; and Li, G. 1997. 'A Note on Sample Size Determination for Bioequivalence Studies with 
Higher-Order Crossover Designs.' Journal of Pharmacokinetics and Biopharmaceutics, Volume 25, No. 6, pages 
753-765. 
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Report Definitions 
Power is the probability of rejecting H0 (concluding non-inferiority) when H0 is false. 
N is the total number of subjects. They are divided evenly among all sequences. 
S is the number of sequences. 
P is the number of periods per sequence. 
|E| is the magnitude of the margin of equivalence. It is the largest difference that is not of practical 
significance. 
D is the difference between the means at which the power is computed. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of falsely rejecting H0 (falsely concluding non-inferiority). 
Beta is the probability of not rejecting H0 when it is false. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In a non-inferiority test on data for which higher values are better drawn from a two-sequence 
dual cross-over design, a total sample size of 6 achieves 11% power at a 3% significance level 
when the true difference between the means is 0.00, the square root of the within mean square 
error is 10.00, and the equivalence margin is 5.00. 

 

This report shows the power for the indicated scenarios.  

Plot Section 
 

 

Power vs N by E with D=0.00 S=10.00 A=0.03
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This plot shows the power versus the sample size. 

 



530-10  High-Order Cross-Over - Non-Inferiority - Differences 

Example2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
Option Value
Data Tab 
Find ...................................................N (Equal Per Sequence) 
Design Type......................................2x3 (Two-Sequence Dual) 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
|E|......................................................5 10 
D .......................................................0 
N ....................................................... Ignored since this is the Find setting 
Sw.....................................................10 
Alpha.................................................0.025 
Beta...................................................0.10 0.20 
You can enter these values yourself or load the Example2 template from the Template tab. 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Testing Non-Inferiority Using the Difference 
Design: Two-Sequence Dual Cross-Over. Hypotheses: H0: D <= -|E|; H1: D > -|E|. 
 
 Total Sequences  Difference Standard  
 Sample and Equivalence for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) |E| (D) (Sw) Alpha Beta 
0.9084 66 2x3 5.00 0.00 10.00 0.0250 0.0916 
0.8153 50 2x3 5.00 0.00 10.00 0.0250 0.1847 
0.9184 18 2x3 10.00 0.00 10.00 0.0250 0.0816 
0.8343 14 2x3 10.00 0.00 10.00 0.0250 0.1657 
 

When the equivalence margin is set to 5, 66 subjects are needed to achieve 90% power and 50 
subjects are needed to achieve at least 80% power.  
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Example3 –Validation 
We could not find a validation example for this procedure in the statistical literature, so we will 
have to generate a validated example from within PASS. To do this, we use the High-Order, 
Cross-Over Equivalence procedure which was validated. By setting the upper equivalence limit to 
a large value (we used 22), we obtain results for a non-inferiority test. 

Suppose the square root of the within mean square error is 0.10, the equivalence limit is 0.20, the 
difference between the means is 0.05, the power is 90%, and the significance level is 0.05. PASS 
calculates a sample size of 16. We will now setup this example in PASS. 

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Equal Per Sequence) 
Design Type ......................................4x2 (Balaam) 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
|E| ......................................................0.2 
D........................................................0.05 
N........................................................Ignored since this is the Find setting 
Sw .....................................................0.10 
Alpha .................................................0.05 
Beta...................................................0.10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Difference 
Design: Balaam’s Cross-Over. Hypotheses: H0: D <= -|E|; H1: D > -|E|. 
 
 Total Sequences  Difference Standard  
 Sample and Equivalence for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) |E| (D) (Sw) Alpha Beta 
0.9495 16 4x2 0.20 0.05 0.10 0.0500 0.0505 

 

PASS has also obtained a sample size of 16.  
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Chapter 535  

Higher-Order 
Cross-Over 
Designs: Non-
Inferiority Tests 
using Ratios 
Introduction 
This procedure calculates power and sample size for non-inferiority and superiority tests which use 
the ratio of the two means of a higher-order cross-over design. Measurements are made on 
individuals that have been randomly assigned to one of several treatment sequences. Only a brief 
introduction to the subject will be given here. For a comprehensive discussion on the subject, 
refer to Chen et al. (1997) and Chow et al. (2003).  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 
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Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 

Sequence Period 1 Period 2
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 

Sequence Period 1 Period 2 Period 3
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 

Sequence Period 1 Period 2 Period 3  Period 4
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 

Sequence Period 1 Period 2 Period 3  Period 4
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 
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Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Outline of Non-Inferiority Test 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests. Remember 
that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-sided tests are 
defined as  

H0:φ ≤ A  versus H1:φ > A  

Rejecting H0 implies that the ratio of the mean is larger than the value A. This test is called an 
upper-tailed test because H0 is rejected only in samples in which the ratio of the sample means is 
larger than A. 

Following is an example of a lower-tailed test. 

H0:φ ≥ A  versus H1:φ < A  

 

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  E Margin of equivalence. This is a tolerance value that 
defines the maximum deviation from unity that the mean 
ratio can be and still not be of practical importance. This 
is the largest change in the mean ratio from the baseline 
value (usually one) that is still considered to be trivial.  

 φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of inferiority is  

H where0 1 0: .φ ε ε≤ − >  

The alternative hypothesis of non-inferiority is  

H1 1: φ ε> −  
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Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the alternative hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter is used to represent the variation in the data because of a unique relationship that it has 
in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be found to be  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

 

Thus, the hypotheses can be stated in the original (Y) scale and then power analyzed in the 
transformed (X) scale. 

Non-Inferiority and Superiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than a small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

A superiority test tests that the treatment mean is better than the reference mean by more than a 
small equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The null and alternative hypotheses are 

(H0 1: )μ
μ

εT

R

≤ −  versus  ( )H1 1:μ
μ

εT

R

> −  

( ) ( ) ( )H0 1:ln ln lnμ μ εT R− ≤ −  versus  ( ) ( ) ( )H1 1:ln ln lnμ μ εT R− > −  
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Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The null and alternative hypotheses are 

(H0 1: )μ
μ

εT

R

≥ +  versus  ( )H1 1:μ
μ

εT

R

< +  

( ) ( ) ( )H0 1:ln ln lnμ μ εT R− ≥ +  versus  ( ) ( ) ( )H1 1:ln ln lnμ μ εT R− < +  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of equivalence. The null and alternative hypotheses are 

(H0 1: )μ
μ

εT

R

≤ +  versus  ( )H1 1:μ
μ

εT

R

> +  

( ) ( ) ( )H0 1:ln ln lnμ μ εT R− ≤ +  versus  ( ) ( ) ( )H1 1:ln ln lnμ μ εT R− > +  

Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of equivalence. The null and alternative hypotheses are 

(H0 1: )μ
μ

εT

R

≥ −  versus  ( )H1 1:μ
μ

εT

R

< −  

( ) ( ) ( )H0 1:ln ln lnμ μ εT R− ≥ −  versus  ( ) ( ) ( )H1 1:ln ln lnμ μ εT R− < −  

Test Statistics 
The analysis for assessing non-inferiority using higher-order cross-over designs is discussed in 
detail in Chapter 9 of Chow and Liu (2000). Unfortunately, their presentation is too lengthy to 
give here. Their method involves the computation of an analysis of variance to estimate the error 
variance. It also describes the construction of confidence limits for appropriate contrasts. One-
sided confidence limits can be used for non-inferiority tests. Details of this approach are given in 
Chapter 3 of Chow et al. (2003). We refer you to these books for details. 
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Power Calculation 
The power of the non-inferiority and superiority tests for the case in which higher values are 
better is given by 

( )Power T
b n

tV
W

V=
−⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−

ln
/ ,

1
1

ε
σ α  

where T represents the cumulative t distribution, V and b depend on the design, n is the average 
number of subjects per sequence, and 

( )σW YCOV= +ln 2 1  

The power of the non-inferiority and superiority tests for the case in which higher values are 
worse is given by  

( )Power T t
b nV V

W

= − −
− +⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−1

1
1,

ln
/α

ε
σ

 

The constants V and b depend on the design as follows.  

Balaam’s Design 
V = 4n – 3, b = 2. 

Two-Sequence Dual Design 
V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences 
V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences 
V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Beta when you want to calculate the power of an experiment. 

Higher is 
This option defines whether higher values of the response variable are to be considered good or 
bad. For example, if the response variable is blood pressure, higher values are often considered 
bad. However, if the response variable is income, higher values are usually considered good. 

This option is used with Test Type to determine the direction of the hypothesis test. 

Test Type 
This option specifies the type of test. Select Non-Inferiority when you want to test whether the 
treatment mean is within the margin of equivalence of being no worse than the reference mean. 
Select Superiority when you want to test whether the treatment mean is better than the reference 
mean by at least the margin of equivalence. 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 
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E (Equivalence Margin) 
This is the magnitude of the relative margin of equivalence. It is the smallest change in the ratio 
of the two means that still results in the conclusion of non-inferiority (or superiority).  

For example, suppose the non-inferiority boundary for the mean ratio is to be 0.80. This value is 
interpreted as follows: if the mean ratio (Treatment Mean / Reference Mean) is greater than 0.80, 
the treatment group is non-inferior to the reference group. In this example, the margin of 
equivalence would be 1.00 - 0.80 = 0.20. 

This example assumed that higher values are better. If higher values are worse, an equivalence 
margin of 0.20 would be translated into a non-inferiority bound of 1.20. In this case, if the mean 
ratio is less than 1.20, the treatment group is non-inferior to the reference group. 

Note that the sign of this value is ignored. Only the magnitude is used. 

Recommended values: 

0.20 is a common value for the parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger, more conservative, sample size. 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

Alpha (Significance Level) 
This option specifies one or more values for the significance level, alpha. A type-I error occurs 
when you reject the null hypothesis when it is true. 

Values must be between zero and one. The value of 0.05 is often used for alpha. An alpha of 0.05 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject a false null hypothesis. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  
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N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). These values must be integers greater than one.  

Example1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is not 
inferior to standard drug. Balaam’s cross-over design will be used.  

Researchers have decided to set the margin of equivalence at 0.20. Past experience leads the 
researchers to set the COV to 0.40. The significance level is 0.05. The power will be computed 
assuming that the true ratio is one. Sample sizes between 50 and 550 will be included in the 
analysis. Note that several of these sample size values are not divisible by 4. This is note a 
problem here because are main goal is to get an overview of power versus sample size. When 
searching for the sample size, we can request that only designs divisible by 4 be considered. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Design Type......................................4x2 (Balaam) 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
E........................................................0.20 
R .......................................................1 
N .......................................................50 to 550 by 100 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
COV ..................................................0.40 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1-E; H1: R > 1-E. 
 
 Total Sequences  Mean Coef.  
 Sample and Equivalence Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (E) (R) (COV) Alpha Beta 
0.4096 50 4x2 0.20 1.00 0.40 0.0500 0.5904 
0.8024 150 4x2 0.20 1.00 0.40 0.0500 0.1976 
0.9438 250 4x2 0.20 1.00 0.40 0.0500 0.0562 
0.9853 350 4x2 0.20 1.00 0.40 0.0500 0.0147 
0.9964 450 4x2 0.20 1.00 0.40 0.0500 0.0036 
0.9992 550 4x2 0.20 1.00 0.40 0.0500 0.0008 
 
References 
Chow, S.C. and Liu, J.P. 1999. Design and Analysis of Bioavailability and Bioequivalence Studies. Marcel 
Dekker. New York 
Chow, S.C.; Shao, J.; Wang, H. 2003. Sample Size Calculations in Clinical Research. Marcel Dekker. New York. 
Chen, K.W.; Chow, S.C.; and Li, G. 1997. 'A Note on Sample Size Determination for Bioequivalence Studies with 
Higher-Order Crossover Designs.' Journal of Pharmacokinetics and Biopharmaceutics, Volume 25, No. 6, pages 
753-765. 
 
Report Definitions 
H0 (null hypothesis) is that R <= 1-E, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is that R > 1-E. 
Power is the probability of rejecting H0 (concluding non-inferiority) when H0 is false. 
N is the total number of subjects. They are divided evenly among all sequences. 
E is the magnitude of the relative margin of equivalence. 
R is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale. 
Alpha is the probability of falsely rejecting H0 (falsely concluding non-inferiority). 
Beta is the probability of not rejecting H0 when it is false. 
Balaam's Cross-Over Design with pattern: AA; BB; AB; BA 
 
Summary Statements 
In a non-inferiority test on data for which higher values are better drawn from Balaam's 
cross-over design, a total sample size of 50 achieves 41% power at a 5% significance level when 
the true ratio of the means is 1.00, the coefficient of variation is 0.40, and the relative 
equivalence margin is 0.20. 
 

This report shows the power for the indicated scenarios.  

Plot Section 
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This plot shows the power versus the sample size. 
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Example2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% and 90% power. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Equal Per Sequence) 
Design Type......................................4x2 (Balaam) 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
E........................................................0.20 
R .......................................................1 
N ....................................................... Ignored since this is the Find setting 
Alpha.................................................0.05 
Beta...................................................0.2 0.1 
COV ..................................................0.40 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1-E; H1: R > 1-E. 
 
 Total Sequences  Mean Coef.  
 Sample and Equivalence Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (E) (R) (COV) Alpha Beta 
0.9039 208 4x2 0.20 1.00 0.40 0.0500 0.0961 
0.8070 152 4x2 0.20 1.00 0.40 0.0500 0.1930 
 

When the equivalence margin is set to 0.20, we note that 208 subjects are needed to achieve 90% 
power and 152 subjects are needed to achieve at least 80% power.  
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Example3 –Validation 
We could not find a validation example for this procedure in the statistical literature, so we will 
have to generate a validated example from within PASS. To do this, we use the High-Order, 
Cross-Over Equivalence Using Ratios procedure which was validated. By setting the upper 
equivalence limit to a large value (we used 11), we obtain results for a non-inferiority test that can 
be used to validate this procedure. 

In the other procedure, suppose the coefficient of variation is 0.40, the equivalence limits are 0.80 
and 11.0, the true ratio of the means is 1, the power is 90%, and the significance level is 0.05. 
These settings are stored as Example4 in that procedure. PASS calculates a sample size of 208.  

We will now setup this example in PASS. The only difference is that now we set E to 0.2 instead 
of RL to 0.8. 

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Equal Per Sequence) 
Design Type ......................................4x2 (Balaam) 
Higher Is............................................Good 
Test Type ..........................................Non-Inferiority 
E........................................................0.2 
R........................................................1.0 
N........................................................Ignored since this is the Find setting 
COV ..................................................0.40 
Alpha .................................................0.05 
Beta...................................................0.10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1-E; H1: R > 1-E. 
 
 Total Sequences  Mean Coef.  
 Sample and Equivalence Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (E) (R) (COV) Alpha Beta 
0.9039 208 4x2 0.20 1.00 0.40 0.0500 0.0961 

 

PASS has also obtained the sample size of 208.  
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Chapter 540  

Higher-Order 
Cross-Over 
Designs: Testing 
Equivalence using 
Differences 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of two means of 
higher-order cross-over designs when the analysis uses a t-test or equivalent. The parameter of 
interest is the ratio of the two means. Schuirmann’s (1987) two one-sided tests (TOST) approach is 
used to test equivalence. Only a brief introduction to the subject will be given here. For a 
comprehensive discussion on the subject, refer to Chen, Chow, and Li (1997).  

Measurements are made on individuals that have been randomly assigned to one of several 
treatment sequences. This cross-over design may be analyzed by a TOST equivalence test to show 
that the two means do not differ by more than a small amount, called the margin of equivalence.  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 
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Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 

Sequence Period 1 Period 2
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 

Sequence Period 1 Period 2 Period 3
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 

Sequence Period 1 Period 2 Period 3  Period 4
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 

Sequence Period 1 Period 2 Period 3  Period 4
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 
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Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialized notation for the discussion of 
these tests.  

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μ  Not used Reference mean. This is the mean of a reference 
population.  

R

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum difference that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value is shown to emphasize that this is a 
magnitude. The sign of the value will be determined by 
the specific design that is being used. 

μ μδ  D True difference. This is the value of T R− , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

μ μT  and Note that the actual values of R

H or where0 0 0: , .

 are not needed. Only their difference is needed for 
power and sample size calculations. 

The null hypothesis of non-equivalence is 

δ ≤ ε δ ≥ ε ε < ε >L U L U

H1:

 

The alternative hypothesis of equivalence is  

ε δ εL U< <  

Test Statistics 
The analysis for assessing equivalence using higher-order cross-over designs is discussed in detail 
in Chapter 9 of Chow and Liu (2000). Unfortunately, their presentation is too lengthy to give 
here. Their method involves the computation of an analysis of variance to estimate the error 
variance. It also describes the construction of confidence limits for appropriate contrasts. These 
confidence limits can then be compared to the equivalence limits to test for equivalence. We refer 
you to their book for details.   
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Power Calculation 
The power is given by 

Power T
b n

t T t
b nV

U

W
V V V

L

W

=
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δ ε
σα α/ /, ,1 1  

σwhere T represents the cumulative t distribution, V and b depend on the design, W is the square 
root of the within mean square error from the ANOVA table used to analyze the cross-over 
design, and n is the average number of subjects per sequence. Note that the constants V and b 
depend on the design as follows.  

Balaam’s Design 
V = 4n – 3, b = 2. 

Two-Sequence Dual Design 
V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences 
V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences 
V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Beta when you want to calculate the power of an experiment. 

|EU| (Upper Equivalence Limit) 
This value gives the upper limit of equivalence. Differences outside EL and EU are not 
considered equivalent, while differences between them are.  

Note that EL must be less than zero and EU must be greater than zero. Also, D, EL, and EU must 
satisfy EL<D<EU. Finally, the scale of these numbers must match the scale of Sw. 

-|EL| (Lower Equivalence Limit) 
This value gives lower limit on equivalence. Differences outside EL and EU are not considered 
equivalent, while differences between them are.  

If you want symmetric limits, enter -UPPER LIMIT for EL to force EL = -|EU|.  

Note that EL must be less than zero and EU must be greater than zero. Also, D, EL, and EU must 
satisfy EL<D<EU. Finally, the scale of these numbers must match the scale of Sw. 

D (True Value) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between the equivalence limits, EL 
and EU. 

D, EL, and EU must satisfy EL<D<EU. Finally, the scale of these numbers must match the scale 
of Sw. 
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Sw (Within Std. Error) 
Specify one or more values of Sw, which is SQR(WMSE) where WMSE is the within mean 
square error from the ANOVA table used to analyze the cross-over design. These values must be 
positive.  

You can press the SD button to load the Standard Deviation Estimator window. 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  

You may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Alpha (Significance Level) 
This option specifies one or more values for the significance level, alpha. A type-I error occurs 
when you reject the null hypothesis when it is true. 

Values must be between zero and one. The value of 0.05 is often used for alpha. An alpha of 0.05 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject a false null hypothesis. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  
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Example1 – Finding Power 
A two-sequence, dual cross-over design is to be used to compare the impact of two drugs on 
diastolic blood pressure. The average diastolic blood pressure after administration of the 
reference drug is 96 mmHg. Researchers believe this average may drop to 92 mmHg with the use 
of a new drug. The within mean square error found from similar studies is 324. Its square root is 
18. 

Following FDA guidelines, the researchers want to show that the diastolic blood pressure is 
within 20% of the diastolic blood pressure of the reference drug. Thus, the equivalence limits of 
the mean difference of the two drugs are -19.2 and 19.2. They decide to calculate the power for a 
range of sample sizes between 4 and 40. The significance level is 0.05. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Design Type ......................................2x3 (Two-Sequence Dual) 
|EU| ...................................................19.2 
-|EL|...................................................-Upper Limit 
D........................................................-4 
Sw .....................................................18 
N........................................................4 6 8 10 12 14 16 18 20 30 40 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the Equivalence of Two Means 
Design: Two-Sequence Dual Cross-Over 
 
 Total Sequences Lower Upper Diff. Standard  
 Sample and Equiv. Equiv. for Error   
 Size Periods Limit Limit Power of Diff.   
Power (N) (SxP) (EL) (EU) (D) (Sw) Alpha Beta 
0.0000 4 2x3 -19.20 19.20 -4.00 18.00 0.0500 1.0000 
0.1878 6 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.8122 
0.4375 8 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.5625 
0.5985 10 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.4015 
0.7082 12 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.2918 
0.7855 14 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.2145 
0.8411 16 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.1589 
0.8818 18 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.1182 
0.9119 20 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.0881 
0.9800 30 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.0200 
0.9957 40 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.0043 
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Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects. They are divided evenly among all sequences. 
S is the number of sequences. 
P is the number of periods per sequence. 
EU & EL are the upper & lower limits of the maximum allowable difference that results in equivalence. 
D is the difference between the means at which the power is computed. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of rejecting non-equivalence when they are non-equivalent. 
Beta is the probability of accepting non-equivalence when they are equivalent. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-sequence dual 
cross-over design, a total sample size of 4 achieves 0% power at a 5% significance level when 
the true difference between the means is -4.00, the square root of the within mean square error 
is 18.00, and the equivalence limits are -19.20 and 19.20. 

 

This report shows the power for the indicated scenarios. Note that 20 subjects yield about 90% 
power. 

Plot Section 
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This plot shows the power versus the sample size. 
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Example2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% and 90% power. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Equal Per Sequence) 
Design Type ......................................2x3 (Two-Sequence Dual) 
|EU| ...................................................19.2 
-|EL|...................................................-Upper Limit 
D........................................................-4 
Sw .....................................................18 
N........................................................Ignored since this is the Find setting 
Alpha .................................................0.05 
Beta...................................................0.10 0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Testing the Equivalence of Two Means 
Design: Two-Sequence Dual Cross-Over 
 
 Total Sequences Lower Upper Diff. Standard  
 Sample and Equiv. Equiv. for Error   
 Size Periods Limit Limit Power of Diff.   
Power (N) (SxP) (EL) (EU) (D) (Sw) Alpha Beta 
0.9119 20 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.0881 
0.8411 16 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.1589 
 

Twenty subjects are needed to achieve at least 90% power and sixteen subjects are needed to 
achieve at least 80% power.  
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Example3 – Validation using Chen 
Chapter 256 Chen et al. (1997) page 757 present a table of sample sizes for various 
parameter values. In this table, the treatment mean, standard deviation, and equivalence limits are 
all specified as percentages of the reference mean. We will reproduce the seventeenth line of the 
table in which the square root of the within mean square error is 10%, the equivalence limits are 
20%, the difference between the means is 0%, 5%, 10%, and 15%, the power is 90%, and the 
significance level is 0.05. Chen reports total sample sizes of 24, 36, 72, and 276. We will now 
setup this example in PASS. 

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Equal Per Sequence) 
Design Type......................................4x2 (Balaam) 
|EU| ...................................................0.2 
-|EL|...................................................-Upper Limit 
D .......................................................0 0.05 0.10 0.15 
Sw .....................................................0.1 
N ....................................................... Ignored since this is the Find setting 
Alpha.................................................0.05 
Beta...................................................0.10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the Equivalence of Two Means 
Design: Balaam's Cross-Over 
 
 Total Sequences Lower Upper Diff. Standard  
 Sample and Equiv. Equiv. for Error   
 Size Periods Limit Limit Power of Diff.   
Power (N) (SxP) (EL) (EU) (D) (Sw) Alpha Beta 
0.9041 24 4x2 -0.20 0.20 0.00 0.10 0.0500 0.0959 
0.9266 36 4x2 -0.20 0.20 0.05 0.10 0.0500 0.0734 
0.9065 72 4x2 -0.20 0.20 0.10 0.10 0.0500 0.0935 
0.9013 276 4x2 -0.20 0.20 0.15 0.10 0.0500 0.0987 

 

PASS obtains the same samples sizes as Chen et al. (1997).  
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Chapter 545  

Higher-Order 
Cross-Over 
Designs: Testing 
Equivalence using 
Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of two means of 
higher-order cross-over designs when the analysis uses a t-test or equivalent. The parameter of 
interest is the ratio of the two means. Schuirmann’s (1987) two one-sided tests (TOST) approach is 
used to test equivalence. Only a brief introduction to the subject will be given here. For a 
comprehensive discussion on the subject, refer to Chen, Chow, and Li (1997).  

Measurements are made on individuals that have been randomly assigned to one of several 
treatment sequences. This cross-over design may be analyzed by a TOST equivalence test to show 
that the two means do not differ by more than a small amount, called the margin of equivalence.  

Measurements are made on individuals that have been randomly assigned to one of several 
treatment sequences. This cross-over design may be analyzed by a TOST equivalence test to show 
that the two means do not differ by more than a small amount, called the margin of equivalence.  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 
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A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 

Sequence Period 1 Period 2
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 

Sequence Period 1 Period 2 Period 3
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 

Sequence Period 1 Period 2 Period 3  Period 4
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 

Sequence Period 1 Period 2 Period 3  Period 4
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 
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Advantages 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Outline of Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialized notation for the discussion of 
these tests.  

Parameter PASS Input/Output Interpretation
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

φ φL U,  RL, RU Margin of equivalence. These limits define an interval of 
the ratio of the means in which their difference is so 
small that it may be ignored.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of non-equivalence is 

H or where0 1 1: , .φ φ φ φ φ φ≤ ≥ < >L U L U  

The alternative hypothesis of equivalence is  

H1:φ φ φL U< <  
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Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypothesis in terms of a ratio. 

2. Transform this into a hypothesis about the difference by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the alternative hypothesis are as follows. 

( ) ( ) ( ){ } ( )

φ φ φ

φ μ
μ

φ

φ μ μ

L U

L
T

R
U

L T R

< <

⇒ <
⎧
⎨
⎩

⎫
⎬
⎭
<

⇒ < − <ln ln ln ln φU

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

When performing an equivalence test on the difference between means, the usual procedure is to 
set the equivalence limits symmetrically above and below zero. Thus, the equivalence limits will 
be plus or minus an appropriate amount. The common practice is to do the same when the data 
are being analyzed on the log scale. However, when symmetric limits are set on the log scale, 
they do not translate to symmetric limits on the original scale. Instead, they translate to limits that 
are the inverses of each other. 

Perhaps these concepts can best be understood by considering an example. Suppose the 
researchers have determined that the lower equivalence limit should be 80% on the original scale. 
Since they are planning to use a log scale for their analysis, they transform this limit into the log 
scale by taking the logarithm of 0.80. The result is -0.223144. Wanting symmetric limits, they set 
the upper equivalence limit to 0.223144. Exponentiating this value, they find that exp(0.223144) 
= 1.25. Note that 1/(0.80) = 1.25. Thus, the limits on the original scale are 80% and 125%, not 
80% and 120%.  

Using this procedure, appropriate equivalence limits for the ratio of two means can be easily 
determined. Here are a few sets of equivalence limits for ratios. 
 Lower Upper Lower Upper 
Specified Limit Limit  Limit Limit 
Percent Original Original  Log Log 
Change Scale Scale Scale Scale 
-25% 75.0% 133.3% -0.287682 0.287682 
+25% 80.0% 125.0% -0.223144 0.223144 
-20% 80.0% 125.0% -0.223144 0.223144 
+20% 83.3% 120.0% -0.182322 0.182322 
-10% 90.0% 111.1% -0.105361 0.105361 
+10% 90.9% 110.0% -0.095310 0.095310 

Note that negative percent-change values specify the lower limit first, while positive percent-
change values specify the upper limit first. After the first limit is found, the other limit is 
calculated as its inverse. 
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

σY
2
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σ μ
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Y Y

e

e

X
X

X

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= −

+
2

2

2

2 2 1

 

From this relationship, the coefficient of variation of Y can be expressed as  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Test Statistics 
The analysis for assessing equivalence using higher-order cross-over designs is discussed in detail 
in Chapter 9 of Chow and Liu (2000). Unfortunately, their presentation is too lengthy to give 
here. Their method involves the computation of an analysis of variance to estimate the error 
variance. It also describes the construction of confidence limits for appropriate contrasts. These 
confidence limits can then be compared to the equivalence limits to test for equivalence. We refer 
you to their book for details. 
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Power Calculation 
The power is given by 

( ) ( ) ( ) ( )
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where 

( )σW YCOV= +ln 2 1 , 

T represents the cumulative t distribution, V and b depend on the design, and n is the average 
number of subjects per sequence. Note that the constants V and b depend on the design as 
follows.  

Balaam’s Design 
V = 4n – 3, b = 2. 

Two-Sequence Dual Design 
V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences 
V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences 
V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Beta when you want to calculate the power of an experiment. 

RU (Upper Equiv. Limit) 
Enter the upper equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RL, the two means are said to be equivalent. The value must be greater 
than one. A popular choice is 1.25. Note that this value is not a percentage. 

If you enter 1/RL, then 1/RL will be calculated and used here. This choice is commonly used 
because RL and 1/RL give limits that are of equal magnitude on the log scale. 

RL (Lower Equiv. Limit) 
Enter the lower equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RU, the two means are said to be equivalent. The value must be less than 
one. A popular choice is 0.80. Note that this value is not a percentage. 

If you enter 1/RU, then 1/RU will be calculated and used here. This choice is commonly used 
because RU and 1/RU give limits that are of equal magnitude on the log scale. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger, more conservative, sample size. 
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COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between two means. 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  

You may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50. 

Alpha (Significance Level) 
This option specifies one or more values for the significance level, alpha. A type-I error occurs 
when you reject the null hypothesis when it is true. 

Values must be between zero and one. The value of 0.05 is often used for alpha. An alpha of 0.05 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject a false null hypothesis. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  
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Example1 – Finding Power 
A company has opened a new manufacturing plant and wants to show that the drug produced in 
the new plant is equivalent to that produced in the older plant. A two-sequence, dual cross-over 
design will be used to test the equivalence of drugs produced at the two plants.  

Researchers have decided to set the equivalence limits for the ratio at 0.80 and 1.25. Past 
experience leads the researchers to set the COV to 0.40. The significance level is 0.05. The power 
will be computed assuming that the true ratio is 0.96. Sample sizes between 10 and 80 will be 
included in the analysis. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Design Type ......................................2x3 (Two-Sequence Dual) 
RU .....................................................1.25 
RL......................................................1/RU 
R1......................................................0.96 
COV ..................................................0.40 
N........................................................10 20 30 40 60 80 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

 Total Sequences Lower Upper Mean Coef.  
 Sample and Equiv. Equiv. Ratio for of   
 Size Periods Limit Limit Power Variation   
Power (N) (SxP) (RL) (RU) (R1) (COV) Alpha Beta 
0.0000 10 2x3 0.80 1.25 0.96 0.40 0.0500 1.0000 
0.3051 20 2x3 0.80 1.25 0.96 0.40 0.0500 0.6949 
0.5858 30 2x3 0.80 1.25 0.96 0.40 0.0500 0.4142 
0.7483 40 2x3 0.80 1.25 0.96 0.40 0.0500 0.2517 
0.9035 60 2x3 0.80 1.25 0.96 0.40 0.0500 0.0965 
0.9627 80 2x3 0.80 1.25 0.96 0.40 0.0500 0.0373 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects. They are divided evenly among all sequences. 
RU & RL are the upper and lower equivalence limits. Ratios between these limits are equivalent. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale.  
Alpha is the probability of rejecting non-equivalence when they are non-equivalent. 
Beta is the probability of accepting non-equivalence when they are equivalent. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-sequence dual 
cross-over design, a total sample size of 10 achieves 0% power at a 5% significance level when 
the true ratio of the means is 0.96, the coefficient of variation on the original (unlogged) 
scale is 0.40, and the equivalence limits are 0.80 and 1.25. 
 

 

This report shows the power for the indicated scenarios. Note that 60 subjects  will yield a power 
of just over 90%. 

Plot Section 
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This plot shows the power versus the sample size. 
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Example2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Equal per Sequence) 
Design Type ......................................2x3 (Two-Sequence Dual) 
RU .....................................................1.25 
RL......................................................1/RU 
R1......................................................0.96 
COV ..................................................0.40 
N........................................................Ignored since this is the Find setting 
Alpha .................................................0.05 
Beta...................................................0.10 0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

 Total Sequences Lower Upper Mean Coef.  
 Sample and Equiv. Equiv. Ratio for of   
 Size Periods Limit Limit Power Variation   
Power (N) (SxP) (RL) (RU) (R1) (COV) Alpha Beta 
0.9035 60 2x3 0.80 1.25 0.96 0.40 0.0500 0.0965 
0.8119 46 2x3 0.80 1.25 0.96 0.40 0.0500 0.1881 
 

We note that 60 subjects are needed to achieve 90% power and 46 subjects are needed to achieve 
at least 80% power.  

 



545-12  High-Order Cross-Over - Equivalence - Ratios  

Example3 – Validation using Chen 
Chen et al. (1997) page 761 presents a table of sample sizes for various parameter values for 
Balaam’s design. We will reproduce entries from the first and seventeenth lines of the table in 
which the COV is 10%, the equivalence limits are 0.8 and 1.25, the actual ratio of between the 
means is 1, the power values are 80% and 90%, and the significance level is 0.05. Chen reports 
total sample sizes of 16 and 20. We will now setup this example in PASS. 

The COV entered by Chen is the COV of the logged data. Since PASS requires the COV of the 
original data, we must use the relationship 
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to obtain the appropriate value of COV. 

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Equal Per Sequence) 
Design Type......................................4x2 (Balaam) 
RU.....................................................1.25 
RL .....................................................1/RU 
R .......................................................1 
COV ..................................................0.10025 
N ....................................................... Ignored since this is the Find setting 
Alpha.................................................0.05 
Beta...................................................0.10 0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing the Equivalence of Two Means Using Ratios 
Design: Balaam's Cross-Over 
 

 Total Sequences Lower Upper Mean Coef.  
 Sample and Equiv. Equiv. Ratio for of   
 Size Periods Limit Limit Power Variation   
Power (N) (SxP) (RL) (RU) (R) (COV) Alpha Beta 
0.9085 20 4x2 0.80 1.25 1.00 0.10 0.0500 0.0915 
0.8106 16 4x2 0.80 1.25 1.00 0.10 0.0500 0.1894 

 

Note that PASS has obtained the same samples sizes as Chen et al. (1997).  
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Finite population size, 420-2; proportion, 115-2 
Fisher's Exact test: proportions, 200-5 
Fisher-z transformation, 805-1 
Fixed factor, 560-5 
Fleming: one-stage design, 120-1 
Folders, 1 
Follow-up: log-rank, 705-4 
Fonts: changing, 37 
Format menu, 37, 40 
Formatting: charts interactively, 25 
FPR: ROC curve, 260-6; ROC curves, 265-1, 265-6 
F-test: Geisser-Greenhouse, 570-4; one-way, 555-2; 

simulation, 555-1; two variances, 655-1 
Games-Howell: multiple comparison, 580-1 
Games-Howell test, 580-4 
Gamma: simulating, 630-24; simulating a, 630-9 
Gart - Nam test: difference, 210-13; equivalence, 215-

12; non-inferiority, 210-13; ratio, 215-12 
Gart-Nam test: two proportions, 205-12 
Geisser-Greenhouse, 570-1 
Geisser-Greenhouse F-test, 570-4 
General linear multivariate model: MANOVA, 605-2 
General Linear Multivariate Model, 570-3 
Generating data, 630-1 
Goodness of fit, 250-1; chi-square, 900-1 
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Independence test, 250-1 
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Interactive Format, 25 
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Kruskal-Wallis: multiple comparisons, 580-1; 
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Labels of plots, 26 
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Legend color, 26 
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Linear model, 570-3 
Linear model: ANOVA, 560-2 
Linear regression, 855-1; correlation, 800-1 
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Log file, 34 
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Logistic, 400:7 
Logistic regression, 860-1 
Logit: logistic regression, 860-2 
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Log-rank test, 700-1, 705-1 
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MANOVA, 605-1 
Mantel Haenszel test: proportions, 200-7 
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Matched case-control, 135-2, 255-1 
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window, 38 
Menus, 12, 17; file, 17 
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Monte Carlo, 57, 630-1 
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Multinomial: chi-square, 900-4; simulating a, 630-10 
Multiple comparisons, 575-1; Dunnett's test, 585-1; 

Games-Howell, 580-1; pair-wise, 580-1; power, 
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Multiple regression, 865-1 
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Null hypothesis, 42, 55 
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