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About This Manual 
Congratulations on your purchase of the PASS package! PASS offers: 

• Easy parameter entry. 

• A comprehensive list of power analysis routines that are accurate and verified, yet are 
quick and easy to learn and use. 

• Straightforward procedures for creating paper printouts and file copies of both the 
numerical and graphical reports. 

Our goal is that with the help of these user's guides, you will be up and running on PASS quickly. 
After reading the quick start manual (at the front of User's Guide I) you will only need to refer to 
the chapters corresponding to the procedures you want to use. The discussion of each procedure 
includes one or more tutorials that will take you step-by-step through the tasks necessary to run 
the procedure. 

I believe you will find that these user’s guides provides a quick, easy, efficient, and effective way 
for first-time PASS users to get up and running.  

I look forward to any suggestions you have to improve the usefulness of this manual and/or the 
PASS system. Meanwhile, good computing! 

 

 Jerry Hintze, Author 



   

PASS License Agreement 
Important: The enclosed Power Analysis and Sample Size software program (PASS) is licensed by NCSS to customers for 
their use only on the terms set forth below. Your purchase and use of the PASS system indicates your acceptance of these 
terms. 
 
1. LICENSE. NCSS hereby agrees to grant you a non-exclusive license to use the accompanying PASS program 
subject to the terms and restrictions set forth in this License Agreement. 
 
2. COPYRIGHT. PASS and its documentation are copyrighted. You may not copy or otherwise reproduce any part of 
PASS or its documentation, except that you may load PASS into a computer as an essential step in executing it on the 
computer and make backup copies for your use on the same computer. 
 
3. BACKUP POLICY. PASS may be backed up by you for your use on the same machine for which PASS was 
purchased. 
 
4. RESTRICTIONS ON USE AND TRANSFER. The original and any backup copies of PASS and its 
documentation are to be used only in connection with a single user.  This user may load PASS onto several machines for 
his/her convenience (such as a desktop and laptop computer), but only for use by the licensee. You may physically transfer 
PASS from one computer to another, provided that PASS is used in connection with only one user. You may not distribute 
copies of PASS or its documentation to others. You may transfer this license together with the original and all backup 
copies of PASS and its documentation, provided that the transferee agrees to be bound by the terms of this License 
Agreement. PASS licenses may not be transferred more frequently than once in twelve months. Neither PASS nor its 
documentation may be modified or translated without written permission from NCSS. 
 You may not use, copy, modify, or transfer PASS, or any copy, modification, or merged portion, in whole or in part, 
except as expressly provided for in this license. 
 
5. NO WARRANTY OF PERFORMANCE. NCSS does not and cannot warrant the performance or results that may 
be obtained by using PASS. Accordingly, PASS and its documentation are licensed "as is" without warranty as to their 
performance, merchantability, or fitness for any particular purpose. The entire risk as to the results and performance of 
PASS is assumed by you. Should PASS prove defective, you (and not NCSS nor its dealer) assume the entire cost of all 
necessary servicing, repair, or correction. 
 
6.  LIMITED WARRANTY ON CD. To the original licensee only, NCSS warrants the medium on which PASS is 
recorded to be free from defects in materials and faulty workmanship under normal use and service for a period of ninety 
days from the date PASS is delivered. If, during this ninety-day period, a defect in a CD should occur, the CD may be 
returned to NCSS at its address, or to the dealer from which PASS was purchased, and NCSS will replace the CD without 
charge to you, provided that you have sent a copy of your receipt for PASS. Your sole and exclusive remedy in the event 
of a defect is expressly limited to the replacement of the CD as provided above. 
 Any implied warranties of merchantability and fitness for a particular purpose are limited in duration to a period of 
ninety (90) days from the date of delivery. If the failure of a CD has resulted from accident, abuse, or misapplication of the 
CD, NCSS shall have no responsibility to replace the CD under the terms of this limited warranty. This limited warranty 
gives you specific legal rights, and you may also have other rights which vary from state to state. 
 
7. LIMITATION OF LIABILITY.  Neither NCSS nor anyone else who has been involved in the creation, production, 
or delivery of PASS shall be liable for any direct, incidental, or consequential damages, such as, but not limited to, loss of 
anticipated profits or benefits, resulting from the use of PASS or arising out of any breach of any warranty. Some states do 
not allow the exclusion or limitation of direct, incidental, or consequential damages, so the above limitation may not apply 
to you. 
 
8. TERM. The license is effective until terminated. You may terminate it at any time by destroying PASS and 
documentation together with all copies, modifications, and merged portions in any form. It will also terminate if you fail to 
comply with any term or condition of this License Agreement. You agree upon such termination to destroy PASS and 
documentation together with all copies, modifications, and merged portions in any form. 
 
9. YOUR USE OF PASS ACKNOWLEDGES that you have read this customer license agreement and agree to its 
terms. You further agree that the license agreement is the complete and exclusive statement of the agreement between us 
and supersedes any proposal or prior agreement, oral or written, and any other communications between us relating to the 
subject matter of this agreement. 
 
Dr. Jerry L. Hintze & NCSS, Kaysville, Utah 



Preface 
PASS (Power Analysis and Sample Size) is an advanced, easy-to-use statistical analysis software 
package. The system was designed and written by Dr. Jerry L. Hintze over the last Seventeen 
years. Dr. Hintze drew upon his experience both in teaching statistics at the university level and 
in various types of statistical consulting. 

The present version, written for 32-bit versions of Microsoft Windows (Vista, XP, NT, ME, 2000, 
98, etc.) computer systems, is the result of several iterations. Experience over the years with 
several different types of users has helped the program evolve into its present form. 

NCSS maintains a website at www.ncss.com where we make the latest edition of PASS available 
for free downloading. The software is password protected, so only users with valid serial numbers 
may use this downloaded edition. We hope that you will download the latest edition routinely and 
thus avoid any bugs that have been corrected since you purchased your copy. 

We believe PASS to be an accurate, exciting, easy-to-use program. If you find any portion which 
you feel needs to be changed, please let us know. Also, we openly welcome suggestions for 
additions and enhancements. 

Verification 
All calculations used in this program have been extensively tested and verified. First, they have 
been verified against the original journal article or textbook that contained the formulas. Second, 
they have been verified against second and third sources when these exist. 

 

http://www.ncss.com/


User’s Guide III 
Table of Contents 

 

Standard Deviations 
640 Confidence Intervals for One Standard 

Deviation using Standard Deviation 
641 Confidence Intervals for One Standard 

Deviation with Tolerance Probability 
642 Confidence Intervals for One Standard 

Deviation using Relative Error 

Variances 
One Variance 
650 Inequality Tests for One Variance 
651 Confidence Intervals for One Variance 

using Variance 
652 Confidence Intervals for One Variance 

with Tolerance Probability 
653 Confidence Intervals for One Variance 

using Relative Error 

Two Variances 
655 Inequality Tests for Two Variances 
656 Confidence Intervals for the Ratio of 

Two Variances using Variances 
657 Confidence Intervals for the Ratio of 

Two Variances using Relative Error 

Normality Tests 
670 Normality Tests (Simulation) 

Survival Analysis 
700 Logrank Tests (Freedman) 
705 Logrank Tests (Lachin and Foulkes) 
706 Logrank Tests for Non-Inferiority 
710 Group-Sequential Logrank Tests 
715 Logrank Tests (Lakatos)  

Correlations 
800 Inequality Tests for One Correlation 
801 Confidence Intervals for One 

Correlation 
805 Inequality Tests for Two Correlations 
810 Inequality Tests for Intraclass 

Correlation 
 

811 Kappa Test for Agreement Between 
Two Raters 

815 Inequality Tests for One Coefficient 
Alpha 

820 Inequality Tests for Two Coefficient 
Alphas 

Regression 
850 Cox Regression 
855 Linear Regression 
856 Confidence Intervals for Linear 

Regression Slope 
860 Logistic Regression 
865 Multiple Regression 
870 Poisson Regression 

Design of Experiments 
880 Randomization Lists 
881 Two-Level Designs 
882 Fractional Factorial Designs 
883 Balanced Incomplete Block Designs 
884 Latin Square Designs 
885 Response Surface Designs 
886 Screening Designs 
887 Taguchi Designs 
888 D-Optimal Designs 
889 Design Generator 

Tools, Helps, and Aids 
900 Chi-Square Effect Size Estimator 
905 Standard Deviation Estimator 
910 Odds Ratio and Proportions 

Estimator 
915 Probability Calculator 
920 Data Simulator 
925 The Spreadsheet 
930 Macros 

References and Index 
References 
Index 
 
 



 

User’s Guide I 
Table of Contents 

 

Quick Start 
1 Installation 
2 Running PASS 
3 The PASS Home Window 
4 The Procedure Window 
5 The Output Window 
6 The Map (Quick Launch) Window 
7 Introduction to Power Analysis 
8 Proportions 
9 Means 
 
Quick Start Index 

Proportions 
One Proportion 
100 Inequality Tests 
105 Non-Inferiority & Superiority Tests 
110 Equivalence Tests 
115 Confidence Intervals 
120 Single-Stage Phase II Clinical Trials 
125 Two-Stage Phase II Clinical Trials 
130 Three-Stage Phase II Clinical Trials 
135 Post-Marketing Surveillance 

Two Correlated Proportions 
150 Inequality Tests (McNemar Test) 
155 Inequality Tests (Matched Case-

Control Design) 
160 Non-Inferiority Tests 
165 Equivalence Tests 
 
 
 
 

Two Independent Proportions 
200 Inequality Tests 
201 Inequality Tests (Repeated 

Measures Design) 
205 Inequality Tests (Offset Null 

Hypothesis) 
210 Non-Inferiority & Superiority Tests 
215 Equivalence Tests 
216 Confidence Intervals 
220 Group-Sequential Tests 
225 Inequality Tests (Stratified Design – 

Cochran-Mantel-Haenszel Test) 

Two Independent Proportions in a 
Cluster-Randomized Design 
230 Inequality Tests 
235 Non-Inferiority & Superiority Tests 
240 Equivalence Tests  

Many Proportions (Contingency 
Tables) 
250 Chi-Square Tests 
255 Cochran-Armitage Test for Trend in 

Proportions 

ROC Curves 
260 Inequality Tests for One ROC Curve 
265 Inequality Tests for Two ROC 

Curves 

References and Index 
References 
Index 
 
 

 
 

 



 

User’s Guide II 
Table of Contents 

 

Means 
One Mean 
400 Inequality Tests (One-Sample or 

Paired T-Test) 
405 Inequality Tests (Exponential Data) 
410 Inequality Tests (Simulation) 
415 Non-Inferiority & Superiority Tests 
420 Confidence Intervals 
421 Confidence Intervals with Tolerance 

Probability 

Two Independent Means 
430 Inequality Tests using Differences 

(Two-Sample T-Test) 
431 Inequality Tests (Repeated Measures 

Design) 
435 Inequality Tests (Exponential Data) 
440 Inequality Tests (Simulation) 
445 Inequality Tests using Ratios (Two-

Sample T-Test) 
450 Non-Inferiority & Superiority Tests 

using Differences 
455 Non-Inferiority & Superiority Tests 

using Ratios 
460 Equivalence Tests using Differences 
465 Equivalence Tests (Simulation) 
470 Equivalence Tests using Ratios 
471 Confidence Intervals for the Difference 
472 Confidence Intervals for the Difference 

with Tolerance Probability 
475 Group-Sequential Tests 
480 Inequality Tests (Cluster-Randomized 

Design) 

Two Correlated (Paired) Means 
490 Inequality Tests (Simulation) 
495 Equivalence Tests (Simulation) 
496 Confidence Intervals 
497 Confidence Intervals with Tolerance 

Probability 

Two Independent Means in a 2×2 
Cross-Over Design 
500 Inequality Tests using Differences 
505 Inequality Tests using Ratios 
510 Non-Inferiority & Superiority Tests 

using Differences 

515 Non-Inferiority & Superiority Tests 
using Ratios 

520 Equivalence Tests using Differences 
525 Equivalence Tests using Ratios 

Two Independent Means in a Higher-
Order Cross-Over Design 
530 Non-Inferiority & Superiority Tests 

using Differences 
535 Non-Inferiority & Superiority Tests 

using Ratios 
540 Equivalence Tests using Differences 
545 Equivalence Tests using Ratios 

Many Means (ANOVA) 
550 One-Way Analysis of Variance 
555 One-Way Analysis of Variance 

(Simulation) 
560 Fixed Effects Analysis of Variance 
565 Randomized Block Analysis of 

Variance 
570 Repeated Measures Analysis of 

Variance 

Mixed Models 
571 Mixed Models 

Multiple Comparisons 
575 Multiple Comparisons 
580 Pair-Wise Multiple Comparisons 

(Simulation) 
585 Multiple Comparisons of Treatments 

vs. a Control (Simulation) 
590 Multiple Contrasts (Simulation) 

Multivariate Means 
600 Hotelling's T2 
605 Multivariate Analysis of Variance 

(MANOVA) 

Microarrays 
610 One-Sample or Paired T-Test 
615 Two-Sample T-Test 

References and Index 
References 
Index 

 

 



 

 

 



  640-1 

Chapter 640 

Confidence 
Intervals for One 
Standard Deviation 
Using Standard 
Deviation 
Introduction 
This routine calculates the sample size necessary to achieve a specified interval width or distance 
from the standard deviation to the confidence limit at a stated confidence level for a confidence 
interval about the standard deviation when the underlying data distribution is normal.  

Caution: This procedure assumes that the standard deviation of the future sample will be the same 
as the standard deviation that is specified. If the standard deviation to be used in the procedure is 
estimated from a previous sample or represents the population standard deviation, the Confidence 
Intervals for One Standard Deviation with Tolerance Probability procedure should be considered. 
That procedure controls the probability that the width or distance from the standard deviation to 
the confidence limit will be less than or equal to the value specified. The Confidence Intervals for 
One Standard Deviation using Relative Error controls the width or distance from the standard 
deviation to the limit by controlling the distance as a percent of the true standard deviation.  

Technical Details 
For a single standard deviation from a normal distribution with unknown mean, a two-sided, 
100(1 – α)% confidence interval is calculated by  
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A one-sided 100(1 – α)% upper confidence limit is calculated by 
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Similarly, the one-sided 100(1 – α)% lower confidence limit is 
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For two-sided intervals, the distance from the standard deviation to each of the limits is different. 
Thus, instead of specifying the distance to the limits we specify the width of the interval, W.  

The basic equation for determining sample size for a two-sided interval when W has been specified 
is 
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For one-sided intervals, the distance from the standard deviation to limits, D, is specified. 

The basic equation for determining sample size for a one-sided upper limit when D has been 
specified is 
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The basic equation for determining sample size for a one-sided lower limit when D has been 
specified is 
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These equations can be solved for any of the unknown quantities in terms of the others. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population standard 
deviation is 1 – α. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population standard 
deviation is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit. The distance 
from the standard deviation to the lower and upper limits is not equal. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  
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Distance from SD to Limit (One-Sided) 
This is the distance from the standard deviation to the lower or upper limit of the confidence 
interval, depending on whether the Interval Type is set to Lower Limit or Upper Limit. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Standard Deviation 

S (Standard Deviation) 
Enter an estimate of the standard deviation (must be positive). The sample size and width 
calculations assume that the value entered here is the standard deviation estimate that is obtained 
from the sample. If the sample standard deviation is different from the one specified here, the 
width may be narrower or wider than specified. 

For controlling the probability that the width is less than the value specified, see the procedure 
'Confidence Intervals for One Standard Deviation with Tolerance Probability'. 

For confidence intervals with widths that are specified in terms of a percentage of relative error, 
see the procedure 'Confidence Intervals for One Standard Deviation using Relative Error'. 

One common method for estimating the standard deviation is the range divided by 4, 5, or 6. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the standard deviation such that the width of the interval is no wider than 
20 units. The confidence level is set at 0.95, but 0.99 is included for comparative purposes. The 
standard deviation estimate, based on the range of data values, is 14. Instead of examining only 
the interval width of 20, a series of widths from 16 to 24 will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Standard Deviation using 
Standard Deviation procedure window by clicking on Confidence Intervals, then Standard 
Deviations, then One Standard Deviation using Standard Deviation. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 0.99 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..16 to 24 by 1 
S (Standard Deviation)............................14 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
 Sample   Standard   
Confidence Size Target Actual Deviation Lower Upper 
Level (N) Width Width (S) Limit Limit 
0.950 40 16.000 15.806 34.000 27.851 43.657 
0.990 67 16.000 15.873 34.000 27.715 43.588 
0.950 36 17.000 16.774 34.000 27.577 44.351 
0.990 60 17.000 16.870 34.000 27.420 44.289 
0.950 32 18.000 17.944 34.000 27.258 45.202 
0.990 54 18.000 17.891 34.000 27.128 45.019 
0.950 30 19.000 18.629 34.000 27.078 45.707 
0.990 49 19.000 18.900 34.000 26.850 45.750 
0.950 27 20.000 19.819 34.000 26.776 46.595 
0.990 45 20.000 19.842 34.000 26.599 46.441 
0.950 25 21.000 20.751 34.000 26.548 47.299 
0.990 41 21.000 20.939 34.000 26.317 47.256 
0.950 23 22.000 21.827 34.000 26.295 48.122 
0.990 38 22.000 21.892 34.000 26.080 47.972 
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0.950 22 23.000 22.430 34.000 26.158 48.588 
0.990 35 23.000 22.986 34.000 25.818 48.804 
0.950 20 24.000 23.803 34.000 25.857 49.659 
0.990 33 24.000 23.813 34.000 25.627 49.440 
 
References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population standard deviation. 
N is the size of the sample drawn from the population. 
Width is distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
Standard Deviation (S) is the assumed sample standard deviation. 
Lower Limit is the lower limit of the confidence interval. 
Upper Limit is the upper limit of the confidence interval. 
 
Summary Statements 
A sample size of 40 produces a two-sided 95% confidence interval with a width equal to 15.806 
when the standard deviation is 34.000. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
 

 

N vs C.I. Width by C.L. with S=34.000 C.I. One SD
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This plot shows the sample size versus the confidence interval width for the two confidence 
levels. 
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Example 2 – Validation using Hahn and Meeker 
Hahn and Meeker (1991) page 56 give an example of a calculation for a confidence interval on 
the standard deviation when the confidence level is 95%, the standard deviation is 1.31, and the 
interval width is 2.9795. The necessary sample size is 5.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Standard Deviation using 
Standard Deviation procedure window by clicking on Confidence Intervals, then Standard 
Deviations, then One Standard Deviation using Standard Deviation. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..2.9795 
S (Standard Deviation)............................1.31 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Sample   Standard   
Confidence Size Target Actual Deviation Lower Upper 
Level (N) Width Width (S) Limit Limit 
0.950 5 2.980 2.979 1.310 0.785 3.764 
 

PASS also calculated the necessary sample size to be 5.  
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Chapter 641 

Confidence 
Intervals for One 
Standard Deviation 
with Tolerance 
Probability 
Introduction 
This procedure calculates the sample size necessary to achieve a specified width (or in the case of 
one-sided intervals, the distance from the standard deviation to the confidence limit) with a given 
tolerance probability at a stated confidence level for a confidence interval about a single standard 
deviation when the underlying data distribution is normal.  

Technical Details 
For a single standard deviation from a normal distribution with unknown mean, a two-sided, 
100(1 – α)% confidence interval is calculated by  
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A one-sided 100(1 – α)% upper confidence limit is calculated by 
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Similarly, the one-sided 100(1 – α)% lower confidence limit is 
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For two-sided intervals, the distance from the standard deviation to each of the limits is different. 
Thus, instead of specifying the distance to the limits we specify the width of the interval, W.  

The basic equation for determining sample size for a two-sided interval when W has been specified 
is 

21

2
121

21

2
12

11
/

,/

/

,/ ⎭
⎬
⎫

⎩
⎨
⎧ −

−
⎭
⎬
⎫

⎩
⎨
⎧ −

=
−−− nn

nsnsW
αα χχ

 

For one-sided intervals, the distance from the standard deviation to limits, D, is specified. 

The basic equation for determining sample size for a one-sided upper limit when D has been 
specified is 
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The basic equation for determining sample size for a one-sided lower limit when D has been 
specified is 
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These equations can be solved for any of the unknown quantities in terms of the others. 

There is an additional subtlety that arises when the standard deviation is to be chosen for estimating 
sample size. The sample sizes determined from the formulas above produce confidence intervals 
with the specified widths only when the future sample has a sample standard deviation that is no 
greater than the value specified. 

As an example, suppose that 15 individuals are sampled in a pilot study, and a standard deviation 
estimate of 3.5 is obtained from the sample. The purpose of a later study is to estimate the standard 
deviation with a confidence interval with width no greater than 1.3 units. Suppose further that the 
sample size needed is calculated to be 105 using the formula above with 3.5 as the estimate for the 
standard deviation. The sample of size 105 is then obtained from the population, but the standard 
deviation of the 105 individuals turns out to be 3.9 rather than 3.5. The confidence interval is 
computed and the width of the interval is greater than 1.3 units. 

This example illustrates the need for an adjustment to adjust the sample size such that the width or 
distance from the standard deviation to the confidence limits will be below the specified value with 
known probability. 

Such an adjustment for situations where a previous sample is used to estimate the standard 
deviation is derived for the case of confidence intervals for a mean by Harris, Horvitz, and Mood 
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(1948) and discussed in Zar (1984) and Hahn and Meeker (1991). The adjustment is made by 
replacing s with 

111 −−−= mnFs ,;γσ  

where 1 – γ  is the probability that the width or distance from the standard deviation to the 
confidence limit will be below the specified value, and m is the sample size in the previous sample 
that was used to estimate the standard deviation. 

The corresponding adjustment when no previous sample is available is discussed in Kupper and 
Hafner (1989) and Hahn and Meeker (1991). The adjustment in this case is  
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where, again, 1 – γ  is the probability that the width or distance from the standard deviation to the 
confidence limit will be below the specified value. 

Each of these adjustments accounts for the variability in a future estimate of the standard deviation. 
In the first adjustment formula (Harris, Horvitz, and Mood, 1948), the distribution of the standard 
deviation is based on the estimate from a previous sample. In the second adjustment formula, the 
distribution of the standard deviation is based on a specified value that is assumed to be the 
population standard deviation.  

For this procedure, both adjustments are adapted from the case of a one-sample confidence interval 
for a single mean to the case of a one-sample confidence interval for a single standard deviation. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population standard 
deviation is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  
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Confidence and Tolerance 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population standard 
deviation is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Tolerance Probability 
This is the probability that a future interval with sample size N and the specified confidence level 
will have a width or distance from the standard deviation to the limit that is less than or equal to the 
width or distance specified. 

If a tolerance probability is not used, as in the 'Confidence Intervals for One Standard Deviation 
using Standard Deviation' procedure, the sample size is calculated for the expected width or 
distance from the SD to the limit, which assumes that the future standard deviation will also be the 
one specified. 

Using a tolerance probability implies that the standard deviation of the future sample will not be 
known in advance, and therefore, an adjustment is made to the sample size formula to account for 
the variability in the standard deviation. Use of a tolerance probability is similar to using an upper 
bound for the standard deviation in the 'Confidence Intervals for One Standard Deviation using 
Standard Deviation' procedure. 

Values between 0 and 1 can be entered. The choice of the tolerance probability depends upon how 
important it is that the width distance from the interval limits to the standard deviation is at most the 
value specified. 

You can enter a range of values such as 0.70 0.80 0.90 or 0.70 to 0.95 by 0.05. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 
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Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit. The distance 
from the standard deviation to the lower and upper limits is not equal. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Distance from SD to Limit (One-Sided) 
This is the distance from the standard deviation to the lower or upper limit of the confidence 
interval, depending on whether the Interval Type is set to Lower Limit or Upper Limit. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Standard Deviation 

Standard Deviation Source 
This procedure permits two sources for estimates of the standard deviation: 

• S is a Population Standard Deviation 
This option should be selected if there is no previous sample that can be used to obtain an 
estimate of the standard deviation. In this case, the algorithm assumes that future sample 
obtained will be from a population with standard deviation S. 

• S from a Previous Sample 
This option should be selected if the estimate of the standard deviation is obtained from a 
previous random sample from the same distribution as the one to be sampled. The sample 
size of the previous sample must also be entered under 'Sample Size of Previous Sample'. 

Standard Deviation – S is a 
Population Standard Deviation 

S (Standard Deviation) 
Enter an estimate of the standard deviation (must be positive). In this case, the algorithm assumes 
that future samples obtained will be from a population with standard deviation S. 

One common method for estimating the standard deviation is the range divided by 4, 5, or 6. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Standard Deviation – S from a 
Previous Sample 

S (SD Estimated from a Previous Sample) 
Enter an estimate of the standard deviation from a previous (or pilot) study. This value must be 
positive. 

A range of values may be entered. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  
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Sample Size of Previous Sample 
Enter the sample size that was used to estimate the standard deviation entered in S (SD Estimated 
from a Previous Sample). 

This value is entered only when 'Standard Deviation Source:' is set to 'S from a Previous Sample'.  

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
A researcher would like to estimate the standard deviation of a population with 95% confidence. 
It is very important that the interval width is less than 5 grams.  Data available from a previous 
study are used to provide an estimate of the standard deviation. The estimate of the standard 
deviation is 25.4 grams, from a sample of size 12.  
The goal is to determine the sample size necessary to obtain a two-sided confidence interval such 
that the width of the interval is less than 5 grams. Tolerance probabilities of 0.70 to 0.95 will be 
examined. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Standard Deviation with 
Tolerance Probability procedure window by clicking on Confidence Intervals, then Standard 
Deviations, then One Standard Deviation with Tolerance Probability. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
Tolerance Probability ..............................0.70 to 0.95 by 0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width.......................5 
Standard Deviation Source .....................S from a Previous Sample 
S ..............................................................25.4 
Sample Size of Previous Sample............12 



Confidence Intervals for One Standard Deviation with Tolerance Probability  641-7 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
 Sample   Standard  
Confidence Size Target Actual Deviation Tolerance 
Level (N) Width Width (S) Probability 
0.950 273 5.000 4.997 25.400 0.700 
0.950 293 5.000 4.998 25.400 0.750 
0.950 318 5.000 4.997 25.400 0.800 
0.950 351 5.000 4.993 25.400 0.850 
0.950 398 5.000 4.995 25.400 0.900 
0.950 484 5.000 4.997 25.400 0.950 
 
Sample size for estimate of S from previous sample = 12.  
 
References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
Zar, J. H. 1984. Biostatistical Analysis. Second Edition. Prentice-Hall. Englewood Cliffs, New Jersey. 
Harris, M., Horvitz, D. J., and Mood, A. M. 1948. 'On the Determination of Sample Sizes in Designing 
     Experiments', Journal of the American Statistical Association, Volume 43, No. 243, pp. 391-402. 
 
Report Definitions 
Confidence Level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population standard deviation. 
N is the size of the sample drawn from the population. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
Standard Deviation (S) is the estimated standard deviation based on a previous sample. 
Tolerance Probability is the probability that a future interval with sample size N and corresponding 
     confidence level will have a width that is less than or equal to the specified width. 
 
Summary Statements 
The probability is 0.700 that a sample size of 273 will produce a two-sided 95% confidence 
interval with a width that is less than or equal to 4.997 if the population standard deviation 
is estimated to be 25.400 by a previous sample of size 12. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size versus the tolerance probability. 
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Example 2 – Validation using Simulation 
We could not find a published result for confidence intervals for a standard deviation with 
tolerance probability. This procedure is validated using a simulation. A simulation was run with a 
confidence level of 95%, sample size of 100, a specified confidence interval width of 6, and 
assumed population standard deviation of 20. 
The number of simulations was 100,000. The proportion of intervals with width less than 6 
(tolerance probability) was 0.80168.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Standard Deviation with 
Tolerance Probability procedure window by clicking on Confidence Intervals, then Standard 
Deviations, then One Standard Deviation with Tolerance Probability. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Tolerance Probability 
Confidence Level ....................................0.95 
Tolerance Probability ..............................Ignored since this is the Find setting 
N (Sample Size) ......................................100 
Interval Type ...........................................Two-Sided 
Confidence Interval Width.......................6 
Standard Deviation Source .....................S is a Population Standard Deviation 
S ..............................................................20 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
 Sample   Standard  
Confidence Size Target Actual Deviation Tolerance 
Level (N) Width Width (S) Probability 
0.950 100 6.000 6.000 20.000 0.802 
 

PASS calculated the tolerance probability to be 0.802, which is well within the simulation error 
of the simulation estimate of 0.80168.  
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Chapter 642 

Confidence 
Intervals for One 
Standard Deviation 
Using Relative 
Error 
Introduction 
This routine calculates the necessary sample size such that a sample standard deviation estimate 
will achieve a specified relative distance from the true population standard deviation at a stated 
confidence level when the underlying data distribution is normal.  

Caution: This procedure controls the relative width of the interval as a proportion of the true 
population standard deviation. For controlling the absolute width of the interval see the 
procedures Confidence Intervals for One Standard Deviation using Standard Deviation and 
Confidence Intervals for One Standard Deviation with Tolerance Probability.  

Technical Details 
Following the results of Desu and Raghavarao (1990) and Greenwood and Sandomire (1950), let 
s be the standard deviation estimate based on a sample from a normal distribution with unknown 
μ and unknown σ. Let r be the proportion of σ such that s is within rσ of σ with desired 
confidence. If 

( ) ( ))1(PrPr1 rsrsp +>=+>= σσσ  

and 

( ) ( ))1(PrPr2 rsrsp −<=−<= σσσ  
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The confidence level for estimating σ within proportion r is 1 – p1 – p2. 
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Using the chi-square distribution, these equations can be solved for any of the unknown quantities 
(n, r, p1 + p2) in terms of the others. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and the standard deviation estimates are 
obtained from each sample, the proportion of those estimates that are within rσ of σ is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and the standard deviation estimates are 
obtained from each sample, the proportion of those estimates that are within rσ of σ is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 
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Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

In each case the limits are based on the relative error of the true population standard deviation. 

Precision 

Relative Error 
This is the distance from the true standard deviation as a proportion of the true standard deviation. 

You can enter a single value or a list of values. The value(s) must be between 0 and 100000. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to be 95% confident that estimated 
standard deviation is within 10% of the true population standard deviation. In addition to 10% 
relative error, 5%, 15%, 20% and 25% will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Standard Deviation using 
Relative Error procedure window by clicking on Confidence Intervals, then Standard 
Deviations, then One Standard Deviation using Relative Error. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Relative Error ..........................................0.05 to 0.25 by 0.05 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Relative Error Confidence Intervals 
 
Target Actual Sample  
Confidence Confidence Size Relative 
Level Level (N) Error 
0.950 0.950 769 0.050 
0.950 0.950 193 0.100 
0.950 0.951 87 0.150 
0.950 0.951 49 0.200 
0.950 0.952 32 0.250 
 
References 
Greenwood, J. A. and Sandomire, M. M. 1950. 'Sample Size Required for Estimating the Standard Deviation as a 
     Per Cent of its True Value', Journal of the American Statistical Association, Vol. 45, No. 250, pp. 257-260. 
Desu, M. M. and Raghavarao, D. 1990. Sample Size Methodology. Academic Press. New York. 
 
Report Definitions 
Confidence Level is the proportion of standard deviation estimates that will be within the relative error of 
     the true standard deviation. 
Target Confidence Level is the value of the confidence level that is entered into the procedure. 
Actual Confidence Level is the value of the confidence level that is obtained from the procedure. 
Sample Size (N) is the size of the sample drawn from the population. 
Relative Error is the distance from the true standard deviation as a proportion of the true standard 
     deviation. 
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Summary Statements 
With a sample size of 769, the probability is 0.950 (95% confidence) that the estimate of the 
standard deviation will be within 5% of the true population standard deviation. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size versus the relative error. 
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Example 2 – Validation using Greenwood and 
Sandomire 
Greenwood and Sandomire (1950) page 259 give an example of a calculation in which the 
desired confidence level is 80% and the relative error is 10%. The necessary sample size is 84.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Standard Deviation using 
Relative Error procedure window by clicking on Confidence Intervals, then Standard 
Deviations, then One Standard Deviation using Relative Error. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.80 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Relative Error ..........................................0.1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Target Actual Sample  
Confidence Confidence Size Relative 
Level Level (N) Error 
0.800 0.802 84 0.100 
 

PASS also calculated the necessary sample size to be 84.  
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Chapter 650 

Inequality Tests 
for One Variance 
Introduction 
Occasionally, researchers are interested in the estimation of the variance (or standard deviation) 
rather than the mean. This module calculates the sample size and performs power analysis for 
hypothesis tests concerning a single variance.  

Technical Details 
Assuming that a variable X is normally distributed with mean μ and variance , the sample 
variance is distributed as a Chi-square random variable with N - 1 degrees of freedom, where N is 
the sample size. That is,  
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The power or sample size of a hypothesis test about the variance can be calculated using the 
appropriate one of the following three formulas from Ostle (1988) page 130. 
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Procedure Options 
This section describes the options that are unique to this procedure. To find out more about using 
the other tabs, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

If your only interest is in determining the appropriate sample size for a confidence interval, set 
power or beta to 0.5. 

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Sample Size) 
This is the number of observations in the study.  

Effect Size 

Scale 
Specify whether V0 and V1 are variances or standard deviations. 

V0 (Baseline Variance) 
Enter one or more value(s) of the baseline variance. This variance will be compared to the 
alternative variance. It must be greater than zero. 

Actually, only the ratio of the two variances (or standard deviations) is used, so you can enter a 
one here and enter the ratio value in the V1 box. 

If Scale is Standard Deviation this value is treated as a standard deviation rather than a variance. 

V1 (Alternative Variance) 
Enter one or more value(s) of the alternative variance. This variance will be compared to the 
baseline variance. It must be greater than zero. 

Actually, only the ratio of the two variances (or standard deviations) is used, so you can enter a 
one for V0 and enter a ratio value here. 

If Scale is Standard Deviation this value is treated as a standard deviation rather than a variance. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always . H0 0

2
1
2:σ σ=

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Ha: V0 <> V1 
This selection yields a two-tailed test. Use this option when you are testing whether the 
variances are different but you do not want to specify beforehand which variance is larger. 

• Ha: V0 > V1 
The options yields a one-tailed test. Use it when you are only interested in the case in which 
V1 is less than V0. 

• Ha: V0 < V1 
This option yields a one-tailed test. Use it when you are only interested in the case in which 
V1 is greater than V0. 
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Known Mean 
The degrees of freedom of the Chi-square test is N - 1 if the mean is calculated from the data (this 
is usually the case) or it is N if the mean is known. Check this box if the mean is known. This will 
cause an increase of the sample size by one.  

Iterations Tab 
This tab sets the option used in the iterative procedure. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating the Power 
A machine used to perform a particular analysis is to be replaced with a new type of machine if 
the new machine reduces the variation in the output. The current machine has been tested 
repeatedly and found to have an output variance of 42.5. The new machine will be cost effective 
if it can reduce the variance by 30% to 29.75. If the significance level is set to 0.05, calculate the 
power for sample sizes of 10, 50, 90, 130, 170, 210, and 250.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Variance procedure window by 
clicking on Variances, then One Variance, then Inequality Tests. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................10  50  90  130  170  210  250 
Scale .......................................................Variance 
V0 (Baseline Variance) ...........................42.5 
V1 (Alternative Variance) ........................29.75 
Alternative Hypothesis ............................Ha: V0 > V1 
Known Mean ...........................................Not checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: V0 = V1 versus Ha: V0>V1 
Power N V0 V1 Alpha Beta 
0.144479 10 42.5000 29.7500 0.050000 0.855521 
0.505556 50 42.5000 29.7500 0.050000 0.494444 
0.747747 90 42.5000 29.7500 0.050000 0.252253 
0.881740 130 42.5000 29.7500 0.050000 0.118260 
0.947851 170 42.5000 29.7500 0.050000 0.052149 
0.978059 210 42.5000 29.7500 0.050000 0.021941 
0.991108 250 42.5000 29.7500 0.050000 0.008892 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. 
V0 is the value of the population variance under the null hypothesis. 
V1 is the value of the population variance under the alternative hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
 
Summary Statements 
A sample size of 10 achieves 14% power to detect a difference of 12.7500 between the null 
hypothesis variance of 42.5000 and the alternative hypothesis variance of 29.7500 using a 
one-sided, Chi-square hypothesis test with a significance level (alpha) of 0.050000. 
 

This report shows the calculated power for each scenario.  

Plots Section 
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This plot shows the power versus the sample size. We see that a sample size of about 150 is 
necessary to achieve a power of 0.90. 
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Example 2 – Calculating Sample Size 
Continuing with the previous example, the analyst wants to find the necessary sample sizes to 
achieve a power of 0.9, for two significance levels, 0.01 and 0.05, and for several variance values. 
To make interpreting the output easier, the analyst decides to switch from the absolute scale to a 
ratio scale. To accomplish this, the baseline variance is set at 1.0 and the alternative variances of 
0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 are tried. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Variance procedure window by 
clicking on Variances, then One Variance, then Inequality Tests. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.01  0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Scale .......................................................Variance 
V0 (Baseline Variance) ...........................1.0 
V1 (Alternative Variance) ........................0.2 to 0.7 by 0.1 
Alternative Hypothesis ............................Ha: V0 > V1 
Known Mean ...........................................Not checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: V0 = V1 versus Ha: V0>V1 
Power N V0 V1 Alpha Beta 
0.917341 14 1.0000 0.2000 0.010000 0.082659 
0.909022 9 1.0000 0.2000 0.050000 0.090978 
0.900907 22 1.0000 0.3000 0.010000 0.099093 
0.919352 15 1.0000 0.3000 0.050000 0.080648 
0.903675 36 1.0000 0.4000 0.010000 0.096325 
0.900670 23 1.0000 0.4000 0.050000 0.099330 
0.901634 60 1.0000 0.5000 0.010000 0.098366 
0.904235 39 1.0000 0.5000 0.050000 0.095765 
0.901264 107 1.0000 0.6000 0.010000 0.098736 
0.900775 69 1.0000 0.6000 0.050000 0.099225 
0.900601 214 1.0000 0.7000 0.010000 0.099399 
0.901171 139 1.0000 0.7000 0.050000 0.098829 
 

This report shows the necessary sample size for each scenario.  
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Plots Section 
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This plot shows the necessary sample size for various values of V1. Note that as V1 gets farther 
from zero, the required sample size increases. 

Example 3 – Validation using Zar 
Zar (1994) page 117 presents an example with V0 = 1.5, V1 = 2.6898, N = 40, Alpha = 0.05, and 
Power = 0.84. We will run this example through PASS.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Variance procedure window by 
clicking on Variances, then One Variance, then Inequality Tests. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example3 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................40 
Scale .......................................................Variance 
V0 (Baseline Variance) ...........................1.5 
V1 (Alternative Variance) ........................2.6898 
Alternative Hypothesis ............................Ha: V0 < V1 
Known Mean ...........................................Not checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: V0 = V1 versus Ha: V0<V1 
Power N V0 V1 Alpha Beta 
0.835167 40 1.5000 2.6898 0.050000 0.164833 
 

PASS calculated the power at 0.835167 which matches Zar’s result of 0.84 within rounding.  

Example 4 – Validation using Davies 
Davies (1971) page 40 presents an example of determining N when (in the standard deviation 
scale) V0 = 0.04, V1 = 0.10, Alpha = 0.05, and Power = 0.99. Davies calculates N to be 13. We 
will run this example through PASS. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Variance procedure window by 
clicking on Variances, then One Variance, then Inequality Tests. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example4 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.99 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Scale .......................................................Standard Deviation 
V0 (Baseline Variance) ...........................0.04 
V1 (Alternative Variance) ........................0.10 
Alternative Hypothesis ............................Ha: V0 < V1 
Known Mean ...........................................Not checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: S0 = S1 versus Ha: S0<S1 
Power N S0 S1 Alpha Beta 
0.992381 13 0.0400 0.1000 0.050000 0.007619 
 

PASS calculated an N of 13 which matches Davies’ result.  
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Chapter 651 

Confidence 
Intervals for One 
Variance using 
Variance 
Introduction 
This routine calculates the sample size necessary to achieve a specified interval width or distance 
from the variance to the confidence limit at a stated confidence level for a confidence interval 
about the variance when the underlying data distribution is normal.  

Caution: This procedure assumes that the variance of the future sample will be the same as the 
variance that is specified. If the variance to be used in the procedure is estimated from a previous 
sample or represents the population variance, the Confidence Intervals for One Variance with 
Tolerance Probability procedure should be considered. That procedure controls the probability 
that the width or the distance from the variance to the confidence limits will be less than or equal 
to the value specified. The Confidence Intervals for One Variance using Relative Error controls 
the width or distance from the variance to the limits by controlling the width or distance as a 
percent of the true variance.  

Technical Details 
For a single variance from a normal distribution with unknown mean, a two-sided, 100(1 - α)% 
confidence interval is calculated by  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−

−−−
2

1,2/

2

2
1,2/1

2 )1(,)1(

nn

snsn

αα χχ
 

A one-sided 100(1 – α)% upper confidence limit is calculated by 
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Similarly, the one-sided 100(1 – α)% lower confidence limit is 

2
1,1

2)1(

−−

−

n

sn

αχ
 

For two-sided intervals, the distance from the variance to each of the limits is different. Thus, 
instead of specifying the distance to the limits we specify the width of the interval, W.  

The basic equation for determining sample size for a two-sided interval when W has been specified 
is 
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For one-sided intervals, the distance from the variance to limits, D, is specified. 

The basic equation for determining sample size for a one-sided upper limit when D has been 
specified is 
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The basic equation for determining sample size for a one-sided lower limit when D has been 
specified is 
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These equations can be solved for any of the unknown quantities in terms of the others. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population variance is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  
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Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population variance is 1 - α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit. The distance 
from the variance to the lower and upper limits is not equal. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Distance from Var to Limit (One-Sided) 
This is the distance from the variance to the lower or upper limit of the confidence interval, 
depending on whether the Interval Type is set to Lower Limit or Upper Limit. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Variance 

Variance 
Enter an estimate of the variance (must be positive). The sample size and width calculations 
assume that the value entered here is the variance estimate that is obtained from the sample. If the 
sample variance is different from the one specified here, the width may be narrower or wider than 
specified. 

For controlling the probability that the width is less than the value specified, see the procedure 
'Confidence Intervals for One Variance with Tolerance Probability'. 

For confidence intervals with widths that are specified in terms of a percentage of relative error, 
see the procedure 'Confidence Intervals for One Variance using Relative Error'. 
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You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the variance such that the width of the interval is no wider than 40 units. 
The confidence level is set at 0.95, but 0.99 is included for comparative purposes. The variance 
estimate, based on the range of data values, is 24. Instead of examining only the interval width of 
40, a series of widths from 30 to 50 will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Variance using Variance 
procedure window by clicking on Confidence Intervals, then Variances, then One Variance 
using Variance. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 0.99 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..30 to 50 by 5 
Variance ..................................................24 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
 Sample      
Confidence Size Target Actual  Lower Upper 
Level (N) Width Width Variance Limit Limit 
0.950 28 30.000 29.463 24.000 15.002 44.465 
0.990 46 30.000 29.663 24.000 14.761 44.424 
0.950 22 35.000 34.808 24.000 14.206 49.013 
0.990 36 35.000 34.924 24.000 13.936 48.860 
0.950 19 40.000 38.783 24.000 13.703 52.486 
0.990 30 40.000 39.745 24.000 13.299 53.044 
0.950 16 45.000 44.392 24.000 13.096 57.488 
0.990 26 45.000 44.251 24.000 12.786 57.036 
0.950 14 50.000 49.678 24.000 12.613 62.291 
0.990 23 50.000 48.754 24.000 12.338 61.092 
 
References 
Zar, Jerrold H. 1984. Biostatistical Analysis. Second Edition. Prentice-Hall. Englewood Cliffs, New Jersey. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population variance. 
N is the size of the sample drawn from the population. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
Variance is the assumed sample variance. 
Lower Limit is the lower limit of the confidence interval. 
Upper Limit is the upper limit of the confidence interval. 
 
Summary Statements 
A sample size of 28 produces a two-sided 95% confidence interval with a width equal to 29.463 
when the sample variance is 24.000. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size vs. the confidence interval width for the two confidence levels. 
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Example 2 – Validation using Zar 
Zar (1984) page 115 give an example of a calculation for a confidence interval on the variance 
when the confidence level is 95%, the variance is 18.0388, and the interval width is 23.91244. 
The necessary sample size is 25.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Variance using Variance 
procedure window by clicking on Confidence Intervals, then Variances, then One Variance 
using Variance. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..23.91244 
Variance ..................................................18.0388 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Sample      
Confidence Size Target Actual  Lower Upper 
Level (N) Width Width Variance Limit Limit 
0.950 25 23.912 23.912 18.039 10.998 34.911 
 

PASS also calculated the necessary sample size to be 25.  
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Chapter 652 

Confidence 
Intervals for One 
Variance with 
Tolerance 
Probability 
Introduction 
This procedure calculates the sample size necessary to achieve a specified width (or in the case of 
one-sided intervals, the distance from the variance to the confidence limit) with a given tolerance 
probability at a stated confidence level for a confidence interval about a single variance when the 
underlying data distribution is normal.  

Technical Details 
For a single variance from a normal distribution with unknown mean, a two-sided, 100(1 - α)% 
confidence interval is calculated by  
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A one-sided 100(1 – α)% upper confidence limit is calculated by 
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Similarly, the one-sided 100(1 – α)% lower confidence limit is 
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For two-sided intervals, the distance from the variance to each of the limits is different. Thus, 
instead of specifying the distance to the limits we specify the width of the interval, W.  

The basic equation for determining sample size for a two-sided interval when W has been specified 
is 
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For one-sided intervals, the distance from the variance to limits, D, is specified. 

The basic equation for determining sample size for a one-sided upper limit when D has been 
specified is 
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The basic equation for determining sample size for a one-sided lower limit when D has been 
specified is 

2
1,1

2
2 )1(

−−

−
−=

n

snsD
αχ

 

These equations can be solved for any of the unknown quantities in terms of the others. 

There is an additional subtlety that arises when the variance is to be chosen for estimating sample 
size. The sample sizes determined from the formulas above produce confidence intervals with the 
specified widths only when the future sample has a sample variance that is no greater than the value 
specified. 

As an example, suppose that 15 individuals are sampled in a pilot study, and a variance estimate of 
6.5 is obtained from the sample. The purpose of a later study is to estimate the variance with a 
confidence interval with width no greater than 3 units. Suppose further that the sample size needed 
is calculated to be 105 using the formula above with 6.5 as the estimate for the variance. The 
sample of size 105 is then obtained from the population, but the variance of the 105 individuals 
turns out to be 7.2 rather than 6.5. The confidence interval is computed and the width of the interval 
is greater than 3 units. 

This example illustrates the need for an adjustment to adjust the sample size such that the width or 
distance from the variance to the confidence limits will be below the specified value with known 
probability. 

Such an adjustment for situations where a previous sample is used to estimate the variance is 
derived for the case of confidence intervals for a mean by Harris, Horvitz, and Mood (1948) and 
discussed in Zar (1984) and Hahn and Meeker (1991). The adjustment is made by replacing s2 with 

1,1;1
22

−−−= mnFs γσ  

where 1 – γ  is the probability that the width or distance from the variance to the confidence limit 
will be below the specified value, and m is the sample size in the previous sample that was used to 
estimate the variance. 
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The corresponding adjustment when no previous sample is available is discussed in Kupper and 
Hafner (1989) and Hahn and Meeker (1991). The adjustment in this case is  
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where, again, 1 – γ  is the probability that the width or distance from the variance to the confidence 
limit will be below the specified value. 

Each of these adjustments accounts for the variability in a future estimate of the variance. In the first 
adjustment formula (Harris, Horvitz, and Mood, 1948), the distribution of the variance is based on 
the estimate from a previous sample. In the second adjustment formula, the distribution of the 
variance is based on a specified value that is assumed to be the population variance.  

For this procedure, both adjustments are adapted from the case of a one-sample confidence interval 
for a single mean to the case of a one-sample confidence interval for a single variance. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population variance is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence and Tolerance 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population variance is 1 - α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 
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Tolerance Probability 
This is the probability that a future interval with sample size N and the specified confidence level 
will have a width or distance from the variance to the limit that is less than or equal to the width or 
distance specified. 

If a tolerance probability is not used, as in the 'Confidence Intervals for One Variance using 
Variance' procedure, the sample size is calculated for the expected width or distance from the 
variance to the limit, which assumes that the future variance will also be the one specified. 

Using a tolerance probability implies that the variance of the future sample will not be known in 
advance, and therefore, an adjustment is made to the sample size formula to account for the 
variability in the variance. Use of a tolerance probability is similar to using an upper bound for the 
variance in the 'Confidence Intervals for One Variance using Variance' procedure. 

Values between 0 and 1 can be entered. The choice of the tolerance probability depends upon how 
important it is that the width or distance from the interval limits to the variance is at most the value 
specified. 

You can enter a range of values such as 0.70 0.80 0.90 or 0.70 to 0.95 by 0.05. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit. The distance 
from the variance to the lower and upper limits is not equal. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Distance from Var to Limit (One-Sided) 
This is the distance from the variance to the lower or upper limit of the confidence interval, 
depending on whether the Interval Type is set to Lower Limit or Upper Limit. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  
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Variance 

Variance Source 
This procedure permits two sources for estimates of the variance: 

• V is a Population Variance 
This option should be selected if there is no previous sample that can be used to obtain an 
estimate of the variance. In this case, the algorithm assumes that the future sample obtained 
will be from a population with variance V. 

• V from a Previous Sample 
This option should be selected if the estimate of the variance is obtained from a previous 
random sample from the same distribution as the one to be sampled. The sample size of the 
previous sample must also be entered under 'Sample Size of Previous Sample'. 

Variance – V is a Population Variance 

V (Variance) 
Enter an estimate of the variance (must be positive). In this case, the algorithm assumes that 
future samples obtained will be from a population with variance V. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Variance – V from a Previous Sample 

V (Var Estimated from a Previous Sample) 
Enter an estimate of the variance from a previous (or pilot) study. This value must be positive. 

A range of values may be entered. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Sample Size of Previous Sample 
Enter the sample size that was used to estimate the variance entered in V (Var Estimated from a 
Previous Sample). 

This value is entered only when 'Variance Source:' is set to 'V from a Previous Sample'.  

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
A researcher would like to estimate the variance of a population with 95% confidence. It is very 
important that the interval width is less than 10 grams.  Data available from a previous study are 
used to provide an estimate of the variance. The estimate of the variance is 35.4 grams, from a 
sample of size 16.  
The goal is to determine the sample size necessary to obtain a two-sided confidence interval such 
that the width of the interval is less than 10 grams. Tolerance probabilities of 0.70 to 0.95 will be 
examined. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Variance with Tolerance 
Probability procedure window by clicking on Confidence Intervals, then Variances, then One 
Variance with Tolerance Probability. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
Tolerance Probability ..............................0.70 to 0.95 by 0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width.......................10 
Variance Source......................................V from a Previous Sample 
V ..............................................................35.4 
Sample Size of Previous Sample............16 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
 Sample     
Confidence Size Target Actual  Tolerance 
Level (N) Width Width Variance Probability 
0.950 641 10.000 9.995 35.400 0.700 
0.950 722 10.000 9.998 35.400 0.750 
0.950 827 10.000 9.998 35.400 0.800 
0.950 973 10.000 9.995 35.400 0.850 
0.950 1200 10.000 9.996 35.400 0.900 
0.950 1658 10.000 9.999 35.400 0.950 
 
Sample size for estimate of the variance from previous sample = 16.  
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References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
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Report Definitions 
Confidence Level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population variance. 
N is the size of the sample drawn from the population. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
Variance is the estimated variance based on a previous sample. 
Tolerance Probability is the probability that a future interval with sample size N and corresponding 
     confidence level will have a width that is less than or equal to the specified width. 
 
Summary Statements 
The probability is 0.700 that a sample size of 641 will produce a two-sided 95% confidence 
interval with a width that is less than or equal to 9.995 if the population variance is 
estimated to be 35.400 by a previous sample of size 16. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size versus the tolerance probability. 
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Example 2 – Validation using Simulation 
We could not find a published result for confidence intervals for a variance with tolerance 
probability. This procedure is validated using a simulation. A simulation was run with a 
confidence level of 95%, sample size of 57, a specified confidence interval width of 0.989, and 
assumed population variance of 1.  
The number of simulations was 100,000. The proportion of intervals with width less than 0.989 
(tolerance probability) was 0.90009.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Variance with Tolerance 
Probability procedure window by clicking on Confidence Intervals, then Variances, then One 
Variance with Tolerance Probability. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Tolerance Probability 
Confidence Level ....................................0.95 
Tolerance Probability ..............................Ignored since this is the Find setting 
N (Sample Size) ......................................57 
Interval Type ...........................................Two-Sided 
Confidence Interval Width.......................6 
Variance Source......................................V is a Population Variance 
V ..............................................................1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
 Sample     
Confidence Size Target Actual  Tolerance 
Level (N) Width Width Variance Probability 
0.950 57 0.989 0.989 1.000 0.900 
 

PASS calculated the tolerance probability to be 0.900, which is well within the simulation error 
of the simulation estimate of 0.90009.  
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Chapter 653 

Confidence 
Intervals for One 
Variance using 
Relative Error 
Introduction 
This routine calculates the necessary sample size such that a sample variance estimate will 
achieve a specified relative distance from the true population variance at a stated confidence level 
when the underlying data distribution is normal.  

Caution: This procedure controls the relative width of the interval as a proportion of the true 
population variance. For controlling the absolute width of the interval see the procedures 
Confidence Intervals for One Variance using Variance and Confidence Intervals for One 
Variance with Tolerance Probability.  

Technical Details 
Following the results of Desu and Raghavarao (1990) and Greenwood and Sandomire (1950), let 
s2 be the variance estimate based on a sample from a normal distribution with unknown μ and 
unknown σ2. Let r be the proportion of σ2 such that s2 is within rσ2 of σ2 with desired confidence. 
If 

( ) ( ))1(PrPr 22222
1 rsrsp +>=+>= σσσ  

and 

( ) ( ))1(PrPr 22222
2 rsrsp −<=−<= σσσ  

The confidence level for estimating σ2 within proportion r is 1 – p1 – p2. 
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Using the chi-square distribution, these equations can be solved for any of the unknown quantities 
(n, r, p1 + p2) in terms of the others. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and the variance estimates are obtained 
from each sample, the proportion of those estimates that are within rσ2 of σ2 is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and the variance estimates are obtained 
from each sample, the proportion of those estimates that are within rσ2 of σ2 is 1 – α. 

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 
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Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

In each case the limits are based on the relative error of the true population variance. 

Precision 

Relative Error 
This is the distance from the true variance as a proportion of the true variance. 

You can enter a single value or a list of values. The value(s) must be between 0 and 100000. 

 Iterations Tab 

This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to be 95% confident that estimated 
variance is within 10% of the true population variance. In addition to 10% relative error, 5%, 
15%, 20% and 25% will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Variance using Relative 
Error procedure window by clicking on Confidence Intervals, then Variances, then One 
Variance using Relative Error. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Relative Error ..........................................0.05 to 0.25 by 0.05 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Relative Error Confidence Intervals 
 
Target Actual Sample  
Confidence Confidence Size Relative 
Level Level (N) Error 
0.950 0.950 3074 0.050 
0.950 0.950 769 0.100 
0.950 0.950 342 0.150 
0.950 0.950 192 0.200 
0.950 0.950 123 0.250 
 
References 
Desu, M. M. and Raghavarao, D. 1990. Sample Size Methodology. Academic Press. New York. 
Greenwood, J. A. and Sandomire, M. M. 1950. 'Sample Size Required for Estimating the Standard Deviation as a 
     Per Cent of its True Value', Journal of the American Statistical Association, Vol. 45, No. 250, pp. 257-260. 
 
Report Definitions 
Confidence Level is the proportion of variance estimates that will be within the relative error of the true 
     variance. 
Target Confidence Level is the value of the confidence level that is entered into the procedure. 
Actual Confidence Level is the value of the confidence level that is obtained from the procedure. 
Sample Size (N) is the size of the sample drawn from the population. 
Relative Error is the distance from the true variance as a proportion of the true variance. 
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Summary Statements 
With a sample size of 3074, the probability is 0.950 (95% confidence) that the estimate of the 
variance will be within 5% of the true population variance. 

 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size versus the relative error. 
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Example 2 – Validation using Desu and Raghavarao 
Desu and Raghavarao (1990) page 6 give an example of a calculation in which the desired 
confidence level is 95% and the relative error is 20%. This calculation is based on a large sample 
approximation formula. The necessary sample size is 194.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Variance using Relative 
Error procedure window by clicking on Confidence Intervals, then Variances, then One 
Variance using Relative Error. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example2 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Relative Error ..........................................0.2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Target Actual Sample  
Confidence Confidence Size Relative 
Level Level (N) Error 
0.950 0.950 192 0.200 
 

PASS calculated the necessary sample size to be 192, but did not use the approximation formulas.  

Using direct calculation with the non-approximate chi-square formulas with a sample size of 194, 
the confidence level is 1 – (0.0300164564 + 0.0188126383) = 0.951171. 

Using direct calculation with the non-approximate chi-square formulas with a sample size of 192, 
the confidence level is 1 – (0.0306634808 + 0.0193315700) = 0.950005, which is closer to the 
prescribed confidence level. Thus, 192 is the correct value. 
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Chapter 655 

Inequality Tests 
for Two Variances 
Introduction 
Occasionally, researchers are interested in comparing the variances (or standard deviations) of 
two groups rather than their means. This module calculates the sample sizes and performs power 
analyses for hypothesis tests concerning two variances.  

Technical Details 
Assuming that variables X1 and X2 are normally distributed variances and (the means are 
ignored), the distribution of the ratio of the sample variances follows the F distribution. That is,  
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The power or sample size of a hypothesis test about the variance can be calculated using the 
appropriate one of the following three formulas: 
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Case 3:  H versus Ha0 1
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data and Iterations tabs. To find out more about using the other tabs 
such as Axes/Legend/Grid, Plot Text, or Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Error Rates 

Power or Beta 
his option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

If your only interest is in determining the appropriate sample size for a confidence interval, set 
power or beta to 0.5. 

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered, N2 is calculated using the formula  

N2 = [R N1] 

where R is the Sample Allocation Ratio and [Y] is the first integer greater than or equal to Y. 
For example, if you want N1 = N2, select Use R here and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R. 

When used, N2 is calculated from N1 using the formula: N2=[R N1] where [Y] is the next integer 
greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size 

Scale 
Specify whether V1 and V2 are variances or standard deviations. 

V1 and V2 
Enter one or more value(s) for the variances of the groups, and . All entries must be greater 
than zero. 

σ1
2 σ2

2

Note that since the ratio of these variances is all that is used in the power equations, you can 
specify the problem in terms of the variance ratio instead of the two variances. To do this, enter 
1.0 for V2 and enter the desired variance ratio in V1. 

If Scale is Standard Deviation this value is the standard deviation rather than the variance. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H V V0 1 2: = . 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Possible selections are: 

• Ha: V1 <> V2 
This selection yields a two-tailed test. Use this option when you are testing whether the 
variances are different but you do not want to specify beforehand which variance is larger. 

• Ha: V1 > V2 
The options yields a one-tailed test. Use it when you are only interested in the case in which 
V2 is less than V1. 

• Ha: V1 < V2 
This option yields a one-tailed test. Use it when you are only interested in the case in which 
V2 is greater than V1. 

Iterations Tab 
This tab sets the option used in the iterative procedure. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating the Power 
A machine used to perform a particular analysis is to be replaced with a new type of machine if 
the new machine reduces the variance in the output by 50%. If the significance level is set to 
0.05, calculate the power for sample sizes of 5, 10, 20, 35, 50, 90, 130, and 200.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Variances procedure window by 
clicking on Variances, then Two Variances, then Inequality Tests. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.01  0.05 
N1 (Sample Size Group 1) ......................5  10  20  35  50  90  130  200 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
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Data Tab (continued) 
Scale .......................................................Variance 
V1 (Variance of Group 1) ........................1.0 
V2 (Variance of Group 2) ........................0.5 
Alternative Hypothesis ............................Ha: V1 > V2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: V1 = V2 versus Ha: V1>V2 
Power N1 N2 V1 V2 Alpha Beta 
0.034378 5 5 1.0000 0.5000 0.010000 0.965622 
0.079391 10 10 1.0000 0.5000 0.010000 0.920609 
0.187122 20 20 1.0000 0.5000 0.010000 0.812878 
0.362650 35 35 1.0000 0.5000 0.010000 0.637350 
0.526210 50 50 1.0000 0.5000 0.010000 0.473790 
0.821599 90 90 1.0000 0.5000 0.010000 0.178401 
0.944261 130 130 1.0000 0.5000 0.010000 0.055739 
0.994526 200 200 1.0000 0.5000 0.010000 0.005474 
0.143437 5 5 1.0000 0.5000 0.050000 0.856563 
0.250418 10 10 1.0000 0.5000 0.050000 0.749582 
0.431043 20 20 1.0000 0.5000 0.050000 0.568957 
0.636863 35 35 1.0000 0.5000 0.050000 0.363137 
0.776507 50 50 1.0000 0.5000 0.050000 0.223493 
0.946023 90 90 1.0000 0.5000 0.050000 0.053977 
0.988497 130 130 1.0000 0.5000 0.050000 0.011503 
0.999364 200 200 1.0000 0.5000 0.050000 0.000636 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N1 is the size of the sample drawn from the population 1. 
N2 is the size of the sample drawn from the population 2. 
V1 is the value of the population variance of group 1. 
V2 is the value of the population variance of group 2. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
Group sample sizes of 5 and 5 achieve 3% power to detect a ratio of 2.0000 between the group 
one variance of 1.0000 and the group two variance of 0.5000 using a one-sided F test with a 
significance level (alpha) of 0.010000. 
 

This report shows the calculated power for each scenario.  



655-6  Inequality Tests for Two Variances 

Plots Section 
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This plot shows the power versus the sample size for the two significance levels. It is now easy to 
determine an appropriate sample size to meet both the alpha and beta objectives of the study. 

Example 2 – Calculating Sample Size 
Continuing with the previous example, the analyst wants to find the necessary sample sizes to 
achieve a power of 0.9 for two significance levels, 0.01 and 0.05, and for several variance ratio 
values of 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Variances procedure window by 
clicking on Variances, then Two Variances, then Inequality Tests. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Scale .......................................................Variance 
V1 (Variance of Group 1) ........................1.0 
V2 (Variance of Group 2) ........................0.2 to 0.7 by 0.1 
Alternative Hypothesis ............................Ha: V1 > V2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: V1 = V2 versus Ha: V1>V2 
Power N1 N2 V1 V2 Alpha Beta 
0.911109 23 23 1.0000 0.2000 0.010000 0.088891 
0.916243 16 16 1.0000 0.2000 0.050000 0.083757 
0.907774 39 39 1.0000 0.3000 0.010000 0.092226 
0.905324 26 26 1.0000 0.3000 0.050000 0.094676 
0.904075 65 65 1.0000 0.4000 0.010000 0.095925 
0.902069 43 43 1.0000 0.4000 0.050000 0.097931 
0.901318 111 111 1.0000 0.5000 0.010000 0.098682 
0.902949 74 74 1.0000 0.5000 0.050000 0.097051 
0.900454 202 202 1.0000 0.6000 0.010000 0.099546 
0.901654 134 134 1.0000 0.6000 0.050000 0.098346 
0.900417 412 412 1.0000 0.7000 0.010000 0.099583 
0.900817 272 272 1.0000 0.7000 0.050000 0.099183 
 

This report shows the necessary sample size for each scenario.  

Plot Section 
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This plot shows the necessary sample size for various values of V2. Note that as V2 nears V1, the 
sample size is increased. 
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Example 3 – Validation using Davies 
Davies (1971) page 41 presents an example with V1 = 4, V1 = 1, Alpha = 0.05, and Power = 0.99 
in which the sample sizes, N1 and N2, are calculated to be 36. We will run this example through 
PASS.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Variances procedure window by 
clicking on Variances, then Two Variances, then Inequality Tests. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example3 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.99 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Scale .......................................................Variance 
V1 (Variance of Group 1) ........................4 
V2 (Variance of Group 2) ........................1 
Alternative Hypothesis ............................Ha: V1 > V2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: V1 = V2 versus Ha: V1>V2 
Power N1 N2 V1 V2 Alpha Beta 
0.991423 36 36 4.0000 1.0000 0.050000 0.008577 
 

PASS calculated the N1 and N2 to be 36 which matches Davies’ result.  
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Chapter 656 

Confidence 
Intervals for the 
Ratio of Two 
Variances using 
Variances 
Introduction 
This routine calculates the group sample sizes necessary to achieve a specified interval width or 
distance from the variance ratio to the confidence limit at a stated confidence level for a 
confidence interval about the variance ratio when the underlying data distribution is normal.  

Caution: This procedure assumes that the variances of the future samples will be the same as the 
variances that are specified. The Confidence Intervals for the Ratio of Two Variances using 
Relative Error controls the width or distance from the variance ratio to the limits by controlling 
the width or distance as a percent of the true variance ratio.  

Technical Details 
For a ratio of two variances from normal distributions, a two-sided, 100(1 – α)% confidence 
interval is calculated by  
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A one-sided 100(1 – α)% upper confidence limit is calculated by 
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Similarly, the one-sided 100(1 – α)% lower confidence limit is 
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For two-sided intervals, the distance from the variance ratio to each of the limits is different. 
Thus, instead of specifying the distance to the limits we specify the width of the interval, W.  

The basic equation for determining sample size for a two-sided interval when W has been 
specified is 
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For one-sided intervals, the distance from the variance ratio to limit, D, is specified. 

The basic equation for determining sample size for a one-sided upper limit when D has been 
specified is 
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The basic equation for determining sample size for a one-sided lower limit when D has been 
specified is 
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These equations can be solved for any of the unknown quantities in terms of the others. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of random samples of 
size n1 and n2 are drawn from populations 1 and 2, respectively, and a confidence interval for the 
variance ratio is calculated for each pair of samples, the proportion of those intervals that will 
include the true variance ratio is 1 – α. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of random samples of 
size n1 and n2 are drawn from populations 1 and 2, respectively, and a confidence interval for the 
variance ratio is calculated for each pair of samples, the proportion of those intervals that will 
include the true variance ratio is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 



656-4  Confidence Intervals for the Ratio of Two Variances using Variances 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit. The distance 
from the variance ratio to the lower and upper limits is not equal. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Distance from Ratio to Limit (One-Sided) 
This is the distance from the variance ratio to the lower or upper limit of the confidence interval, 
depending on whether the Interval Type is set to Lower Limit or Upper Limit. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Variances for Variance Ratio (V1/V2) 

V1 (Variance Group 1) 
Enter an estimate of the variance for group 1 (must be positive). The sample size and width 
calculations assume that the value entered here is the variance estimate that is obtained from the 
sample. If the sample variance is different from the one specified here, the width may be narrower 
or wider than specified. 

For confidence intervals with widths that are specified in terms of a percentage of relative error, 
see the procedure 'Confidence Intervals for the Ratio of Two Variances using Relative Error'. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1.  

V2 (Variance Group 2) 
Enter an estimate of the variance for group 2 (must be positive). The sample size and width 
calculations assume that the value entered here is the variance estimate that is obtained from the 
sample. If the sample variance is different from the one specified here, the width may be narrower 
or wider than specified. 

For confidence intervals with widths that are specified in terms of a percentage of relative error, 
see the procedure 'Confidence Intervals for the Ratio of Two Variances using Relative Error'. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1.  
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Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the variance ratio such that the width of the interval is no wider than 0.5. 
The confidence level is set at 0.95, but 0.99 is included for comparative purposes. The variance 
estimates to be used are 5 for Group 1, and 10 for Group 2. Instead of examining only the interval 
width of 0.5, a series of widths from 0.2 to 0.8 will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Ratio of Two Variances using 
Variance procedure window by clicking on Confidence Intervals, then Variances, then Ratio 
of Two Variances using Variances. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 0.99 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.2 to 0.8 by 0.1 
V1 ............................................................5 
V2 ............................................................10 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Variance Ratio 
 
Confidence   Allocation Target Actual   Lower Upper 
Level N1 N2 Ratio Width Width V1 V2 Limit Limit 
0.950 392 392 1.000 0.200 0.200 5.00 10.00 0.41 0.61 
0.950 178 178 1.000 0.300 0.300 5.00 10.00 0.37 0.67 
0.950 104 104 1.000 0.400 0.398 5.00 10.00 0.34 0.74 
0.950 69 69 1.000 0.500 0.498 5.00 10.00 0.31 0.81 
0.950 50 50 1.000 0.600 0.597 5.00 10.00 0.28 0.88 
0.950 39 39 1.000 0.700 0.691 5.00 10.00 0.26 0.95 
0.950 31 31 1.000 0.800 0.796 5.00 10.00 0.24 1.04 
0.990 675 675 1.000 0.200 0.200 5.00 10.00 0.41 0.61 
0.990 307 307 1.000 0.300 0.300 5.00 10.00 0.37 0.67 
0.990 178 178 1.000 0.400 0.399 5.00 10.00 0.34 0.74 
0.990 118 118 1.000 0.500 0.498 5.00 10.00 0.31 0.81 
0.990 85 85 1.000 0.600 0.598 5.00 10.00 0.28 0.88 
0.990 65 65 1.000 0.700 0.699 5.00 10.00 0.26 0.96 
0.990 53 53 1.000 0.800 0.791 5.00 10.00 0.24 1.03 
 
References 
Ostle, B. and Malone, L.C. 1988. Statistics in Research. Iowa State University Press. Ames, Iowa. 
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true variance ratio. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
V1 and V2 are the assumed sample variances upon which the width calculations are based. 
Lower Limit is the lower limit of the confidence interval. 
Upper Limit is the upper limit of the confidence interval. 
 
Summary Statements 
Group sample sizes of 392 and 392 produce a two-sided 95% confidence interval with a width that 
is equal to 0.200 when the estimated numerator variance is 5.00 and the estimated denominator 
variance is 10.00. 
 

This report shows the calculated sample size for each of the scenarios.  
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Plots Section 
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This plot shows the group sample size versus the confidence interval width for the two 
confidence levels. 
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Example 2 – Validation using Sachs 
Sachs (1984) page 261 gives an example of a calculation for a confidence interval for the 
variance ratio when the confidence level is 90%, the variances are 8 and 3, and the interval width 
is 4.56. The necessary sample size is 20 per group.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Ratio of Two Variances using 
Variance procedure window by clicking on Confidence Intervals, then Variances, then Ratio 
of Two Variances using Variances. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example2 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.90 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..4.56 
V1 ............................................................8 
V2 ............................................................3 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Confidence   Allocation Target Actual   Lower Upper 
Level N1 N2 Ratio Width Width V1 V2 Limit Limit 
0.900 20 20 1.000 4.560 4.552 8.00 3.00 1.23 5.78 
 

PASS also calculated the necessary sample size to be 20 per group.  
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Chapter 657 

Confidence 
Intervals for the 
Ratio of Two 
Variances using 
Relative Error 
Introduction 
This routine calculates the necessary sample size such that a variance ratio estimate from two 
independent samples will achieve a specified relative distance from the true variance ratio at a 
stated confidence level when the underlying data distributions are normal.  

Caution: This procedure controls the relative width of the interval as a proportion of the true 
variance ratio. For controlling the absolute width of the interval see the procedure Confidence 
Intervals for the Ratio of Two Variances using Variances.  

Technical Details 
Following the results of Desu and Raghavarao (1990), let s1

2 be the variance estimate based on a 
sample from a normal distribution with unknown μ1 and unknown σ1

2. Let s2
2 be the variance 

estimate based on a sample from a normal distribution with unknown μ2 and unknown σ2
2. Let r 
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which can also be written as 
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which simplifies to 
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If is the distribution function of , then probability statement can be rewritten as (.),1 dfdfG ),( 21 dfdfF
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This equation can be solved for any of the unknown quantities (df1, df2, r, α) in terms of the others. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of random samples of 
size n1 and n2  are drawn from populations 1 and 2, respectively, and a variance ratio is calculated 
for each pair of samples, the proportion of those estimates that are within rσ1

2/σ2
2 of σ1

2/σ2
2 is 1 – 

α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of random samples of 
size n1 and n2  are drawn from populations 1 and 2, respectively, and a variance ratio is calculated 
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for each pair of samples, the proportion of those estimates that are within rσ1
2/σ2

2 of σ1
2/σ2

2 is 1 – 
α. 

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

In each case the limits are based on the relative error of the true population variance. 

Precision 

Relative Error 
This is the distance from the true variance ratio as a proportion of the true variance ratio. 

You can enter a single value or a list of values. The value(s) must be between 0 and 100000. 
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Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to be 95% confident that estimated 
variance ratio is within 10% of the true variance ratio. In addition to 10% relative error, 5%, 15%, 
20% and 25% will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Ratio of Two Variances using 
Relative Error procedure window by clicking on Confidence Intervals, then Variances, then 
Ratio of Two Variances using Relative Error. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Interval Type ...........................................Two-Sided 
Relative Error ..........................................0.05 to 0.25 by 0.05 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Relative Error Confidence Intervals for the Variance Ratio 
 
Target Actual     
Confidence Confidence   Allocation Relative 
Level Level N1 N2 Ratio Error 
0.950 0.950 6154 6154 1.000 0.050 
0.950 0.950 1544 1544 1.000 0.100 
0.950 0.950 690 690 1.000 0.150 
0.950 0.950 392 392 1.000 0.200 
0.950 0.950 253 253 1.000 0.250 
 
References 
Desu, M. M. and Raghavarao, D. 1990. Sample Size Methodology. Academic Press. New York. 
 
Report Definitions 
Confidence Level is the proportion of variance ratio estimates that will be within the relative error of the 
     true variance ratio. 
Target Confidence Level is the value of the confidence level that is entered into the procedure. 
Actual Confidence Level is the value of the confidence level that is obtained from the procedure. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Relative Error is the distance from the true variance ratio as a proportion of the true variance ratio. 
 
Summary Statements 
With group sample sizes of 6154 and 6154, the probability is 0.950 (95% confidence) that the 
estimate of the variance ratio will be within 5% of the true variance ratio. 

 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size versus the relative error. 
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Example 2 – Validation using Direct Calculation 
Suppose a study is planned in which the researcher wishes to be confident that estimated variance 
ratio is within 20% of the true variance ratio. For sample sizes of 200 per group, the resulting 
confidence level is 0.9003379878 - 0.0581710981 = 0.8421668897.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Ratio of Two Variances using 
Relative Error procedure window by clicking on Confidence Intervals, then Variances, then 
Ratio of Two Variances using Relative Error. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.8421668897 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Interval Type ...........................................Two-Sided 
Relative Error ..........................................0.2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Target Actual     
Confidence Confidence   Allocation Relative 
Level Level N1 N2 Ratio Error 
0.842 0.842 200 200 1.000 0.200 
 

PASS calculated the necessary sample size to be 200 per group, which is the same as the direct 
calculation sample size. 
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Chapter 670 

Normality Tests 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of eight statistical tests of normality. 
Since there are no formulas that allow the calculation of power directly, simulation is used. This 
gives you the ability to compare the adequacy of each test under a wide variety of solutions.  

The reason there are so many different normality tests is that there are many different forms of 
normality. Thode (2002) presents that following recommendations concerning which tests to use for 
each situation. Note that the details of each test will be presented later. 

Normal vs. Long-Tailed Symmetric Alternative Distributions 
The Shapiro-Wilk and the kurtosis tests have been found to be best for normality testing against 
long-tailed symmetric alternatives. 

Normal vs. Short-Tailed Symmetric Alternative Distributions 
The Shapiro-Wilk and the range tests have been found to be best for normality testing against short-
tailed symmetric alternatives. 

Normal vs. Asymmetric Alternative Distributions 
The Shapiro-Wilk and the skewness tests have been found to be best for normality testing against 
asymmetric alternatives. 

Technical Details 
Computer simulation allows one to estimate the power and significance level that is actually 
achieved by a test procedure in situations that are not mathematically tractable. Computer 
simulation was once limited to mainframe computers. Currently, due to increased computer speeds, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are as follows. 

1. Specify which the normality test is to be used. This includes specifying the significance 
level. 
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2. Generate a random sample, , from the distribution specified by the X X Xn1 2, , ,K
alternative hypothesis. Calculate the test statistic from the simulated data and determine if 
the null hypothesis is accepted or rejected. Each of these samples is used to calculate the 
power of the test. Note that if the alternative distribution is set to normal, the power is the 
significance level of the test. 

3. Repeat step 2 several hundred times, tabulating the number of times the simulated data lead 
to a rejection of the null hypothesis. The power is the proportion of simulation samples in 
step 2 that lead to rejection.  

Data Distributions 
A wide variety of distributions may be studied. These distributions can vary in skewness, 
elongation, or other features such as bimodality. A detailed discussion of the distributions that may 
be used in the simulation is provided in the chapter ‘Data Simulator’.  

Test Statistics 
This section describes the test statistics that are available of study in this procedure. 

Anderson-Darling Test 
This test, developed by Anderson and Darling (1954), is a popular normality test based on EDF 
statistics. In some situations, it has been found to be as powerful as the Shapiro-Wilk test. This 
test is available when n is greater than or equal to 8.  

Kolmogorov-Smirnov 
This test for normality is based on the maximum difference between the observed distribution and 
expected cumulative-normal distribution. Since it uses the sample mean and standard deviation to 
calculate the expected normal distribution, the Lilliefors’ adjustment is used. The Lilliefors’ 
adjusted critical values used are those given by Dallal (1986).  

This test is available when n is greater than or equal to 3. 

This test has been shown to be less powerful than the other tests in most situations. It is included 
because of its historical popularity. 

Kurtosis 
D’Agostino (1990) describes a normality test based on the kurtosis coefficient, b2. Recall that for 
the normal distribution, the theoretical value of b2 is 3. Hence, a test can be developed to 
determine if the value of b2 is significantly different from 3. If it is, the data are obviously 
nonnormal. The statistic, zk, is, under the null hypothesis of normality, approximately normally 
distributed for sample sizes n>20. This test is available when n is greater than or equal to 8.  
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The calculation of this test proceeds as follows: 
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Martinez-Iglewicz 
This test for normality, developed by Martinez and Iglewicz (1981), is based on the median and a 
robust estimator of dispersion. They have shown that this test is very powerful for heavy-tailed 
symmetric distributions as well as a variety of other situations. A value of the test statistic that is 
close to one indicates that the distribution is normal. This test is recommended for exploratory 
data analysis by Hoaglin (1983). The formula for this test is:  
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where sbi
2 is a biweight estimator of scale. 

This test is available when n is greater than or equal to 3. 

Omnibus 
D’Agostino (1990) describes a normality test that combines the tests for skewness and kurtosis. 
The statistic, K2, is approximately distributed as a chi-square with two degrees of freedom.  

After calculating zs and zk, calculate K2 as follows:  

K z zs k
2 2= + 2  

This test is available when n is greater than or equal to 8. 
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Range Test 
The range test, u, was created to test for normality when the alternative distribution is actually the 
uniform distribution. It is calculated by dividing the range by the standard deviation. Tables of 
critical values of the range test are given in Pearson and Hartley (1976) for n equal 3 to 1000.  

Shapiro-Wilk W Test 
This test for normality, developed by Shapiro and Wilk (1965), has been found to be the most 
powerful test in most situations. It is the ratio of two estimates of the variance of a normal 
distribution based on a random sample of n observations. The numerator is proportional to the 
square of the best linear estimator of the standard deviation. The denominator is the sum of 
squares of the observations about the sample mean. W may be written as the square of the Pearson 
correlation coefficient between the ordered observations and a set of weights which are used to 
calculate the numerator. Since these weights are asymptotically proportional to the corresponding 
expected normal order statistics, W is roughly a measure of the straightness of the normal 
quantile-quantile plot. Hence, the closer W is to one, the more normal the sample.  

The probability values for W are valid for samples in the range of 3 to 5000. 

Skewness 
D’Agostino (1990) describes a normality test based on the skewness coefficient, b1 . Recall that 
because the normal distribution is symmetrical, b1  is equal to zero for normal data. Hence, a 
test can be developed to determine if the value of b1  is significantly different from zero. If it is, 
the data are obviously nonnormal. The statistic, zs, is, under the null hypothesis of normality, 
approximately normally distributed. The computation of this statistic, which is restricted to 
sample sizes n>8, is  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated using the values of the other parameters. 
Under most conditions, you would select either Power or N. 

Select Power when you want to estimate the power for a specific scenario.  

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level. This option can be very computationally intensive, and may take considerable time to 
complete. 

Search/Report Test 
Specify the specific normality test to be used for searching (if Find = 'N') and reporting. Note that 
each test was developed for a specific situation and that no one test is best in all situations. 
Apparently, if you have no other information, you would choose the Shapiro-Wilk test. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  
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Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50 100 150 200 250 or 50 to 250 by 50.  

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. Larger numbers of 
iterations result in longer running time and more accurate results. 

The precision of the simulated power estimates can be determined by recognizing that they follow 
the binomial distribution. Thus, confidence intervals may be constructed for power estimates. The 
following table gives an estimate of the precision that is achieved for various simulation sizes 
when the power is either 0.50 or 0.95. The table values are interpreted as follows: a 95% 
confidence interval of the true power is given by the power reported by the simulation plus and 
minus the ‘Precision’ amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
  

Notice that a simulation size of 1000 gives a precision of plus or minus 0.014 when the true 
power is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a 
small amount of additional precision achieved.  

Effect Size 

Data Distribution 
This option specifies distribution that is being compared to normality. That is, this is the actual 
(true) distribution of the data from which the power is computed. Usually, the mean is specified 
by entering ‘M1’ for the mean parameter in the distribution expression and then entering values 
for the M1 parameter below. All of the distributions are parameterized so that the mean is entered 
first.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The values ‘M0’ and ‘M1’ are usually used to specify the 
value of the mean.  
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Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,P3,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 and M1 
These values are substituted for the M0 and M1 in the distribution specifications given above. M0 
is intended to be the value of the mean. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B, C) 
Enter the numeric value(s) of parameter listed above. These values are substituted for the 
corresponding letter in the Data Distribution specifications. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter. 

Iterations Tab 
The Iterations tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is not 
reported. We recommend a value of at least 500. 
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Example 1 – Power at Various Sample Sizes 
A researcher is planning an experiment to test whether a certain data distribution is reasonably 
close to normality. He will begin his research by generating data from the exponential 
distribution. The researcher is particularly interested in the Shapiro-Wilk normality test, but he 
wants to see the power of various other choices when the data actually come from an exponential 
distribution. Alpha is set to 0.05. He wants to compute the power at various sample sizes from 5 
to 40. Since this is an exploratory analysis, he sets the number of simulation iterations to 1000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Normality Tests (Simulation) procedure window by clicking 
on Means, then Normality Tests (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Search/Report Test .................................Shapiro-Wilk 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................5 10 15 20 30 40 
Simulations..............................................1000 
Data Distribution......................................E(M1) 
M1 ...........................................................1 

Reports Tab 
Show Numeric Report .............................Checked 
Show Comparative Report ......................Checked 
Show Confidence Interval for Power.......Checked 
Show Definitions .....................................Checked 
Show Plots ..............................................Checked 
Number of Summary Statements............1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for the Shapiro-Wilk Normality Test 
Actual Distribution: Expo(M1) 
 
 Lower Upper 
 95% 95% 
 C.L. of C.L. of 
Power Power Power N Alpha Beta M1 No.      
0.175 0.152 0.200 5 0.050 0.825 1.0 1     
0.442 0.411 0.473 10 0.050 0.558 1.0 2     
0.690 0.660 0.719 15 0.050 0.310 1.0 3     
0.840 0.816 0.862 20 0.050 0.160 1.0 4     
0.968 0.955 0.978 30 0.050 0.032 1.0 5     
0.996 0.990 0.999 40 0.050 0.004 1.0 6     
 
Notes 
Simulations: 1000. Run Time: 12.28 seconds. 
 
References 
Henry C. Thode, Jr. 2002. Testing for Normality. Marcel Dekker. New York. 
Devroye, Luc. 1986. Non-Uniform Random Variate Generation. Springer-Verlag. New York. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
Lower/Upper 95% C.L. are the boundaries of an exact binomial confidence interval for power. 
N is the size of the sample drawn from the population. 
Alpha is the probability of rejecting when the distribution is normal. 
Beta is the probability of concluding normality when the distribution is actually the one stated. 
No. is the sequence number of this combination of parameter values. 
 
Summary Statements 
A sample size of 5 achieves 18% power to detect non-normality using the Shapiro-Wilk test when 
the significance level is 0.050 and the actual distribution is Expo(M1). These results are 
based on 1000 Monte Carlo samples from this distribution. 
 
 

This report shows the estimated power with its confidence interval (using the binomial 
distribution) for each combination of parameter values. Note that because these are results of a 
simulation study, the computed power and alpha will vary from run to run. Thus, another report 
obtained using the same input parameters will be slightly different from the one above. 
If the researcher wants 80% power, he will need an N of 20. To achieve 90% power, he will need 
an N of 30. 

Comparative Results 
 

Power of Various Normality Tests 
Actual Distribution: Expo(M1) 
 
Sequence  Anderson Kolmo'v Kur- Martinez Omni- Range Shapiro Skew- Any 
No. N Darling Smirnov tosis Iglewicz bus /SD Wilk ness Test 
1 5  0.124  0.225  0.076 0.175  0.290   
 Lower 95% C.L.  0.104  0.199  0.060 0.152 0.000 0.262   
 Upper 95% C.L.  0.146  0.252  0.094 0.200 0.000 0.319   
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2 10 0.401 0.297 0.215 0.311 0.315 0.062 0.442 0.366 0.549   
 Lower 95% C.L. 0.370 0.269 0.190 0.282 0.286 0.048 0.411 0.336 0.518   
 Upper 95% C.L. 0.432 0.326 0.242 0.341 0.345 0.079 0.473 0.397 0.580   
 
3 15 0.627 0.448 0.290 0.456 0.474 0.068 0.690 0.562 0.750   
 Lower 95% C.L. 0.596 0.417 0.262 0.425 0.443 0.053 0.660 0.531 0.722   
 Upper 95% C.L. 0.657 0.479 0.319 0.487 0.505 0.085 0.719 0.593 0.777 
 
4 20 0.784 0.597 0.349 0.598 0.607 0.074 0.840 0.713 0.871   
 Lower 95% C.L. 0.757 0.566 0.319 0.567 0.576 0.059 0.816 0.684 0.849   
 Upper 95% C.L. 0.809 0.628 0.379 0.629 0.637 0.092 0.862 0.741 0.891   
 
5 30 0.937 0.775 0.485 0.735 0.777 0.131 0.968 0.895 0.975   
 Lower 95% C.L. 0.920 0.748 0.454 0.706 0.750 0.111 0.955 0.874 0.963   
 Upper 95% C.L. 0.951 0.801 0.516 0.762 0.802 0.154 0.978 0.913 0.984   
 
6 40 0.987 0.886 0.588 0.839 0.894 0.142 0.996 0.958 0.998   
 Lower 95% C.L. 0.978 0.865 0.557 0.815 0.873 0.121 0.990 0.944 0.993   
 Upper 95% C.L. 0.993 0.905 0.619 0.861 0.912 0.165 0.999 0.970 1.000   
 

This report shows the estimated power with its confidence interval (using the binomial 
distribution) for each combination each of the normality tests. The last test, called Any Test, is 
calculated by combining the results of the eight normality tests into a single test. 

Note the variation in the power values. In this case, the Martinez-Iglewicz is the champion for N 
= 5, but the Shapiro-Wilk test has greater power for N = 10. 

Plots Section 
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This plot shows the relationship between sample size and power.  
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This plot shows performance of each of the normality tests. The champion is the Shapiro-Wilk 
test. The range test, which was designed for uniform alternatives, does very poorly with 
exponential alternatives.   

Example 2 – Validation using the Normal Distribution 
We will validate this procedure by setting the normal distribution as the alternative distribution. 
In this case, the power should be equal to the alpha value. Alpha is set to 0.05. The sample sizes 
will be set to 10, 30, and 50. The number of simulation iterations to 10,000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Normality Tests (Simulation) procedure window by clicking 
on Means, then Normality Tests (Simulation). You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power 
Search/Report Test .................................Shapiro-Wilk 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................10 30 50 
Simulations..............................................10000 
Data Distribution......................................N(M1 S) 
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Data Tab (continued) 
M1 ...........................................................1 
S ..............................................................1 

Reports Tab 
Show Numeric Report .............................Checked 
Show Comparative Report ......................Checked 
Show Confidence Interval for Power.......Checked 
Show Definitions .....................................Checked 
Show Plots ..............................................Checked 
Number of Summary Statements............1 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for the Shapiro-Wilk Normality Test 
Actual Distribution: N(M1 S) 
 
 Lower Upper 
 95% 95% 
 C.L. of C.L. of 
Power Power Power N Alpha Beta M1 S No.     
0.052 0.047 0.056 10 0.050 0.948 1.0 1.0 1    
0.047 0.043 0.051 30 0.050 0.953 1.0 1.0 2    
0.053 0.048 0.057 50 0.050 0.948 1.0 1.0 3 
 
 
Power of Various Normality Tests 
Actual Distribution: N(M1 S) 
 
Sequence  Anderson Kolmo'v Kur- Martinez Omni- Range Shapiro Skew- Any 
No. N Darling Smirnov tosis Iglewicz bus /SD Wilk ness Test 
1 10 0.053 0.027 0.043 0.051 0.058 0.049 0.052 0.052 0.142   
 Lower 95% C.L. 0.048 0.024 0.039 0.046 0.053 0.045 0.047 0.048 0.135   
 Upper 95% C.L. 0.057 0.030 0.047 0.055 0.062 0.053 0.056 0.057 0.148   
 
2 30 0.048 0.029 0.053 0.049 0.053 0.053 0.047 0.047 0.151   
 Lower 95% C.L. 0.044 0.026 0.049 0.045 0.048 0.049 0.043 0.043 0.145   
 Upper 95% C.L. 0.053 0.033 0.058 0.054 0.057 0.058 0.051 0.052 0.159   
 
3 50 0.052 0.032 0.055 0.049 0.057 0.054 0.053 0.048 0.159   
 Lower 95% C.L. 0.048 0.028 0.050 0.045 0.052 0.050 0.048 0.044 0.152   
 Upper 95% C.L. 0.056 0.035 0.059 0.053 0.061 0.059 0.057 0.053 0.167   
 
Simulations: 10000. Run Time: 77.42 seconds. 
 

This report confirms that the simulation results are quite accurate. Most of the power values are 
very close to 0.05. The Kolmogorov-Smirnov test appears to be low and the skewness, kurtosis, 
and omnibus appear to be high. Perhaps this is the reason that the Shapiro-Wilk and the 
Anderson-Darling tests are usually recommended for general normality testing. 
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Chapter 700 

Logrank Tests 
(Freedman) 
Introduction 
This module allows the sample size and power of the logrank test to be analyzed under the 
assumption of proportional hazards. Time periods are not stated. Rather, it is assumed that 
enough time elapses to allow for a reasonable proportion of responses to occur. If you want to 
study the impact of accrual and follow-up time, you should use the one of the other logrank 
modules also contained in PASS. The formulas used in this module come from Machin et al. 
(1997).  

A clinical trial is often employed to test the equality of survival distributions for two treatment 
groups. For example, a researcher might wish to determine if Beta-Blocker A enhances the 
survival of newly diagnosed myocardial infarction patients over that of the standard Beta-Blocker 
B. The question being considered is whether the pattern of survival is different. 

The two-sample t-test is not appropriate for two reasons. First, the data consist of the length of 
survival (time to failure), which is often highly skewed, so the usual normality assumption cannot 
be validated. Second, since the purpose of the treatment is to increase survival time, it is likely 
(and desirable) that some of the individuals in the study will survive longer than the planned 
duration of the study. The survival times of these individuals are then said to be censored. These 
times provide valuable information, but they are not the actual survival times. Hence, special 
methods have to be employed which use both regular and censored survival times. 

The logrank test is one of the most popular tests for comparing two survival distributions. It is 
easy to apply and is usually more powerful than an analysis based simply on proportions. It 
compares survival across the whole spectrum of time, not at just one or two points.  

The power calculations used here assume an underlying exponential distribution. However, we 
are rarely in a position to assume exponential survival times in an actual clinical trial. How do we 
justify the exponential survival time assumption? First, the logrank test and the test derived using 
the exponential distribution have nearly the same power when the data are in fact exponentially 
distributed. Second, under the proportional hazards model (which is assumed by the logrank test), 
the survival distribution can be transformed to be exponential and the logrank test remains the 
same under monotonic transformations. 
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Technical Details 
In order to define the input parameters, we will present below some rather complicated looking 
formulas. You need not understand the formulas. However, you should understand the individual 
parameters used in these formulas. 

We assume that a study is to be made comparing the survival of an existing (control) group with 
an experimental group. The control group consists of patients that will receive the existing 
treatment. In cases where no existing treatment exists, the control group consists of patients that 
will receive a placebo. This group is arbitrarily called group one. The experimental group will 
receive the new treatment. It is called group two. 

We assume that the critical event of interest is death and that two treatments have survival 
distributions with instantaneous death (hazard) rates, λ1 and λ2 . These hazard rates are an 
subject’s probability of death in a short period of time. We want to test hypotheses about these 
hazard rates.  

Hazard Ratio 
There are several ways to express the difference between two hazard rates. One way is to 
calculate the difference,λ λ1 − 2 . Another way is to form the hazard ratio (HR): 

HR =
λ
λ

2

1

. 

Note that since HR is formed by dividing the hazard rate of the experimental group by that of the 
control group, a treatment that does better than the control will have a hazard ratio that is less 
than one. 

The hazard ratio may be formulated in other ways. If the proportions surviving during the study 
are called S1 and S2 for the control and experimental groups, the hazard ratio is given by 

HR Log S
Log S

=
( )
( )

2
1

. 

 

Furthermore, if the median survival times of the two groups are M1 and M2, the hazard ratio is 
given by 

HR M
M

=
1
2

. 

Each of these expressions for the difference between hazards rates is useful in some situations. 
There is no one best way, so you will have to be a little flexible. 
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Logrank Test 
We assume that the logrank test will be used to analyze the data once they are collected. Basing 
the power calculations on the logrank test, we arrive at the following formula that gives the power 
based on several other parameters: 

( ) ( ) ( )[ ] ( )
( )

z
HR N w S S

HR
z k1 1

1 1 1 1 1 2 1
1− −=

− − − + − +

+
−β α

ϕ ϕ ϕ

ϕ

/
/  

where k is 1 for a one-sided hypothesis test or 2 for a two-sided test, α and β  are the error rates 
defined as usual, the z’s are the usual points from the standard normal distribution, w is the 
proportion that are lost to follow up, and ϕ  represents the sample size ratio between the two 
groups. That is, is p1 is the proportion of the total sample size that is in the control group, ϕ  is 
given by 

ϕ =
−1 1

1
p

p
 

Note that the hypothesis being tested is that the hazard rates are equal: 

H0 1 2:λ λ=  

This formulation assumes that the hazard rates are proportional. It does not assume that the failure 
times are exponentially distributed. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Proportion Surviving 1, Proportion Surviving 2, N, Alpha, or Power and 
Beta. Under most situations, you will select either Power and Beta or N. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

If you select Survive 1, the search is made for values that are less then S2. Likewise, if you select 
Survive 2, the search is made for values that are greater than S1. 



700-4  Logrank Tests (Freedman) 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal survival 
curves when in fact the curves are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when you reject the null hypothesis of equal survival curves when in fact the curves are equal.  

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size – Total Sample Size 

N (Total Sample Size) 
The combined sample size of both groups. 

Sample Size – Sample Proportions 

Proportion in Group 1 
The proportion of the sample size (N) that is assigned to the first group. The rest of the patients 
are assigned to the second group. When exact values are not available, the number in group one is 
found by rounding up to the next integer. The number in group two is found by subtraction. 

Proportion Lost During Follow Up 
This is the proportion of patients in the trial that are lost to follow-up. Since they are lost, you can 
never obtain their outcome. The sample size is inflated to account for this loss using the formula: 

N(adjusted) = N/(1-p) 

where p is the proportion lost. 

Effect Size 

S1 (Proportion Surviving in Group 1) 
S1 is the proportion of patients belonging to group 1 (controls) that are expected to survive during 
the study. Since S1 is a proportion, it must be between zero and one. A value for S1 must be 
determined either from a pilot study or from previous studies. 
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S2 (Proportion Surviving in Group 2) 
S2 is the proportion of patients belonging to group 2 (experimental) that are expected to survive 
during the study. Since S2 is a proportion, it must be between zero and one. 

This value is not necessarily the expected survival proportion under the treatment. Rather, you 
may set it to that value that, if achieved, would be of special interest. Values below this amount 
would not be of interest. 

For example, if the standard 1-year survival proportion is 0.2 and the new treatment raises this 
proportion to 0.3 (a 50% increase in the proportion surviving), others may be interested in using 
it. 

Sometimes, researchers wish to state the alternative hypothesis in terms of the hazard ratio, HR, 
rather than the value of S2. Using the fact that 

HR = Log(S2)/Log(S1) 

we can solve for S2 to obtain 

S2 = Exp(Log(S1)HR).  

Using this equation, you can determine an appropriate value for S2 from a value for HR.  

For example, suppose S1 is 0.4 and you have determined that if the hazard rate is reduced by half, 
the improvement is sufficient to justify a change in treatment. The appropriate value for S2 is 
Exp(Log(0.4)(0.5)) = 0.632. 

When you do not have an anticipated value for HR, you can find an estimate base on the Median 
Survival Times (M1 and M2) since HR = M1/M2. 

Test 

One-Sided Test 
Specify whether the test is one-sided (checked) or two-sided (unchecked). When a two-sided test 
is selected, the value of alpha is divided by two. 

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Finding the Power 
An experiment has been conducted to test the effectiveness of a new treatment on a total of 100 
patients. The current treatment for this disease achieves 50% survival after two years. The 
proportion in the treatment group that survived two years was 0.70. Testing was done at the 0.05 
significance level. Even though there was an increase of 0.20 for 0.50 to 0.70, the logrank test did 
not reject the hypothesis of equal hazard rates for the two treatments. Study the power of this test.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests (Freedman) procedure window by clicking on 
Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests (Freedman). You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 0.10 
N (Total Sample Size) .............................50 to 300 by 50 
Proportion in Group 1..............................0.5 
Proportion Lost During Follow Up ...........0 
S1 (Proportion Surviving in Group 1) ......0.5 
S2 (Proportion Surviving in Group 2) ......0.7 
One-Sided Test .......................................Not Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Hazard Two-Sided 
Power N N1 N2 S1 S2 Ratio Alpha Beta 
0.2992 50 25 25 0.5000 0.7000 0.5000 0.0500 0.7008 
0.4162 50 25 25 0.5000 0.7000 0.5000 0.1000 0.5838 
0.5267 100 50 50 0.5000 0.7000 0.5000 0.0500 0.4733 
0.6488 100 50 50 0.5000 0.7000 0.5000 0.1000 0.3512 
0.6994 150 75 75 0.5000 0.7000 0.5000 0.0500 0.3006 
0.7989 150 75 75 0.5000 0.7000 0.5000 0.1000 0.2011 
0.8177 200 100 100 0.5000 0.7000 0.5000 0.0500 0.1823 
0.8891 200 100 100 0.5000 0.7000 0.5000 0.1000 0.1109 
0.8934 250 125 125 0.5000 0.7000 0.5000 0.0500 0.1066 
0.9406 250 125 125 0.5000 0.7000 0.5000 0.1000 0.0594 
0.9395 300 150 150 0.5000 0.7000 0.5000 0.0500 0.0605 
0.9690 300 150 150 0.5000 0.7000 0.5000 0.1000 0.0310 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the combined sample size. 
N1 sample size in group 1. 
N2 sample size in group 2. 
S1 is the proportion surviving in group 1 
S2 is the proportion surviving in group 2 
The Hazard Ratio is the ratio of hazard2 and hazard1. It is Log(S2)/Log(S1). 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A two-sided log rank test with an overall sample size of 50 subjects (of which 25 are in group 
1 and 25 are in group 2) achieves 30% power at a 0.0500 significance level to detect a 
difference of 0.2000 between 0.5000 and 0.7000--the proportions surviving in groups 1 and 2, 
respectively. This corresponds to a hazard ratio of 0.5000. The proportion of patients lost 
during follow up was 0.0000. These results are based on the assumption that the hazard rates 
are proportional. 
 

This report shows the values of each of the parameters, one scenario per row. The values from 
this table are in the chart below.  

Plots Section 
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This plot shows the relationship between alpha and power in this example. We notice that for 
alpha = 0.05, a power of 0.80 is reached when the sample size is about 200. A power of 90% is 
reached when the sample size is 250. Hence, we realize that this study should have had at least 
twice the number of patients that it had. 
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Example 2 – Finding the Sample Size 
Continuing with our example, the researcher decides that he wants to do it right this time. He 
believes that if the survival proportion of the treatment group is 0.6 or better, people will begin to 
use his treatment. He wants to know how many subjects he needs. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests (Freedman) procedure window by clicking on 
Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests (Freedman). You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.70 to 0.95 by 0.05 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting 
Proportion in Group 1..............................0.5 
Proportion Lost During Follow Up ...........0 
S1 (Proportion Surviving in Group 1) ......0.5 
S2 (Proportion Surviving in Group 2) ......0.60 0.62 0.64  
One-Sided Test .......................................Not Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Plots Section 
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We will consider the chart since that allows us to understand the patterns more quickly. We note 
that changing S2 from 0.60 (the top line) to 0.62 (the middle line) decreases the sample size 
requirements by almost half. Our researcher decides to take a sample of 500 patients. This will 
achieve almost 80% power in detecting a shift from 0.50 to 0.62 in survivability. 
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Example 3 – Validation using Machin 
Machin et al. (1997) page 180 gives an example in which S1 is 0.25, S2 is 0.50, the one-sided 
significance level is 0.05, and the power is 90%. The total sample size is 124. We will now run 
this example through PASS.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests (Freedman) procedure window by clicking on 
Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests (Freedman). You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.9 
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
Proportion in Group 1..............................0.5 
Proportion Lost During Follow Up ...........0 
S1 (Proportion Surviving in Group 1) ......0.25 
S2 (Proportion Surviving in Group 2) ......0.50  
One-Sided Test .......................................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Hazard One-Sided 
Power N N1 N2 S1 S2 Ratio Alpha Beta 
0.9014 124 62 62 0.2500 0.5000 0.5000 0.0500 0.0986 
 

PASS also calculated the total sample size to be 124. 
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Chapter 705 

Logrank Tests 
(Lachin and 
Foulkes) 
Introduction 
This module computes the sample size and power of the logrank test for equality (or non-
inferiority) of survival distributions under the assumption of proportional hazards. Accrual time 
and follow-up time are included among the parameters to be set.  

A clinical trial is often employed to test the equality of survival distributions for two treatment 
groups. For example, a researcher might wish to determine if Beta-Blocker A enhances the 
survival of newly diagnosed myocardial infarction patients over that of the standard Beta-Blocker 
B. The question being considered is whether the pattern of survival is different. 

The two-sample t-test is not appropriate for two reasons. First, the data consist of the length of 
survival (time to failure), which is often highly skewed, so the usual normality assumption cannot 
be validated. Second, since the purpose of the treatment is to increase survival time, it is likely 
(and desirable) that some of the individuals in the study will survive longer than the planned 
duration of the study. The survival times of these individuals are then said to be censored. These 
times provide valuable information, but they are not the actual survival times. Hence, special 
methods have to be employed which use both regular and censored survival times. 

The logrank test is one of the most popular tests for comparing two survival distributions. It is 
easy to apply and is usually more powerful than an analysis based simply on proportions. It 
compares survival across the whole spectrum of time, not just at one or two points. This module 
allows the sample size and power of the logrank test to be analyzed under very general 
conditions. 

Power and sample size calculations for the logrank test have been studied by several authors. 
PASS uses the methods of Lachin and Foulkes (1986) because of their generality. Although small 
differences among methods can be found depending upon which assumptions are adopted, there 
is little practical difference between the techniques.  

The power calculations used here assume an underlying exponential distribution. However, this 
assumption is rarely accurate in an actual clinical trial. How is this assumption justified? First, the 
logrank test and the test derived using the exponential distribution have nearly the same power 
when the data are in fact exponentially distributed. Second, under the proportional hazards model 
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(which is assumed by the logrank test), the survival distribution can be transformed to 
exponential and the logrank test remains the same under monotonic transformations. 

Technical Details 
Some rather complicated formulas are used to define the input parameters. You need not 
understand the formulas. However, you should understand the individual parameters used in these 
formulas. 

Basic Model 
Suppose a clinical trial consists of two independent treatment groups labeled “1” and “2” (you 
could designate group one as the control group and group two as the treatment group). If the total 
sample size is N, the sizes of the two groups are  and . Usually, you would plan to have 

. Define the proportion of the total sample in each group as 
n1 n2

n n1 = 2

i
iQ  =  n

N
,   i =1,2  

Individuals are recruited during an accrual period of R years (or months or days). They are 
followed for an additional period of time until a total of T years is reached. Hence, the follow-up 
period is T-R years. At the end of the study, the logrank test is conducted at significance level α  
with power 1− β . 

If we assume an exponential model with hazard rates λ1  and λ2  for the two groups, Lachin and 
Foulkes (1986, Eq. 2.1) establish the following equation relating N and power: 
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where 

λ λ =  Q Q1 1 2 2+ λ  

( ) ( )φ λ σ λ=  N 2 $  

( )Z  =  θ θΦ 1−  

( )Φ z  is the area to the left of z under the standard normal density,  is the maximum likelihood 

estimate of 

$λ

λ , and that  represents the variance of  ( )σ λ2 $ $ .λ
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Exponential Distribution 
The hazard rate from the exponential distribution, λ , is usually estimated using maximum 
likelihood techniques. In the planning stages, you have to obtain an estimate of this parameter. To 
see how to accomplish this, let’s briefly review the exponential distribution. The density function 
of the exponential is defined as 

f(t) =  e    t 0, > 0.tλ λλ− ≥,  

The cumulative survival distribution function is 

( )S t  =  e    t 0.t− ≥λ ,  

Solving this for λ  yields 

( )( )λ =  -
S t
t

log
 

Note that S(t) gives the probability of surviving t years. To obtain a planning estimate of λ , you 
need only know the proportion surviving during a particular time period. You can then use the 
above equation to calculate λ . 

Patient Entry 
Patients are enrolled during the accrual period. PASS lets you specify the pattern in which 
subjects are enrolled. Suppose patient entry times are distributed as g(t) where  is the entry time 
of the ith individual and 0 ≤  ≤ R. Let g(t)1 follow the truncated exponential distribution with 
parameter A, which has the density 
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Note that R is accrual time. The corresponding cumulative distribution function is 
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A is interpreted as follows.  

A > 0 results in a convex (faster than expected) entry distribution. 

A < 0 results in a concave (slower than expected) entry distribution. 

A = 0 results in the uniform entry distribution in which g(t) =1/R.  

Rather than specify A directly, PASS has you enter the percentage of the accrual time that will be 
needed to enroll 50% of the subjects. Using an iterative search, the value of A corresponding to 
this percentage is calculated and used in the calculations. 
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Losses to Follow-Up 
The staggered patient entry over the accrual period results in censoring times ranging from T - R 
to T years during the follow-up period. This is often referred to as administrative censoring, since 
it is caused by the conclusion of the study rather than by some random factor working on an 
individual. To model the losses to follow-up which come from other causes, we use the 
exponential distribution with hazard rates η1  and η2 . Since these rates are difficult and confusing 
to define directly, PASS lets you input the proportion lost due to other causes over a specified 
period of time and uses the following equation to determine the hazard rates:  

( )( )η =  -
P t

t
log 1−

 

General Model 
Combining all these parameters into the model results in  
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This expression may then be used in an equation that relates these parameters to sample size and 
power 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Proportion Surviving 1, Proportion Surviving 2, Accrual, Follow-Up, 
Alpha, Beta, and N. Under most situations, you will select either Power and Beta or N. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal survival 
curves when in fact the curves are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when you reject the null hypothesis of equal survival curves when in fact the curves are equal.  

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size – Total Sample Size 

N (Total Sample Size) 
This is the combined sample size of both groups. This amount is divided between the two groups 
using the value of the Proportion in Group 1.  

Sample Size – Sample Proportion 

Proportion in Group 1 
This is the proportion of N in group one. If this value is labeled , the sample size of group one 
is  and the sample size of group two is 

p1

Np1 N Np− 1 . Note that the value of  is rounded to 
the nearest integer. 

Np1

Sample Size – Proportions Lost to 
Follow-Up 

Group 1 and Group 2 
This is the proportion in this group that is lost to follow-up during the Fixed Time Period, T0. 
Using this value, the lost-to-follow-up hazard rate is calculated using the exponential distribution 
as it is with S(t). The equation used to convert these proportions into η1  and η2  is: 

( )( )ηi
i =  -

P T0
T0

log 1−
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Here P(T0) is the proportion lost to follow up from the beginning of the study until T0. So if T0 is 
3 years and 10% of the patients in group one are lost to follow-up 

η1 10 01 3
0 03512

= − −
=

log( . . ) /
.

  

Values between zero and one are valid. Zero is used to indicate no loss to follow-up. 

Effect Size 

S1 and S2 (Proportion Surviving Past T0) 
Specify the proportion of patients in each group that survive until after T0. These quantities are 
called S1 and S2. The value of T0 is given in the Fixed Time Point box. For example, if the Fixed 
Time parameter is 3 and this value is set to 0.7, then 70% of the patients survive at least 3 years. 
Note that since this is a proportion, values must be between zero and one. 

These quantities are used as a convenient method of entering the hazard rates λ1  and λ2 . The 
first group is arbitrarily designated as the control group and the second group is arbitrarily 
designated as the treatment group.  

The hazard rates are calculated from the proportions surviving using the formulas 

( )λ1
1

 =  -
S

T0
log

 and 
( )λ2

2
 =  -

S
T0

log
 

If your sample size problem is cast in terms of hazard rates, the proportions surviving are 
calculated using the formula 

(S t1 1= )−exp λ  and ( )S t2 2= −exp λ  

T0 (Fixed Time Point) 
This is the time period used to convert the proportions given in Proportion Surviving 1, 
Proportion Surviving 2, Follow-Up Loss1, and Follow-Up Loss2 into hazard rates. If you enter 
0.4 in Proportion Survive1 and a 3 here, you are indicating that 40% survive longer than 3 years. 

Duration 

R (Accrual Time) 
The accrual time is the length of time during which patients enter the study. It is the value of R.  

% Time Until 50% Accrual 
This specifies the percentage of the accrual time needed to enroll 50% of the patients. This value 
is converted into a value for A, the patient entry parameter. Use this option to indicate how 
subjects are enrolled during the accrual period. For example, in one study, it may be possible to 
enroll a number of patients early on, while in another study, most of the subjects will be enrolled 
near the end of the accrual period. 

Values between 1 and 97 may be entered. 

If you expect uniform patient entry, enter 50. Unless you know that patient enrollment will not be 
uniform during the accrual period, you should use this amount. 
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If you expect more patients to enter during the early part of the accrual period, enter an amount 
less than 50 such as 30. A 30 here means that 50% of the patients will have been enrolled when 
30% of the accrual time has elapsed. 

If you expect more patients to enter during the later part of the accrual period, enter an amount 
greater than 50 such as 70. A 70 here means that 50% of the patients will have been enrolled 
when 70% of the accrual time has elapsed. 

PASS assumes that patient entry times follow the truncated exponential distribution. This 
parameter controls the shape and scale of that distribution.  

Follow-Up Time, T-R 
The follow-up time is the length of time between the entry of the last individual into the study and 
the end of the study. Since T is the total length of the study and R is the accrual time, the follow-
up time is T-R. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis in terms of the proportion surviving in each 
group. This implicitly specifies the direction of the hypothesis test. The null hypothesis is always 

. H S S0 1 2: =

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Possible selections are: 

• Ha: S1 <> S2 
This is the usual selection. It yields the two-tailed t-test. Use this option when you are testing 
whether the survival curves are different, but you do not want to specify beforehand which 
curve is better. 

• Ha: S1 < S2 
This option yields a one-tailed test. Use it when you are only interested in the case in which 
the survival in group one is less than that for group two. 

• Ha: S1 > S2 
This option yields a one-tailed test. Use it when you are only interested in the case in which 
the survival in group one is greater than that for group two. 
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Example 1 – Finding the Power 
A researcher is planning a clinical trial using a parallel, two-group, equal sample allocation 
design to compare the survivability of a new treatment with that of the current treatment. The 
proportion surviving one-year after the current treatment is 0.50. The new treatment will be 
adopted if the proportion surviving after one year increases to 0.75.   

The trial will include a recruitment period of one-year after which participants will be followed 
for an additional two-years. It is assumed that patients will enter the study uniformly over the 
accrual period. The researcher estimates a loss-to-follow rate of 15% during the first year in both 
the control and the experimental groups.  

The researcher decides to investigate various sample sizes between 10 and 250 at both the 0.01 
and 0.05 significance levels.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests (Lachin and Foulkes) procedure window by 
clicking on Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests 
(Lachin and Foulkes). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.01 0.05 
N (Total Sample Size) .............................10 25 50 100 150 200 250 
Proportion in Group 1..............................0.5 
Proportion Lost to Follow-Up 1 ...............0.15 
Proportion Lost to Follow-Up 2 ...............0.15 
S1 (Proportion Surviving in Group 1) ......0.5 
S2 (Proportion Surviving in Group 2) ......0.75 
T0 (Fixed Time Point)..............................1 
R (Accrual Time) .....................................1 
% Time Until 50% Accrual.......................50 
Follow-Up Time, T-R ...............................2 
Alternative Hypothesis ............................Ha: S1 <> S2 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results with Ha: S1<>S2 
 
  Surviving Surviving Accrual Follow Up Prop in 
Power N Group 1 Group 2 Time Time Group 1 Alpha Beta 
0.06718 10 0.50000 0.75000 1.00 2.00 0.50000 0.01000 0.93282 
0.18406 10 0.50000 0.75000 1.00 2.00 0.50000 0.05000 0.81594 
0.17527 25 0.50000 0.75000 1.00 2.00 0.50000 0.01000 0.82473 
0.36633 25 0.50000 0.75000 1.00 2.00 0.50000 0.05000 0.63367 
0.38357 50 0.50000 0.75000 1.00 2.00 0.50000 0.01000 0.61643 
0.61606 50 0.50000 0.75000 1.00 2.00 0.50000 0.05000 0.38394 
0.72756 100 0.50000 0.75000 1.00 2.00 0.50000 0.01000 0.27244 
0.88428 100 0.50000 0.75000 1.00 2.00 0.50000 0.05000 0.11572 
0.90273 150 0.50000 0.75000 1.00 2.00 0.50000 0.01000 0.09727 
0.97052 150 0.50000 0.75000 1.00 2.00 0.50000 0.05000 0.02948 
0.96998 200 0.50000 0.75000 1.00 2.00 0.50000 0.01000 0.03002 
0.99328 200 0.50000 0.75000 1.00 2.00 0.50000 0.05000 0.00672 
0.99167 250 0.50000 0.75000 1.00 2.00 0.50000 0.01000 0.00833 
0.99858 250 0.50000 0.75000 1.00 2.00 0.50000 0.05000 0.00142 
 
Base Time 1.00 
Proportion loss to follow up in group 1 0.15000 
Proportion loss to follow up in group 2 0.15000 
Percent of accrual time until 50% enrollment is reached: 50.00% 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
 
Summary Statements 
A two-sided log rank test with an overall sample size of 10 subjects (of which 5 are in group 1 
and 5 are in group 2) achieves 7% power at a 0.01000 significance level to detect a difference 
of 0.25000 between 0.50000 and 0.75000--the proportions surviving in groups 1 and 2 after 1.00 
time periods. Patients entered the study during an accrual period of 2.00 time periods. 50% of 
the enrollment was complete when 50.00% of the accrual time had past. A follow-up period of 
1.00 time periods had a 15.0% loss from group 1 and a 15.0% loss from group 2. 
 

This report shows the values of each of the parameters, one scenario per row. Note that 
approximately 100 patients, 50 per group, will be needed to achieve about 90% power at the 0.05 
significance level. 
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Plots Section 
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This plot shows the relationship between sample size and power for the two significance levels.  

Example 2 – Finding the Sample Size 
Continuing with the previous example, the researcher wants to investigate the sample size 
necessary to achieve 80% or 90% power for various values of the proportion surviving in the 
treatment group from 0.55 to 0.80 at the 0.05 significance level. All other parameters will remain 
the same. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests (Lachin and Foulkes) procedure window by 
clicking on Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests 
(Lachin and Foulkes). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................0.8 0.9 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting 
Proportion in Group 1..............................0.5 
Proportion Lost to Follow-Up 1 ...............0.15 
Proportion Lost to Follow-Up 2 ...............0.15 
S1 (Proportion Surviving in Group 1) ......0.5 
S2 (Proportion Surviving in Group 2) ......0.55 to 0.80 by 0.05 
T0 (Fixed Time Point)..............................1 
R (Accrual Time) .....................................1 
% Time Until 50% Accrual.......................50 
Follow-Up Time, T-R ...............................2 
Alternative Hypothesis ............................Ha: S1 <> S2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results with Ha: S1<>S2 
 
  Surviving Surviving Accrual Follow Up Prop in 
Power N Group 1 Group 2 Time Time Group 1 Alpha Beta 
0.90004 2798 0.50000 0.55000 1.00 2.00 0.50000 0.05000 0.09996 
0.80017 2090 0.50000 0.55000 1.00 2.00 0.50000 0.05000 0.19983 
0.90024 690 0.50000 0.60000 1.00 2.00 0.50000 0.05000 0.09976 
0.80050 515 0.50000 0.60000 1.00 2.00 0.50000 0.05000 0.19950 
0.90001 302 0.50000 0.65000 1.00 2.00 0.50000 0.05000 0.09999 
0.80010 225 0.50000 0.65000 1.00 2.00 0.50000 0.05000 0.19990 
0.90098 168 0.50000 0.70000 1.00 2.00 0.50000 0.05000 0.09902 
0.80177 125 0.50000 0.70000 1.00 2.00 0.50000 0.05000 0.19823 
0.90107 106 0.50000 0.75000 1.00 2.00 0.50000 0.05000 0.09893 
0.80357 79 0.50000 0.75000 1.00 2.00 0.50000 0.05000 0.19643 
0.90274 73 0.50000 0.80000 1.00 2.00 0.50000 0.05000 0.09726 
0.80432 54 0.50000 0.80000 1.00 2.00 0.50000 0.05000 0.19568 
 
Base Time1.00 
Proportion loss to follow up in group 10.15000 
Proportion loss to follow up in group 20.15000 
Percent of accrual time until 50% enrollment is reached: 50.00% 
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This study shows the huge increase in sample size necessary to detect values of S2 below 0.65. It 
also shows that roughly 35% more participants are required for 90% power than for 80% power 
in this situation. 
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Example 3 – Validation using Lachin and Foulkes 
Lachin and Foulkes (1986), the developers of formulas used in this routine, give an example on 
page 509 in which λ1 030= . , λ2 0 20= . , N = 378 , α = 0 05.  (one-sided), R = 3, T = 3 , and 
β = 010. . There is no loss to follow up and uniform patient entry is assumed.   

The first step is to determine the proportion surviving at the end of one year for each group using 
the formula: 

  S(t) =  e t−λ

For group 1 we have 

( )S e1
0 31

0 74081822
=

=

− . (1)

.
 

For group 2 we have 

( )S e2
0 21

0 81873075
=

=

− . (1)

.
 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests (Lachin and Foulkes) procedure window by 
clicking on Survival Analysis and Reliability, then Logrank Tests (Lachin and Foulkes). You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find Setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................378 
Proportion in Group 1..............................0.5 
Proportion Lost to Follow-Up 1 ...............0.0 
Proportion Lost to Follow-Up 2 ...............0.0 
S1 (Proportion Surviving in Group 1) ......0.74081822 
S2 (Proportion Surviving in Group 2) ......0.81873075 
T0 (Fixed Time Point)..............................1 
R (Accrual Time) .....................................3 
% Time Until 50% Accrual.......................50 
Follow-Up Time, T-R ...............................2 
Alternative Hypothesis ............................Ha: S1 < S2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results with Ha: S1<S2 
 
  Surviving Surviving Accrual Follow Up Prop in 
Power N Group 1 Group 2 Time Time Group 1 Alpha Beta 
0.90123 378 0.74082 0.81873 3.00 2.00 0.50000 0.05000 0.09877 
 
Base Time1.00 
Proportion loss to follow up in group 10.00000 
Proportion loss to follow up in group 20.00000 
Percent of accrual time until 50% enrollment is reached: 50.00% 
 

The power of 0.90 matches the value published in Lachin’s article.  

Example 4 – Non-Inferiority Test 
This example will show how to use this module to calculate power and sample size for non-
inferiority trials. Remember that non-inferiority is established by showing that the new treatment 
is no worse than the standard treatment, except for a small amount called the margin of 
equivalence.  

Consider the following example. Suppose the median survival time of the standard drug is 15 
months. Unfortunately, this drug has serious side effects. A promising new drug has been 
developed that has much milder side effects. A non-inferiority trial is to be designed to show that 
the new drug is not inferior to the standard drug. The margin of equivalence is set at 3 months, so, 
to establish non-inferiority, the study has to conclude that the median survival time of the new 
drug is at least 12 months.  

The trial will accept subjects for 18 months. It will continue for an additional 6 months after the 
accrual period. Although the study planners anticipate some dropout, they want to begin their 
analysis without considering dropout. They set the significance level at 0.05. They want to 
determine the necessary sample size to achieve 80% and 90% power. The calculations proceed as 
follows. 

Use the Survival Parameter Conversion Tool to convert the “median survival rates” to 
“proportions surviving” so that they can be entered into the panel. Press the Survival Parameter 
Conversion Tool button that is below the T0 box to display this window. Enter 24 for T0, 12 for 
Median Survival Time (T1), and 15 for Median Survival Time (T2). The screen will appear as 
follows. 
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This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests (Lachin and Foulkes) procedure window by 
clicking on Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests 
(Lachin and Foulkes). You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example4 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 0.90 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find Setting 
Proportion in Group 1..............................0.5 
Proportion Lost to Follow-Up 1 ...............0.0 
Proportion Lost to Follow-Up 2 ...............0.0 
S1 (Proportion Surviving in Group 1) ......0.25 
S2 (Proportion Surviving in Group 2) ......0.329876977693224 
T0 (Fixed Time Point)..............................24 
R (Accrual Time) .....................................18 
% Time Until 50% Accrual.......................50 
Follow-Up Time, T-R ...............................6 
Alternative Hypothesis ............................Ha: S1 < S2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Surviving Surviving Accrual Follow Up Prop in 
Power N Group 1 Group 2 Time Time Group 1 Alpha Beta 
0.90018 1326 0.25000 0.32988 18.00 6.00 0.50000 0.05000 0.09982 
0.80030 957 0.25000 0.32988 18.00 6.00 0.50000 0.05000 0.19970 
 

Thus, a sample size of about 663 per group would be needed for 90% power, and a sample of 479 
per group would be needed for 80% power.  
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Chapter 706 

Logrank Tests for 
Non-Inferiority 
Introduction 
This module computes the sample size and power for non-inferiority tests under the assumption 
of proportional hazards. Accrual time and follow-up time are included among the parameters to 
be set. The non-inferiority logrank test is used for data analysis. 

Sometimes, the objective of a study is to show that an experimental therapy is not inferior to (no 
worse than) the standard therapy. The experimental therapy may be cheaper, less toxic, or have 
fewer side effects. Such studies are often called non-inferiority trials and have a one-sided 
hypothesis. 

Power and sample size calculations for the non-inferiority logrank test have been developed by 
Jung et al. (2005), and we use their results. These calculations assume an underlying exponential 
survival distribution with a uniform patient accrual pattern during the accrual period.  

Technical Details 

Test Statistic 
Suppose a clinical trial consists of two independent groups. Designate group one as the standard 
group with hazard rate h1 and sample size n1. Designate group two as the experimental group with 
hazard rate h2 and sample size n2. The total sample size is N =  + . Usually, you would plan 
to have  = .  

n1 n2

n1 n2

Define the proportion of the total sample in each group as 

i
iQ  =  n

N
,   i =1,2  

Individuals are recruited during an accrual period of R years (or months or days). They are 
followed for an additional period of time until a total of T years is reached. Hence, the follow-up 
period is T-R years. At the end of the study, the non-inferiority logrank test is conducted at 
significance level α  with power 1− β . Under the proportion hazards assumption, the hazard 
ratio HR = h2 / h1 is constant across time.  



706-2  Logrank Tests for Non-Inferiority 

For a given non-inferiority margin HR0 (>1) (the maximum ratio of clinical insignificance), the 
statistical hypotheses tested are 

0100 :.: HRHRHvsHRHRH <≥  

Define the partial score function as 
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and the information function as 

( )
( ) (

( ) (
∑∑

∑ ∑

∑∑
= =

==

⎬
⎫

⎨
⎧

≥+≥

⎭
⎬
⎫

⎩
⎨
⎧

≥
⎭
⎬
⎫

⎩
⎨
⎧

≥

=
2

1 1
2

21

1
2

1
1

2

1 2

21

k

n

i n n

kijkij

n

j
kij

n

j
kijki

N

k

XXIHRXXI

XXIXXI
HRHR

δ
σ

= = ⎭⎩ 1 1j j

kiX ki

 

where  is the minimum of the survival time, and the censoring time,δ ,is an event indicator 
taking 1 if there was an event or 0 otherwise, and I(.) is an indicator function. Note that W(1) is 
the standard logrank test statistic. 

Under , 0H ( ) ( 00 / HRHRW N )σ  is asymptotically normal with mean 0 and variance 1. Reject 
in favor of  if  W0H H ( ) ( )0/ HRHR N1 0 σ >  with one-sided type I error probability α−1z α . 

The partial MLE, RĤ , is obtained by solving ( ) 0=HRW . Let  denote the true value of 

HR. It can be shown that 

*HR
RĤ  is asymptotically normal with mean  and variance 

. 
HR *

( )*2 HRN
−σ

( )%1 ( )RHzRH N
ˆˆ 1

2/1
−

−± σα . An asymptotic100 α−  confidence interval for HR is 

Power Calculations 
Jung (2005) shows that the power of the non-inferiority logrank test can be expressed as 
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where D is the observed number of deaths (events). The total sample size N is obtained by 
inflating D according to the relationship E(d)N = D, where E(d) is the expected death rate for the 
trial. 

Following the proposal of Yateman and Skene (1992) and the results of Lakatos (1988), we 
compute E(d) using the Markov Model given in chapter 715 as 

= +  
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where S1,2 and S2,2 are the occupancy probabilities for the event state for the standard and 
experimental groups, respectively. This formulation allows the inclusion of loss to follow-up, 
noncompliance, and drop-in along with various accrual patterns. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Power and Beta or N. Select N when you want to calculate the sample 
size needed to achieve a given power and alpha level. Select Power and Beta when you want to 
calculate the power.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you do not reject the null hypothesis that the hazard 
ratio is greater than HR0 when in fact it is. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when you reject the null hypothesis that the hazard ratio is greater than HR0 when in fact it is not. 

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  



706-4  Logrank Tests for Non-Inferiority 

Sample Size 

N (Total Sample Size) 
This is the combined sample size of both groups. This amount is divided between the two groups 
using the value of the Proportion in Reference Group.  

Proportion in Reference Group 
This is the proportion of N in the reference (control) group. If this value is labeled , the sample 
size of group one is  and the sample size of group two is 

1Q

1NQ 1NQN − . Note that the value of 
 is rounded to the nearest integer. 1NQ

Proportion Lost or Switching Groups 

Reference (or Treatment) Lost 
This is the proportion of subjects in the reference (treatment) group that disappear from the study 
during a single time period (month, year, etc.). Multiple entries, such as 0.01 0.03 0.05, are 
allowed. 

When you want to specify different proportions for different time periods, you would enter those 
rates into a column of the spreadsheet, one row per time period. You specify the column of the 
spreadsheet by beginning your entry with an equals sign. For example, if you have entered the 
proportions in column 5, you would enter =C5 here. 

Reference Switching to Treatment 
This is the proportion of subjects in the reference group that change to a treatment regime similar 
in efficacy to the treatment group during a single time period (month, year, etc.). This is 
sometimes referred to as drop in. Multiple entries, such as 0.01 0.03 0.05, are allowed. 

When you want to specify different proportions for different time periods, you would enter those 
values into a column of the spreadsheet, one row per time period. You specify the column of the 
spreadsheet by beginning your entry with an equals sign. For example, if you have entered the 
proportions in column 1, you would enter =C1 here. 

Treatment Switching to Reference 
This is the proportion of subjects in the treatment group that change to a treatment regime similar 
in efficacy to the reference group during a single time period (month, year, etc.). This is 
sometimes referred to as noncompliance. Multiple entries, such as 0.01 0.03 0.05, are allowed. 

When you want to specify different proportions for different time periods, you would enter those 
values into a column of the spreadsheet, one row per time period. You specify the column of the 
spreadsheet by beginning your entry with an equals sign. For example, if you have entered the 
proportions in column 2, you would enter =C2 here. 

Effect Size 

HR0 (Equivalence) 
This is the maximum value of the hazard ratio that still results in the conclusion of equivalence. It 
is referred to as HR0 in this documentation. Assuming that events are bad (such as death), then 
this number should be > one. 
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For example, if you enter 1.20 here, you are saying that hazard ratios < 1.20 will result in the 
conclusion of non-inferiority when H0 is rejected. In other words, hazard ratios up to 1.20 
indicate that the treatment group is no worse than the reference group. Estimates of the hazard 
ratio may be obtained from median survival times, hazard rates, or from the proportion surviving 
past a certain time point. Pressing the Parameter Conversion button will load a tool for doing this. 

h1 (Hazard Rate of Reference Group) 
Specify one or more hazard rates (instantaneous failure rate) for the reference group. For an 
exponential distribution, the hazard rate is the inverse of the mean survival time. An estimate of 
the hazard rate may be obtained from the median survival time or from the proportion surviving 
to a certain time point. This calculation is automated by pressing the Parameter Conversion 
button. 

Hazard rates must be greater than zero. Constant hazard rates are specified by entering them 
directly. Variable hazard rates are specified as columns of the spreadsheet. When you want to 
specify different hazard rates for different time periods, you would enter those rates into a column 
of the spreadsheet, one row per time period. You specify the column (or columns) by beginning 
the entry with an equals sign. For example, if you have entered the hazard rates in column 2, you 
would enter =2 here.    

Duration 

Accrual Time (Integers Only) 
Enter one or more values for the number of time periods (months, years, etc.) during which 
subjects are entered into the study. The total duration of the study is equal to the Accrual Time 
plus the Follow-Up Time. These values must be integers. 

Accrual times can range from 0 to the Total Time. That is, the accrual time must be less than or 
equal to the Total Time. Otherwise, the scenario is skipped. 

Enter 0 when all subjects begin the study together. 

Accrual Pattern 
This contains the pattern of accrual (patient entry). Two types of entries are possible: 

• Uniform 
If you want to specify a uniform accrual rate for all time periods, enter Equal here. 

• Non-Uniform 
When you want to specify accrual patterns with different accrual proportions per time period, 
you would enter the pattern into a column of the spreadsheet, one row per time period and 
specify the column, or columns, here, beginning your entry with an equals sign. For example, 
if you have entered accrual patterns in columns 4 and 5, you would enter =C4 C5. 

Note that these values are standardized to sum to one. Thus, the accrual pattern 0.25 0.50 0.25 
would result in the same accrual pattern as 1 2 1 or 25 50 25. 

Total Time (Integers Only) 
Enter one or more values for the number of time periods (months, years, etc.) in the study. The 
follow-up time is equal to the Total Time minus the Accrual Time. These values must be integers. 
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Reports Tab 
The Reports tab contains additional settings for this procedure.  

Report Column Width 

Report Column Width 
This option sets the width of the each column of the numeric report. 

The numeric report for this option necessarily contains many columns, so the maximum number 
of decimal places that can be displayed is four. If you try to increase that number, the numbers 
may run together. You can increase the width of each column using this option. 

The recommended report column width for scenarios without large numbers of decimal places or 
extremely large sample sizes is 0.49. 

Options Tab 
The Options tab contains additional settings for this procedure.  

Options 

Number of Intervals within a Time Period 
The algorithm requires that each time period be partitioned into a number of equal-width 
intervals. Each of these subintervals is assumed to follow an exponential distribution. This option 
controls the number of subintervals. All parameters such as hazard rates, loss to follow-up rates, 
and noncompliance rates are assumed to be constant within a subinterval. 

Lakatos (1988) gives little input as to how the number of subintervals should be chosen. In a 
private communication, he indicated that 100 ought to be adequate. This seems to work when the 
hazard rate is less than 1.0.  

As the hazard rate increases above 1.0, this number must increase. A value of 2000 should be 
sufficient as long as the hazard rates (h1 and h2) are less than 10. When the hazard rates are 
greater than 10, you may want to increase this value to 5000 or even 10000. 
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Example 1 – Finding the Power 
A non-inferiority trial is planned in which the primary analysis will use the non-inferiority 
logrank test. After extensive discussion, the researchers have decided that the upper bound on 
non-inferiority is 1.3.  

The trial will include a recruitment period of two-years after which participants will be followed 
for three more years. It is assumed that patients will enter the study uniformly over the accrual 
period. The researcher estimates a loss-to-follow rate of 5% per year in both the reference and 
experimental groups. Past experience leads to a base line hazard rate of 0.04. An equal sample 
allocation design will be used with a target power of 0.90 and significance level of 0.05.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests for Non-Inferiority procedure window by 
clicking on Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests for 
Non-Inferiority. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................1000 to 5000 by 1000 
Proportion in Reference Group ...............0.5 
Proportion Lost - Reference....................0.05 
Proportion Lost - Treatment ....................0.0 
HR0 .........................................................1.3 
HR ...........................................................1.0 
h1 ............................................................0.04 
Accrual Time ...........................................2 
Accrual Pattern........................................Equal 
Total Time ...............................................5 

Reports Tab 
Show Detail Numeric Reports.................Checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results in Terms of Sample Size 
        Acc-       
    Equiv Actual Ref  rual       
    Haz Haz Haz Acc- Time/   Ref Trt   
    Ratio Ratio Rate rual Total Ref Trt to to   
Power N1 N2 N (HR0) (HR) (h1) Pat'n Time Loss Loss Trt Ref Alpha Beta 
.4510 500 500 1000 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .5490 
.6920 1000 1000 2000 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .3080 
.8366 1500 1500 3000 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .1634 
.9169 2000 2000 4000 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .0831 
.9591 2500 2500 5000 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .0409 
 
References 
Jung,Sin-Ho; Kang, Sun J.; McCall, Linda M.; Blumenstein, Brent. 2005. 'Sample Sizes Computation for 
     Two-Sample Noninferiority Log-Rank Test', J. of Biopharmaceutical Statistics, Volume 15, pages 969-979. 
Lakatos, Edward. 1988. 'Sample Sizes Based on the Log-Rank Statistic in Complex Clinical Trials', Biometrics, 
     Volume 44, March, pages 229-241. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1|N2|N are the sample sizes of the reference group, treatment group, and both groups, respectively. 
E1|E2|E are the number of events in the reference group, the treatment group, and both groups, respectively. 
Equivalence Haz Ratio (HR0) is the upper bound for the hazard ratio that still leads to the conclusion of 
     non-inferiority. 
Actual Haz Ratio (HR) is assumed to be the actual value of the hazard ratio. 
Ref Haz Rate is the hazard (instantaneous failure) rate of the reference group. Its scale is events per time period. 
Accrual Time is the number of time periods (years or months) during which accrual takes place. 
Total Time is the total number of time periods in the study. Follow-up time = (Total Time) - (Accrual Time). 
Ref Loss is the proportion of the reference group that is lost (drop out) during a single time period (year or month). 
Trt Loss is the proportion of the treatment group that is lost (drop out) during a single time period (year or month). 
Ref to Trt (drop in) is the proportion of the reference group that switch to a group with a hazard rate equal to the 
     treatment group. 
Trt to Ref (noncompliance) is the proportion of the treatment group that switch to a group with a hazard rate equal to 
     the reference group. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 

 

This report shows the values of each of the parameters, one scenario per row. We see that almost 
4000 subjects will be required for this study. 
Next, a report displaying the number of required events rather than the sample size is displayed. 

 
Numeric Results in Terms of Events 
        Acc-       
    Equiv Actual Ref  rual       
 Ref Trt Total Haz Haz Haz Acc- Time/   Ref Trt   
 Evts Evts Evts Ratio Ratio Rate rual Total Ref Trt to to   
Power E1 E2 E (HR0) (HR) (h1) Pat'n Time Loss Loss Trt Ref Alpha Beta 
.4510 66.8 66.8 133.6 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .5490 
.6920 133.6 133.6 267.3 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .3080 
.8366 200.4 200.4 400.9 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .1634 
.9169 267.3 267.3 534.5 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .0831 
.9591 334.1 334.1 668.1 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .0409 
 

Most of this report is identical to the last report, except that the sample sizes are replaced by the 
number of required events. 
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Next, reports displaying the individual settings year-by-year for each scenario are displayed. 
 
Detailed Input when Power=.4510  HR0=1.30  HR=1.00  N=1000  Alpha=.0500  Accrual/Total Time=2 / 5 
 
 Reference     Switch Switch 
 Hazard  Percent   Reference Treatment 
 Rate Percent Admin.Reference Treatment to to 
Time (H1) Accrual Censored Loss Loss Treatment Reference 
Period (.0400) (Equal) (Calc.) (.0500) (.0500) (.0000) (.0000) 
1 .0400 50.00 .00 .0500 .0500 .0000 .0000 
2 .0400 50.00 .00 .0500 .0500 .0000 .0000 
3 .0400 .00 .00 .0500 .0500 .0000 .0000 
4 .0400 .00 50.00 .0500 .0500 .0000 .0000 
5 .0400 .00 100.00 .0500 .0500 .0000 .0000 
 

This report shows the individual settings for each time period (year). It becomes very useful when 
you want to document a study in which these parameters vary from year to year. 
Next, summary statements are displayed. 

 
Summary Statements 
A non-inferiority logrank test with an overall sample size of 1000 subjects (500 in the 
reference group and 500 in the treatment group) achieves 45.1% power at a 0.050 significance 
level to detect an equivalence hazard ratio of 1.30 when the actual hazard ratio is an 
equivalence hazard ratio of 1.00 and the reference group hazard rate is 0.0400. The study lasts 
for 5 time periods of which subject accrual (entry) occurs in the first 2 time periods. The 
accrual pattern across time periods is uniform (all periods equal). The proportion dropping out 
of the reference group is 0.0500. The proportion dropping out of the treatment group is 0.0500. 
The proportion switching from the reference group to another group with a hazard rate equal to 
the treatment group is 0.0000. The proportion switching from the treatment group to another 
group with a hazard rate equal to the reference group is 0.0000. 
 

Finally, a scatter plot of the results is displayed. 

Plots Section 
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This plot shows the relationship between sample size and. Note that for 90% power, a total 
sample size of about 4000 is required. The exact number will be found in Example 2.  
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Example 2 – Finding the Sample Size 
Continuing with the previous example, the researcher wants to investigate the sample sizes 
necessary to achieve 80% and 90% power. All other parameters will remain the same as in 
Example 1. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests for Non-Inferiority procedure window by 
clicking on Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests for 
Non-Inferiority. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.8 0.90 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting 
Proportion in Reference Group ...............0.5 
Proportion Lost - Reference....................0.05 
Proportion Lost - Treatment ....................0.05 
HR0 .........................................................1.3 
HR ...........................................................1.0 
h1 ............................................................0.04 
Accrual Time ...........................................2 
Accrual Pattern........................................Equal 
Total Time ...............................................5 
 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results in Terms of Sample Size 
        Acc-       
    Equiv Actual Ref  rual       
    Haz Haz Haz Acc- Time/   Ref Trt   
    Ratio Ratio Rate rual Total Ref Trt to to   
Power N1 N2 N (HR0) (HR) (h1) Pat'n Time Loss Loss Trt Ref Alpha Beta 
.9000 1865 1866 3731 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .1000 
.8000 1344 1345 2689 1.30 1.00 .0400 Equal 2 / 5 .0500 .0500 .0000 .0000 .0500 .2000 
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Example 3 – Validation using Jung 
Jung et al. (2005) pages 974-975 present an example that will be used to validate this procedure. 
In this article, an 8.8-year trial is presented in which patient accrual occurs the first 3.8 years. The 
baseline hazard rate is 0.0446. The value of HR0 is 1.3 and the value of HR is 1.0. Equal 
allocation between groups is used and uniform accrual is assumed. The significance level is 0.05 
and the desired power is 0.90. Given these values, the number of events is found to be 499 and 
the sample size is 1891. 

Since this procedure using integer values for the accrual and trial time, the accrual time and total 
time will be set to 4 and 9 years, respectively.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests for Non-Inferiority procedure window by 
clicking on Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests for 
Non-Inferiority. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example3 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
Proportion in Reference Group ...............0.5 
Proportion Lost - Reference....................0 
Proportion Lost - Treatment ....................0 
HR0 .........................................................1.3 
HR ...........................................................1.0 
h1 ............................................................0.0446 
Accrual Time ...........................................4 
Accrual Pattern........................................Equal 
Total Time ...............................................9 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results in Terms of Sample Size 
        Acc-       
    Equiv Actual Ref  rual       
    Haz Haz Haz Acc- Time/   Ref Trt   
    Ratio Ratio Rate rual Total Ref Trt to to   
Power N1 N2 N (HR0) (HR) (h1) Pat'n Time Loss Loss Trt Ref Alpha Beta 
.9000 933 933 1866 1.30 1.00 .0446 Equal 4 / 9 .0000 .0000 .0000 .0000 .0500 .1000 
 
Numeric Results in Terms of Events 
        Acc-       
    Equiv Actual Ref  rual       
 Ref Trt Total Haz Haz Haz Acc- Time/   Ref Trt   
 Evts Evts Evts Ratio Ratio Rate rual Total Ref Trt to to   
Power E1 E2 E (HR0) (HR) (h1) Pat'n Time Loss Loss Trt Ref Alpha Beta 
.9000 249.3 249.3 498.6 1.30 1.00 .0446 Equal 4 / 9 .0000 .0000 .0000 .0000 .0500 .1000 
 

Note that the number of events (499) matches Jung’s results exactly. The sample size of 1866 is 
slightly less than Jung’s 1891. This difference occurs because these results were obtained for 4 
years of accrual, not 3.8, and because we used Lakatos’ method for transforming the number of 
events into the sample size. 

Example 4 – Inputting Time-Dependent Hazard Rates 
from a Spreadsheet  
Time-dependent parameters (hazard rates, losses to follow-up, etc) may be entered. Example 4 of 
Chapter 715 presents an extensive example of how this is done for the logrank test, so we will not 
duplicate that documentation here. 
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Chapter 710 

Group-Sequential 
Logrank Tests 
Introduction 
Clinical trials are longitudinal. They accumulate data sequentially through time. The participants 
cannot be enrolled and randomized on the same day. Instead, they are enrolled as they enter the 
study. It may take several years to enroll enough patients to meet sample size requirements. 
Because clinical trials are long term studies, it is in the interest of both the participants and the 
researchers to monitor the accumulating information for early convincing evidence of either harm 
or benefit. This permits early termination of the trial.  

Group sequential methods allow statistical tests to be performed on accumulating data while a 
phase III clinical trial is ongoing. Statistical theory and practical experience with these designs 
have shown that making four or five interim analyses is almost as effective in detecting large 
differences between treatment groups as performing a new analysis after each new data value. 
Besides saving time and resources, such a strategy can reduce the experimental subject’s 
exposure to an inferior treatment and make superior treatments available sooner.  

When repeated significance testing occurs on the same data, adjustments have to be made to the 
hypothesis testing procedure to maintain overall significance and power levels. The landmark 
paper of Lan & DeMets (1983) provided the theory behind the alpha spending function approach 
to group sequential testing. This paper built upon the earlier work of Armitage, McPherson, & 
Rowe (1969), Pocock (1977), and O’Brien & Fleming (1979). PASS implements the methods 
given in Reboussin, DeMets, Kim, & Lan (1992) to calculate the power and sample sizes of 
various group sequential designs. 

This module calculates sample size and power for group sequential designs used to compare two 
survival curves. Other modules perform similar analyses for the comparison of means and 
proportions. The program allows you to vary number and times of interim tests, type of alpha 
spending function, and test boundaries. It also gives you complete flexibility in solving for power, 
significance level, sample size, or effect size. The results are displayed in both numeric reports 
and informative graphics.  
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Technical Details 
In many clinical trials, patients are recruited and randomized to receive a particular treatment, 
either experimental or control, and then monitored until either a critical event occurs or the study 
is ended. The length of time the patient is monitored until the critical event occurs is called the 
follow-up time. After the study is ended, the follow-up times of the patients in the two groups are 
compared using the logrank test in what is often called a survival analysis.  

When the critical event does not occur for a patient by the time the study is ended, the follow-up 
time is said to have been censored. Although the actual event time is not known for this patient, it 
is known that the event time will be greater than the follow-up time. Hence, some information is 
gleaned from these participants. Because of this censoring, the usual tests of means or proportions 
cannot be used. The logrank test was developed to provide a statistical test comparing the efficacy 
of the two treatments. 

The Hazard Ratio (HR) 
Suppose the critical event is death. The survival distribution of each treatment can be 
characterized by the instantaneous death rates, λ1 andλ2 . An instantaneous death rate, often 
called the hazard, is the probability of death in a short interval of time. The comparison of the 
efficacies of the two treatments is often formalized by considering the ratio of the hazard, or 
hazard ratio (HR).  

HR =
λ
λ

2

1

 

Although the logrank test concerns the ratio of the hazard rates of the two groups, when planning 
a study, it may be easier to obtain information about the expected proportion surviving during the 
trial. It turns out that the hazard ratio can be computed from the survival proportions, S1 and S2, 
using the equation 

( )
( )

HR
S
S

=
log
log

2
1

 

when the hazard ratio is constant through time. 

Assuming that group one is the control group, it may be easiest during the planning stages of a 
study to find S1 and state the minimum value of HR that would make the experimental treatment 
useful. The last equation can then be manipulated to calculate a value for S2 as follows 

( )( ){ }S HR S2 1= exp log . 

Sometimes it is more convenient to state hazard ratio in terms of the median survival times. In 
this case, the hazard ratio is estimated using 

HR M
M

= 1

2

 

when the hazard ratio is constant for different times. 
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The Logrank Statistic 
The following results are excerpted from Reboussin (1992). The logrank statistic is given by the 
equation 

( )L d x r
r r

i ic

ic iti

d

=
+

⎛
⎝
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⎞
⎠
⎟

=
∑

1

 

where d is the number of events, is 1 if the event at time is in the control group and 0 if it is 
in the treatment group, r is the number of patients in the control group at risk just be before , 
and is the corresponding number of patients at risk in the treatment group.  

xi ti

ic ti

rit

If r and HR is close to 1, then the sequential logrank statistic is (approximately) ric it≈

( )z
L d

dk
k

k

= 2 . 

The subscript k indicates that the computations use all data that are available at the time of the kth 
interim analysis or kth look (k goes from 1 to K).  

Spending Functions 
Lan and DeMets (1983) introduced alpha spending functions, ( )α τ , that determine a set of 
boundaries for the sequence of test statistics . These boundaries are the 
critical values of the sequential hypothesis tests. That is, after each interim test, the trial is 
continued as long as 

b b bK1 2, , ,L z z1 2 zK, , ,L

z bk < k . When z bk ≥ k , the hypothesis of equal means is rejected and the 
trial is stopped early.  

The time argumentτ either represents the proportion of elapsed time to the maximum duration of 
the trial or the proportion of the sample that has been collected. When elapsed time is used, it is 
referred to as calendar time. When time is measured in terms of the sample, it is referred to as 
information time. Since it is a proportion,τ can only vary between zero and one. 

Alpha spending functions have the characteristics: 

( )
( )

α

α α

0 0

1

=

=
 

The last characteristic guarantees a fixed α  level when the trial is complete. That is,  

( ) ( )Pr z b or z b or or z bk k1 1 2 2≥ ≥ ≥ =L α τ  

This methodology is very flexible since neither the times nor the number of analyses must be 
specified in advance. Only the functional form of ( )α τ  must be specified.  

PASS provides five popular spending functions plus the ability to enter and analyze your own 
boundaries. These are calculated as follows: 
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1.  O’Brien-Fleming     2 2 2− ⎛
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2.  Pocock     ( )  ( )α τln 1 1+ −e
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3.  Alpha * time     ατ  
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4.  Alpha * time^1.5     ατ 3 2/  
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5.  Alpha * time^2      ατ 2
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6.  User Supplied 

A custom set of boundaries may be entered. 

The O’Brien-Fleming boundaries are commonly used because they do not significantly increase 
the overall sample size and because they are conservative early in the trial. Conservative in the 
sense that the means must be extremely different before statistical significance is indicated. The 
Pocock boundaries are nearly equal for all times. The Alpha*t boundaries use equal amounts of 
alpha when the looks are equally spaced. You can enter your own set of boundaries using the 
User Supplied option. 

Sequential Theory 
A detailed account of the methodology is contained in Lan & DeMets (1983), DeMets & Lan 
(1984), Lan & Zucker (1993), and DeMets & Lan (1994). A brief summary of the theoretical 
basis of the method will be presented here.  

Group sequential procedures for interim analysis are based on their equivalence to discrete 
boundary crossing of a Brownian motion process with drift parameter θ . The test statistics  

follow the multivariate normal distribution with means 

zk

θ τ k  and, for , covariances j k≤

τ τk / j . The drift is related to the parameters of the z-test through one of the equations 

( )θ =
log HR dk

2
  (exponential survival) or 

( )
θ =

−
+

1
1

HR d
HR

k   (proportional hazards). 
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These equations may be solved for , the required number of events, giving dk

( )[ ]
d

HR
k =

4 2

2
θ

log
 (exponential survival) or 

( )d
HR
HRk =

+
−

⎛

⎝
⎜

⎞

⎠
⎟

1
1

2
θ

 (proportional hazards). 

In survival analysis, the size of a sample is measured in terms of number of events rather than 
number of patients because it is probable that many of the patients will be censored—their event 
times are not known. In order to ensure that the sample size produces the required number of 
events, it must be inflated by the event rates.  

The expected number of events can be computed from the proportion surviving using the 
equation 

( ) ( )d
N S N S

k =
− + −1 1

2
1 2  

where N is the total sample size (assumed to be split evenly between groups). This can be solved 
for N to give the sample size as 

N d
S S

k=
− −

2
2 1 2

. 

Hence, the algorithm is as follows: 

1.  Compute boundary values based on a specified spending function and alpha value. 

2.  Calculate the drift parameter based on those boundary values and a specified power 
value. 

3.  Use the drift parameter and the above equation to calculate the appropriate event size per 
group dk . 

4.  Use the event size to compute the appropriate sample size, N. 

Procedure Tabs 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains the parameters associated with the z-test such as the survival rates, sample 
sizes, alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are S1, S2, Alpha, Power and Beta, or N. Under most situations, you will 
select either Power and Beta or N. 
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Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal survival 
curves when in fact the curves are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when you reject the null hypothesis of equal survival curves when in fact the curves are equal.  

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Total Sample Size) 
Enter a value (or range of values) for the total sample size. Each group is assumed to have a 
sample size of N/2. You may enter a range of values such as 100 to 1000 by 100.  

Note that the sample size is based implicitly on the length of the study since we used the equation 

N d
S S

k=
− −

2
2 1 2

 

to estimate the necessary sample size. 

Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided hypothesis is selected, the 
value of alpha is halved. Everything else remains the same. 

Note that the accepted procedure is to use Two-Sided unless you can justify using a one-sided 
test.  
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Survival Time Assumption 
Calculations can be based on the assumption of exponential survival times or proportional 
hazards. The proportional hazards assumption is the less restrictive and the one that is 
recommended. 

• Exponential Survival 
The survival curves follow exponential distributions. This is the most restrictive assumption. 

• Proportional Hazards 
The hazards of the two groups are proportional. 

Effect Size 

S1 (Proportion Surviving 1) 
S1 is the proportion of patients belonging to group 1 (controls) that are expected to survive during 
the study. Since S1 is a proportion, it must be between zero and one. In many studies, this is the 
proportion surviving in the regular population with the standard treatment. 

You may enter a range of values such as 0.1, 0.2, 0.3 or 0.1 to 0.9 by 0.2. 

S2 (Proportion Surviving 2) 
S2 is the proportion of patients in the experimental group that survive during the study. This is not 
necessarily the expected proportion. Rather, you may set it to that proportion that, if achieved, 
would be of special interest. Values below (or above) this amount would not be of interest. For 
example, if the standard one-year survival proportion is 0.2 and the new treatment raises this 
proportion to 0.3 (a 50% increase in the proportion surviving), others may be interested in 
adopting this new treatment. 

Sometimes, researchers wish to state the alternative hypothesis in terms of the hazard ratio, HR, 
rather than the value of S2. Using the fact that 

( )
( )

HR
S
S

=
log
log

2
1

, 

An appropriate value for S2 may be calculated from S1 and HR using the equation 

( )( ){ }S HR S2 1= exp log . 

Sometimes it is more convenient to state hazard ratio in terms of the median survival times. In 
this case, the hazard ratio is estimated using 

HR M
M

= 1

2

 

and the above equation is used to find S2. 

Since S2 is a proportion, it must remain between zero and one. You may enter a range of values 
such as 0.1, 0.2, 0.3 or 0.1 to 0.9 by 0.2. 
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Look Details 
The Sequential tab contains the parameters associated with Group Sequential Design such as the 
type of spending function, the times, and so on. 

Number of Looks 
This is the number of interim analyses (including the final analysis). For example, a five here 
means that four interim analyses will be run in addition to the final analysis. 

Boundary Truncation 
You can truncate the boundary values at a specified value. For example, you might decide that no 
boundaries should be larger than 4.0. If you want to implement a boundary limit, enter the value 
here.  

If you do not want a boundary limit, enter None here. 

Spending Function 
Specify which alpha spending function to use. The most popular is the O'Brien-Fleming boundary 
that makes early tests very conservative. Select User Specified if you want to enter your own set 
of boundaries. 

Max Time 
This is the total running time of the trial. It is used to convert the values in the Times box to 
fractions. The units (months or years) do not matter, as long as they are consistent with those 
entered in the Times box. 

For example, suppose Max Time = 3 and Times = 1, 2, 3. Interim analyses would be assumed to 
have occurred at 0.33, 0.67, and 1.00. 

Times 
Enter a list of time values here at which the interim analyses will occur. These values are scaled 
according to the value of the Max Time option. 

For example, suppose a 48-month trial calls for interim analyses at 12, 24, 36, and 48 months. 
You could set Max Time to 48 and enter 12,24,36,48 here or you could set Max Time to 1.0 and 
enter 0.25,0.50,0.75,1.00 here.  

The number of times entered here must match the value of the Number of Looks. 

• Equally Spaced 
If you are planning to conduct the interim analyses at equally spaced points in time, you can 
enter Equally Spaced and the program will generate the appropriate time values for you. 

Informations 
You can weight the interim analyses on the amount of information obtained at each time point 
rather than on actual calendar time. If you would like to do this, enter the information amounts 
here. Usually, these values are the sample sizes obtained up to the time of the analysis. 

For example, you might enter 50, 76, 103, 150 to indicate that 50 individuals where included in 
the first interim analysis, 76 in the second, and so on. 
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Upper and Lower Boundaries (Spending = User) 
If the Spending Function is set to User Supplied you can enter a set of lower test boundaries, one 
for each interim analysis. The lower boundaries should be negative and the upper boundaries 
should be positive. Typical entries are 4,3,3,3,2 and 4,3,2,2,2. 

• Symmetric 
If you only want to enter the upper boundaries and have them copied with a change in sign to 
the lower boundaries, enter Symmetric for the lower boundaries. 

Bnd Plot Axes Tab 
The Bnd Plot Axes tab, short for Boundary Plot Axes tab, allows the axes of the spending 
function plots to be set separately from those of the power plots. The options are identical to those 
of the Axes tab. 

Options Tab 
The Options tab controls the convergence of the various iterative algorithms used in the 
calculations. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations to be run before the search for the criterion of interest 
(Alpha, Beta, etc.) is aborted. When the maximum number of iterations is reached without 
convergence, the criterion is left blank.  

Recommended: 500 (or more). 

Maximum Iterations (Lan-Demets algorithm) 
This is the maximum number of iterations used in the Lan-DeMets algorithm during its search 
routine. We recommend a value of at least 200. 

Tolerance 

Probability Tolerance 
During the calculation of the probabilities associated with a set of boundary values, probabilities 
less than this are assumed to be zero. 

We suggest a value of 0.00000000001. 

Power Tolerance 
This is the convergence level for the search for the spending function values that achieve a certain 
power. Once the iteration changes are less than this amount, convergence is assumed. We suggest 
a value of 0.0000001. 

If the search is too time consuming, you might try increasing this value. 
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Alpha Tolerance 
This is the convergence level for the search for a given alpha value. Once the changes in the 
computed alpha value are less than this amount, convergence is assumed and iterations stop. We 
suggest a value of 0.0001. 

This option is only used when you are searching for alpha. 

If the search is too time consuming, you may try increasing this value. 

Example 1 – Finding the Sample Size 
A clinical trial is to be conducted over a two-year period to compare the hazard rate of a new 
treatment to that of the current treatment. The proportion surviving for two years using the current 
treatment is 0.3. The health community will be interested in the new treatment if the proportion 
surviving is increased to 0.45, a 50% increase. So that the sample size requirements for several 
survival proportions can be compared, it is also of interest to compute the sample size at response 
rates of 0.30, 0.35, 0.40, and 0.50. Assume the survival times are exponential.  

Testing will be done at the 0.05 significance level and the power should be set to 0.10. A total of 
four tests are going to be performed on the data as they are obtained. The O’Brien-Fleming 
boundaries will be used.  

Find the necessary sample sizes and test boundaries assuming equal sample sizes for each arm 
and two-sided hypothesis tests. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Logrank Tests procedure window by 
clicking on Group-Sequential Tests, then Two Survival Curves (Logrank Test). You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
Alternative Hypothesis ............................Two-Sided 
Survival Time Assumption.......................Exponential Survival 
S1 (Proportion Surviving 1).....................0.3 
S2 (Proportion Surviving 2).....................0.35, 0.40, 0.45, 0.50 
Number of Looks.....................................4 
Spending Function ..................................O’Brien-Fleming 
Max Time ................................................2 
Times.......................................................Equally Spaced 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided LogRank Test (Assuming Exponential Survival) 
 
 Total Total 
 Sample Required   Proportion Proportion Hazard 
Power Size (N) Events Alpha Beta Surv. (S1) Surv. (S2) Ratio 
0.900003 3378 2280 0.050000 0.099997 0.3000 0.3500 0.8720 
0.900267 884 575 0.050000 0.099733 0.3000 0.4000 0.7611 
0.900626 407 254 0.050000 0.099374 0.3000 0.4500 0.6632 
0.900018 234 140 0.050000 0.099982 0.3000 0.5000 0.5757 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N is the number of items sampled from each group. 
Events is the number of events that must occur in each group. 
Alpha is the probability of rejecting a true null hypothesis in at least one of the sequential tests. 
Beta is the probability of accepting a false null hypothesis at the conclusion of all tests. 
S1 is the proportion surviving in group 1. 
S2 is the proportion surviving in group 2. 
HR is the hazard ratio. It is calculated using Log(S2)/Log(S1). 
 
Summary Statements 
A total sample size of 3378 (split equally between the two groups), or 2280 events, achieves 
90% power to detect a hazard rate of 0.8720 when the proportions surviving in each group are 
0.3000 and 0.3500 at a significance level (alpha) of 0.050000 using a two-sided log rank test. 
These results assume that 4 sequential tests are made using the O'Brien-Fleming spending 
function to determine the test boundaries and that the survival times are exponential. 
 

This report shows the values of each of the parameters, one scenario per row. Note that 254 
events are required when S2 = 0.45. Based on the expected survival proportions, this many events 
will occur if the overall sample size is 407.  

Total Sample Size (N) 
This is the estimated sample size that is needed to obtain the necessary number of events. 

Total Required Events 
This is the number of events (deaths, etc.) that are required to achieve the desired power levels. 

Plots Section 
  

 

N vs S2 with S1=0.3000 Alpha=0.05 Power=0.90
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This plot shows that an increase in sample size from under 1000 to well over 3000 is necessary 
when the detectable proportion surviving is reduced from 0.4 to 0.35. 

Details Section 
 
Details when Spending = O'Brien-Fleming, N = 407, d = 254, S1 = 0.3000, S2 = 0.4500 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.5000 -4.33263 4.33263 0.000015 0.000015 0.000015 0.003516 0.003516  
2 1.0000 -2.96311 2.96311 0.003045 0.003036 0.003051 0.255183 0.258699  
3 1.5000 -2.35902 2.35902 0.018323 0.016248 0.019299 0.427665 0.686364  
4 2.0000 -2.01406 2.01406 0.044003 0.030701 0.050000 0.214262 0.900626  
Drift 3.27466 
 

This report shows information about the individual interim tests. One report is generated for each 
scenario. 

Look 
These are the sequence numbers of the interim tests. 

Time 
These are the time points at which the interim tests are conducted. Since the Max Time was set to 
2 (for two years), these time values are in years. Hence, the first interim test is at half a year, the 
second at one year, and so on. 

We could have set Max Time to 24 so that the time scale was in months. 

Lower and Upper Boundary 
These are the test boundaries. If the computed value of the test statistic z is between these values, 
the trial should continue. Otherwise, the trial can be stopped.  

Nominal Alpha 
This is the value of alpha for these boundaries if they were used for a single, standalone, test. 
Hence, this is the significance level that must be found for this look in a standard statistical 
package that does not adjust for multiple looks. 

Inc Alpha 
This is the amount of alpha that is spent by this interim test. It is close to, but not equal to, the 
value of alpha that would be achieved if only a single test was conducted. For example, if we 
lookup the third value, 2.35902, in normal probability tables, we find that this corresponds to a 
(two-sided) alpha of 0.018323. However, the entry is 0.016248. The difference is due to the 
correction that must be made for multiple tests. 

Total Alpha 
This is the total amount of alpha that is used up to and including the current test.  

Inc Power 
These are the amounts that are added to the total power at each interim test. They are often called 
the exit probabilities because they give the probability that significance is found and the trial is 
stopped, given the alternative hypothesis.  
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Total Power 
These are the cumulative power values. They are also the cumulative exit probabilities. That is, 
they are the probability that the trial is stopped at or before the corresponding time. 

Drift 
This is the value of the Brownian motion drift parameter. 

Boundary Plots 
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This plot shows the interim boundaries for each look. This plot shows very dramatically that the 
results must be extremely significant at early looks, but that they are near the single test boundary 
(1.96 and -1.96) at the last look. 

Example 2 – Finding the Power 
Continuing the scenario began in Example1, the researcher wishes to calculate the power of the 
design at sample sizes 50, 250, 450, 650, and 850. Testing will be done at the 0.01, 0.05, 0.10 
significance levels and the overall power will be set to 0.10. Find the power of these sample sizes 
and test boundaries assuming equal sample sizes per arm and two-sided hypothesis tests. 

Proceeding as in Example1, we decide to translate the mean and standard deviation into a percent 
of mean scale. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Logrank Tests procedure window by 
clicking on Group-Sequential Tests, then Two Survival Curves (Logrank Test). You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 



Group-Sequential Logrank Tests  710-15 

Data Tab (continued) 
Alpha .......................................................0.01, 0.05, 0.10 
N (Total Sample Size) .............................50 to 850 by 200 
Alternative Hypothesis ............................Two-Sided 
Survival Time Assumption.......................Exponential Survival 
S1 (Proportion Surviving 1).....................0.3 
S2 (Proportion Surviving 2).....................0.45 
Number of Looks.....................................4 
Spending Function ..................................O’Brien-Fleming 
Max Time ................................................2 
Times.......................................................Equally Spaced 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided LogRank Test (Assuming Exponential Survival) 
 
 Total Total 
 Sample Required   Proportion Proportion Hazard 
Power Size (N) Events Alpha Beta Surv. (S1) Surv. (S2) Ratio 
0.075632 50 31 0.010000 0.924368 0.3000 0.4500 0.6632 
0.491011 250 156 0.010000 0.508989 0.3000 0.4500 0.6632 
0.802921 450 281 0.010000 0.197079 0.3000 0.4500 0.6632 
0.938923 650 406 0.010000 0.061077 0.3000 0.4500 0.6632 
0.983780 850 531 0.010000 0.016220 0.3000 0.4500 0.6632 
0.205032 50 31 0.050000 0.794968 0.3000 0.4500 0.6632 
0.719225 250 156 0.050000 0.280775 0.3000 0.4500 0.6632 
0.926894 450 281 0.050000 0.073106 0.3000 0.4500 0.6632 
0.984044 650 406 0.050000 0.015956 0.3000 0.4500 0.6632 
0.996907 850 531 0.050000 0.003093 0.3000 0.4500 0.6632 
0.305105 50 31 0.100000 0.694895 0.3000 0.4500 0.6632 
0.812103 250 156 0.100000 0.187897 0.3000 0.4500 0.6632 
0.960490 450 281 0.100000 0.039510 0.3000 0.4500 0.6632 
0.992807 650 406 0.100000 0.007193 0.3000 0.4500 0.6632 
0.998800 850 531 0.100000 0.001200 0.3000 0.4500 0.6632 
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These data show the power for various sample sizes and alphas. It is interesting to note that once 
the sample size is greater than about 450, the value of alpha has comparatively little difference on 
the value of power. 
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Example 3 – Effect of Number of Looks 
Continuing with examples one and two, it is interesting to determine the impact of the number of 
looks on power. PASS allows only one value for the Number of Looks parameter per run, so it 
will be necessary to run several analyses. To conduct this study, set alpha to 0.05, N to 407, and 
leave the other parameters as before. Run the analysis with Number of Looks equal to 1, 2, 3, 4, 
6, 8, 10, and 20. Record the power for each run. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Logrank Tests procedure window by 
clicking on Group-Sequential Tests, then Two Survival Curves (Logrank Test). You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................407 
Alternative Hypothesis ............................Two-Sided 
Survival Time Assumption.......................Exponential Survival 
S1 (Proportion Surviving 1) .....................0.3 
S2 (Proportion Surviving 2) .....................0.45 
Number of Looks.....................................1 (Also run with 2, 3, 4, 6, 8, 10, and 20) 
Spending Function ..................................O’Brien-Fleming 
Max Time.................................................2 
Times.......................................................Equally Spaced 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Logrank Test (Assuming Exponential Survival) 
 
Power N Events Alpha Beta S1 S2 Looks 
0.905693 407 254 0.050000 0.094307 0.3000 0.4500 1 
0.904719 407 254 0.050000 0.095281 0.3000 0.4500 2 
0.902412 407 254 0.050000 0.097588 0.3000 0.4500 3 
0.900626 407 254 0.050000 0.099374 0.3000 0.4500 4 
0.898243 407 254 0.050000 0.101757 0.3000 0.4500 6 
0.896763 407 254 0.050000 0.103237 0.3000 0.4500 8 
0.895758 407 254 0.050001 0.104242 0.3000 0.4500 10 
0.893398 407 254 0.050001 0.106602 0.3000 0.4500 20 
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This analysis shows how little the number of looks impacts the power of the design. The power of 
a study with no interim looks is 0.905693. When twenty interim looks are made, the power falls 
to 0.893398—a very small change. 

Example 4 – Studying a Boundary Set 
Continuing with the previous examples, suppose that you are presented with a set of boundaries 
and want to find the quality of the design (as measured by alpha and power). This is easy to do 
with PASS. Suppose that the analysis is to be run with five interim looks at equally spaced time 
points. The upper boundaries to be studied are 3.5, 3.5, 3.0, 2.5, 2.0. The lower boundaries are 
symmetric. The analysis would be run as follows. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Logrank Tests procedure window by 
clicking on Group-Sequential Tests, then Two Survival Curves (Logrank Test). You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 (will be calculated from boundaries) 
N (Total Sample Size) .............................407 
Alternative Hypothesis ............................Two-Sided 
Survival Time Assumption.......................Exponential Survival 
S1 (Proportion Surviving 1).....................0.30 
S2 (Proportion Surviving 2).....................0.45 
Number of Looks.....................................5 
Spending Function ..................................User Supplied 
Max Time ................................................2 
Times.......................................................Equally Spaced 
Lower Boundaries ...................................Symmetric 
Upper Boundaries ...................................3.5, 3.5, 3.0, 2.5, 2.0 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Logrank Test (Assuming Exponential Survival) 
 
 Total Total 
 Sample Required   Proportion Proportion Hazard 
Power Size (N) Events Alpha Beta Surv. (S1) Surv. (S2) Ratio 
0.900746 407 254 0.048157 0.099254 0.3000 0.4500 0.6632 

 
Details when Spending = User Supplied, N = 407, d=254, S1 = 0.3000, S2 = 0.4500 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.4000 -3.50000 3.50000 0.000465 0.000465 0.000465 0.020899 0.020899  
2 0.8000 -3.50000 3.50000 0.000465 0.000408 0.000874 0.063132 0.084031  
3 1.2000 -3.00000 3.00000 0.002700 0.002410 0.003284 0.243522 0.327553  
4 1.6000 -2.50000 2.50000 0.012419 0.010331 0.013615 0.343072 0.670625  
5 2.0000 -2.00000 2.00000 0.045500 0.034542 0.048157 0.230122 0.900746  
Drift 3.27466 
 

The power for this design is about 0.90. This value depends on both the boundaries and the 
sample size. The alpha level is about 0.048. This value only depends on the boundaries. 

Example 5 – Validation using O’Brien-Fleming 
Boundaries 
Reboussin (1992) presents an example for binomial distributed data for a design with two-sided 
O’Brien-Fleming boundaries, looks = 3, alpha = 0.05, beta = 0.10, S1 = 0.30, S2 = 0.786 (which 
gives a hazard ratio of 0.20). They compute a drift of 3.261 and the number of events at 16.42. 
The upper boundaries are: 4.8769, 3.3569, 2.6803, 2.2898, 2.0310.  

To test that PASS provides the same result, enter the following. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Logrank Tests procedure window by 
clicking on Group-Sequential Tests, then Two Survival Curves (Logrank Test). You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Total Sample Size) .............................Ignored since this is the Find setting 
Alternative Hypothesis ............................Two-Sided 
Survival Time Assumption.......................Exponential Survival 



Group-Sequential Logrank Tests  710-19 

Data Tab (continued) 
S1 (Proportion Surviving 1).....................0.30 
S2 (Proportion Surviving 2).....................0.786 
Number of Looks.....................................5 
Spending Function ..................................O’Brien-Fleming 
Max Time ................................................1 
Times.......................................................Equally Spaced 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Logrank Test (Assuming Exponential Survival) 
 
 Total Total 
 Sample Required   Proportion Proportion Hazard 
Power Size (N) Events Alpha Beta Surv. (S1) Surv. (S2) Ratio 
0.905173 37 17 0.050000 0.094827 0.3000 0.7860 0.2000 
 
Details when Spending = O'Brien-Fleming, N = 37, d = 17, S1 = 0.3000, S2 = 0.7860 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.2000 -4.87688 4.87688 0.000001 0.000001 0.000001 0.000341 0.000341  
2 0.4000 -3.35695 3.35695 0.000788 0.000787 0.000788 0.102760 0.103101  
3 0.6000 -2.68026 2.68026 0.007357 0.006828 0.007616 0.352450 0.455551  
4 0.8000 -2.28979 2.28979 0.022034 0.016807 0.024424 0.298953 0.754504  
5 1.0000 -2.03100 2.03100 0.042255 0.025576 0.050000 0.150669 0.905173  
Drift 3.30902 
 

The number of events, rounded to 17, matches the 16.42 reported in Reboussin (1992). 
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Chapter 715 

Logrank Tests 
(Lakatos) 
Introduction 
This module computes the sample size and power of the logrank test for equality of survival 
distributions under very general assumptions. Accrual time, follow-up time, loss during follow 
up, noncompliance, and time-dependent hazard rates are parameters that can be set.  

A clinical trial is often employed to test the equality of survival distributions for two treatment 
groups. For example, a researcher might wish to determine if Beta-Blocker A enhances the 
survival of newly diagnosed myocardial infarction patients over that of the standard Beta-Blocker 
B. The question being considered is whether the pattern of survival is different. 

The two-sample t-test is not appropriate for two reasons. First, the data consist of the length of 
survival (time to failure), which is often highly skewed, so the usual normality assumption cannot 
be validated. Second, since the purpose of the treatment is to increase survival time, it is likely 
(and desirable) that some of the individuals in the study will survive longer than the planned 
duration of the study. The survival times of these individuals are then said to be censored. These 
times provide valuable information, but they are not the actual survival times. Hence, special 
methods have to be employed which use both regular and censored survival times.  

The logrank test is one of the most popular tests for comparing two survival distributions. It is 
easy to apply and is usually more powerful than an analysis based simply on proportions. It 
compares survival across the whole spectrum of time, not just at one or two points. This module 
allows the sample size and power of the logrank test to be analyzed under very general 
conditions. 

Power and sample size calculations for the logrank test have been studied by several authors. This 
PASS module uses the method of Lakatos (1988) because of its generality. This method is based 
on a Markov model that yields the asymptotic mean and variance of the logrank statistic under 
very general conditions. 

Four Procedures Documented Here 
There are four closely-related procedures that are documented in this chapter. These procedures 
are identical except for the parameterization of the effect size. The parameterization can be in 
terms of hazard rates, median survival time, proportion surviving, and mortality (proportion 
dying). Each of these options is listed separately. 

The Markov process methodology divides the total study time into K equal-length intervals. The 
value of K is large enough so that the distribution within an interval can be assumed to follow the 
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exponential distribution. The next section presents pertinent results for the exponential 
distribution. 

Exponential Distribution 
The density function of the exponential is defined as 

( ) hthe =tf −  

The probability of surviving the first t years is  

( ) hte = tS −  

The mortality (probability of dying during the first t years) is  

( ) hte = tM −−1  

For an exponential distribution, the mean survival is 1/h and the median is ln(2)/h. 

Notice that it is easy to translate between the hazard rate, the proportion surviving, the mortality, 
and the median survival time. The choice of which parameterization is used is arbitrary and is 
selected according to the convenience of the user. 

Hazard Rate Parameterization 
In this case, the hazard rates for the control and treatment groups are specified directly.  

Median Survival Time Parameterization 
Here, the median survival time is specified. These are transformed to hazard rates using the 
relationship h = ln(2) / MST.  

Proportion Surviving Parameterization 
In this case, the proportion surviving until a given time T0 is specified. These are transformed to 
hazard rates using the relationship h = –ln(S(T0)) / T0. Note that when separate proportions 
surviving are given for each time period, T0 is taken to be the time period number.  

Mortality Parameterization 
Here, the mortality until a given time T0 is specified. These are transformed to hazard rates using 
the relationship h = –ln(1 – M(T0)) / T0. Note that when separate mortalities are given for each 
time period, T0 is taken to be the time period number.  
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Comparison of Lakatos Procedures to the other PASS 
Logrank Procedures 
The follow chart lists the capabilities and assumptions of each of the logrank procedures available 
in PASS.  
 
 Algorithm 

Feature/Capability 
Simple 

(Freedman) Advanced (Lachin) 
Markov Process 

(Lakatos) 
Test Statistic Logrank statistic Mean hazard difference* Logrank statistic 

Hazard Ratio Constant Constant Any pattern including 
time-dependent 

Basic Time Distribution Constant hazard 
ratio** 

Constant hazard ratio 
(exponential) Any distribution 

Loss to Follow Up 
Parameters Yes Yes Yes 

Accrual Parameters No Yes Yes 
Drop In Parameters No No Yes 
Noncompliance Parameters No No Yes 
Duration Parameters No Yes Yes 
Input Hazard Ratios No No Yes 
Input Median Survival Times No No Yes 
Input Proportion Surviving Yes Yes Yes 
Input Mortality Rates No No Yes 

 

*Simulation shows power similar to logrank statistic 
**Not necessarily exponential 

Comparison of Results 
It is informative to calculate sample sizes for various scenarios using several of the methods. The 
scenario used to compare the various methods was S1 = 0.5, S2 = 0.7, T0 = 4, Loss to Follow Up 
= 0.05, Accrual Time = 2, Total Time = 4, and N = 200. Note that the Freedman method in PASS 
does not allow the input of T0, Accrual Time, or Total Time, so it is much less comparable. The 
Lachin/Foulkes and Lakatos values are very similar. 
 

 
Computation Method S1 S2 T0 

Loss to 
Follow 

Up 
Accrual 

Time 
Total 
Time N Power 

PASS (Freedman) 0.5 0.7 ? 0.05 0 ? 200 0.7979 
PASS (Lachin/Foulkes) 0.5 0.7 4 0.05 2 4 200 0.7219 
PASS (Lakatos) 0.5 0.7 4 0.05 2 4 200 0.7144 
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Technical Details 
The logrank statistic L is defined as 
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where Xi is an indicator for the control group, n1i is the number at risk in the experimental group 
just before the ith  event (death), and n2i is the number at risk in the control group just before the ith  
event (death). 

Following Freedman (1982) and Lakatos (1988), the trial is partitioned into K equal intervals. The 
distribution of L is asymptotically normal with mean E and variance V given by 
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and  and  are the hazards of dying in the treatment and control groups respectively, just 
before the ith death in the kth interval.  is the number of deaths in the kth interval. 

kih1 kih2

kd

Next, assume that the intervals are short enough so that the parameters are constant within an 
interval. That is, so that 

kki φφ = , kki θθ = , kki hh 11 = , kki hh 22 =  
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The values of E and V then reduce to 
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and kρ  is the proportion of the events (deaths) that occur in interval k. 

The intervals mentioned above are constructed to correspond to a non-stationary Markov process, 
one for each group. This Markov process is defined as follows 

1,11,,1,1 −−= kkkk STS  

where  is a vector giving the occupancy probabilities for each of the four possible states of 

the process: lost, dead, active complier, or active non-complier and  is the transition matrix 
constructed so that each element gives the probability of transferring from state j1 to state j2 in 
the treatment group. A similar formulation is defined for the control group.  

kS ,1
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At the beginning of the trial 

where q1 is the control proportion of the total sample.  

The transition matrices may be different for each group, but this does not need to be so. Its 
elements are as follows (the first row and colu  contains labels which are not part of the actual 
matrix). 

where  and  represent the sum of the other elements of their columns. 

These values represent parameters of the population such as event rates, loss to follow-up rates, 
and recruitment rates. 

The parameters
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, and  are estimated from the occupancy probabilities as follows kdkφ  , kθ

Events (deaths) 

2,1,12,,1,1 −−= kkk ssd  

2,1,22,,2,2 −−= kkk ssd  

Censored 

1,1,11,,1,1 −−= kki ssc  

1,1,21,,2,2 −−= kki ssc  

At Risk 

( )4,1,13,1,1,1 −− += kkk ssa  

( )4,1,23,1,2,2 −− += kkk ssa  

Hazard 

kkk adh ,1,1,1 /=  

kkk adh ,2,2,2 /=  
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Finally, the interval parameters are given by 
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Power Calculation 
1. Find  such that zα ( )1− =Φ zα α , where ( )Φ x  is the area under the standardized normal 

curve to the left of x. 

2. Calculate and assuming the two transition matrices are the same (H0). Also, 
calculate and assuming the two transition matrices are different (H1) 

3. Calculate: 

4. Calculate: 

0E

1E
0V

1V

00 VzEX αα +=  

1

1

V
EXz −

= α
β  

( )ββ zΦ= .5. Calculate beta and power:  

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. This 
chapter covers four procedures, each of which has different effect size options. However, many of 
the options are common to all four procedures. These common options will be displayed first, 
followed by the various effect size options. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Power and Beta, N, and {effect size}. Note that the effect size 
corresponds to the parameterization that is chosen. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  
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Select Power and Beta when you want to calculate the power.  

Error Rates 

Power (1 – Beta) 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal survival 
curves when in fact the curves are different. 

 and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
0) is also commonly used. 

A single value red here or a ra alues
entered

Alp
This op -I error occurs 
when you reject the null hypothesis of equal survival curves when in fact the curves are equal.  

Val d one. Historically, the value of 0.05 has been used for a 
two-sided test and 0.025 has been used for a one-sided test. You should pick a value for alpha that 
represents the risk of a type-I error you are willing to take in your experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

Values must be between zero
power. Now, 0.90 (Beta = 0.1

may be ente nge of v  such as 0.8 to 0.95 by 0.05 may be 
.  

ha 
tion specifies one or more values for the probability of a type-I error. A type

ues of alpha must be between zero an

N (Total Sample Size) 
This is the combined sample size of both groups. This amount is divided between the two groups 

Proportion in Control Group 
ore values for the proportion of N in the control group. If this value is labeled 
 of the control group is  and the sample size of treatment group is

Proportion Lost or Switching Groups 

using the value of the Proportion in Control Group. You can enter a single value or a list of 
Sample Sizes such as 50 100 150 or 50 to 450 by 100. 

p1 , 
p1 . Np1  N N−

Enter one or m
the sample size
Note that the value of Np1  is rounded to the nearest integer. 

The value of 0.5 results in equal sample sizes per group. 

Controls (or Treatment) Lost 
This is the proportion of subjects in the control (treatment) group that disappear from the study 

different time periods, you would enter those 

during a single time period (month, year, etc.). Multiple entries, such as 0.01 0.03 0.05, are 
allowed. 

When you want to specify different proportions for 
rates into a column of the spreadsheet, one row per time period. You specify the column of the 
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spreadsheet by beginning your entry with an equals sign. For example, if you have entered the 
proportions in column 5, you would enter =C5 here. 

ching to Treatments 
ubjects in the control group that change to a treatment regime similar in 

 

equals sign. For example, if you have entered the 

milar 
 to the control group during a single time period (month, year, etc.). This is sometimes 

referred to as noncompliance. Multiple entries, such as 0.01 0.03 0.05, are allowed. 

Controls Swit
This is the proportion of s
efficacy to the treatment group during a single time period (month, year, etc.). This is sometimes 
referred to as drop in. Multiple entries, such as 0.01 0.03 0.05, are allowed. 

When you want to specify different proportions for different time periods, you would enter those
values into a column of the spreadsheet, one row per time period. You specify the column of the 
spreadsheet by beginning your entry with an 
proportions in column 1, you would enter =C1 here. 

Treatments Switching to Controls 
This is the proportion of subjects in the treatment group that change to a treatment regime si
in efficacy

When you want to specify different proportions for different time periods, you would enter those 
values into a column of the spreadsheet, one row per time period. You specify the column of the 
spreadsheet by beginning your entry with an equals sign. For example, if you have entered the 
proportions in column 2, you would enter =C2 here. 

Effect Size (Hazard Rate) 

h1 (Hazard Rate – Control Group) 
ore hazard rates (instantaneous failure rate) for the control group. For an 
bution, the hazard rate is the inverse of the mean survival time. An estimate of 

ained from the median survival time or from the proportion surviving 

 rates are specified by entering them 
directly. Variable hazard rates are specified as columns of the spreadsheet. When you want to 

fferent time periods, you would enter those rates into a column 

ple umn 2, you 

on. 

Median Survival Time Hazard Rate 

0.173 

 

Specify one or m
exponential distri
the hazard rate may be obt
to a certain time point. This calculation is automated by pressing the Parameter Conversion 
button. 

Hazard rates must be greater than zero. Constant hazard

specify different hazard rates for di
of the spreadsheet, one row per time period. You specify the column (or columns) by beginning 
the entry with an equals sign. For exam , if you have entered the hazard rates in col
would enter =2 here.    

The following examples assume an exponential survival distributi
 

0.5 1.386 

1.0  0.693 

2.0  0.347 

3.0  0.231 

4.0  

5.0  0.139 
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Treatment Group Parameter 
Specify which of the parameters below will be used to specify the treatment group hazard rate. 

) 

e Parameter 

s, you would enter those rates into a column 
d. You specify the column (or columns) by beginning 

 

directly. Variable hazard ratios are specified 
as columns of the spreadsheet. 

ay be obtained from the median survival times, from the hazard 
ast a certain time point by pressing the Parameter 

e 

ple, if you have entered the hazard ratios in column 3, you would enter =3 here. 

h2 (Hazard Rate – Treatment Group
Specify one or more hazard rates (instantaneous failure rate) for the treatment group. An estimate 
of the hazard rate may be obtained from the median survival time or from the proportion 
surviving to a certain time point. This calculation is automated by pressing th
Conversion button. 

Hazard rates must be greater than zero. Constant hazard rates are specified by entering them 
directly. Variable hazard rates are specified as columns of the spreadsheet. When you want to 
specify different hazard rates for different time period
of the spreadsheet, one row per time perio
the entry with an equals sign. For example, if you have entered the hazard rates in column 3, you 
would enter =3 here.    

HR (Hazard Ratio = h2/h1) 
Specify one or more values for the hazard ratio, HR = h2/h1. Hazard ratios must be greater than 
zero. The null hypothesis is that the hazard ratio is 1.0. Typical values of the hazard ratio are from
0.25 to 4.0. 

Constant hazard ratios are specified by entering them 

An estimate of the hazard ratio m
rates, or from the proportion surviving p
Conversion button. 

When you want to specify different hazard ratios for different time periods, you would enter thos
values into a column of the spreadsheet, one row per time period. You specify the column (or 
columns) by beginning your entry with an equals sign. 

For exam

Effect Size (Median Survival Time) 

T1 (Median Survival Time – Control) 
Specify one or more median survival times for the control group. These values must be greater 
than zero. 

Constant median survival times are specified by entering them directly. Variable median survival 
e specified as columns of the spreadsheet. When you want to specify different median 

uld enter those times into a column of the 
n (or columns) by beginning the 
he median survival times in column 

u would enter =2 here. 

times ar
survival times for different time periods, you wo
spreadsheet, one row per time period. You specify the colum
entry with an equals sign. For example, if you have entered t
2, yo    
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The following examples assume an exponential survival distribution. 

0.231 

rameter 
 below will be used to specify the treatment group median 

or more median survival times for the treatment group. These values must be greater 

 are specified by entering them directly. Variable median survival 

 

e 

ratio are from 0.25 to 4.0. 

g them directly. Variable hazard ratios are specified 

d 
m the proportion surviving past a certain time point by pressing the Parameter 

se 
or 

Effect Size (Proportion Surviving) 

 

Median Survival Time Hazard Rate 

0.5 1.386 

1.0  0.693 

2.0     0.347 

3.0  

4.0  0.173 

5.0  0.139 

 

Treatment Group Pa
Specify which of the parameters
survival time. 

T2 (Median Survival Time – Treatment) 
Specify one 
than zero. 

Constant median survival times
times are specified as columns of the spreadsheet. When you want to specify different median 
survival times for different time periods, you would enter those times into a column of the 
spreadsheet, one row per time period. You specify the column (or columns) by beginning the
entry with an equals sign. For example, if you have entered the median survival times in column 
1, you would enter =1 here. 

HR (Hazard Ratio = T1/T2) 
Specify one or more values for the hazard ratio, HR = T1/T2 = h2/h1. Hazard ratios must b
greater than zero. The null hypothesis is that the hazard ratio is 1.0. Typical values of the hazard 

Constant hazard ratios are specified by enterin
as columns of the spreadsheet. 

An estimate of the hazard ratio may be obtained from the median survival times, from the hazar
rates, or fro
Conversion button. 

When you want to specify different hazard ratios for different time periods, you would enter tho
values into a column of the spreadsheet, one row per time period. You specify the column (
columns) by beginning your entry with an equals sign. 

For example, if you have entered the hazard ratios in column 3, you would enter =3 here. 

S1 (Proportion Surviving – Control) 
Specify one or more proportions surviving for the control group. These values must be between 
zero and one. Constant proportions surviving are specified by entering them directly. The values 
represent the proportions surviving until time T0. 
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Variable proportions surviving are specified as columns of the spreadsheet. When you want to 
 different median survival times for different time periods, you would enter those times 

ads er time period. You specify the column (or columns) 
have entered the median survival 

meter 
 which of the parameters below will be used to specify the proportion surviving in the 

ent group. 

roportion Surviving atment) 
ify one or more proportions surviving for the treatment group. These values must be between 

ero and one. Constant proportions surviving are specified by entering them directly. The values 
ntil time T0. 

 to 
es 

f the spreadsheet, one row per time period. You specify the column (or columns) 
 example, if you have entered the proportions 

rd Ratio) 

m 

 

 be obtained from the median survival times, from the hazard 
viving past a certain time point by pressing the Parameter 

 
 spreadsheet, one row per time period. You specify the column (or 

d the hazard ratios in column 3, you would enter =3 here.  

sponding to the proportions surviving. It must be a value greater than zero. 

 
r three years. 

ortion 
surviving is entered as a column because, in that case, the time period is different for each row. 

specify
into a column of the spre heet, one row p
by beginning the entry with an equals sign. For example, if you 
times in column 2, you would enter =2 here.    

Treatment Group Para
Specify
treatm

S2 (P  – Tre
Spec
z
represent the proportions surviving u

Variable proportions surviving are specified as columns of the spreadsheet. When you want
specify different proportions surviving for different time periods, you would enter those tim
into a column o
by beginning the entry with an equals sign. For
surviving in column 3, you would enter =3 here.    

HR (Haza
Specify one or more values for the hazard ratio, HR = h2/h1. Hazard ratios must be greater than 
zero. The null hypothesis is that the hazard ratio is 1.0. Typical values of the hazard ratio are fro
0.25 to 4.0. 

Constant hazard ratios are specified by entering them directly. Variable hazard ratios are specified
as columns of the spreadsheet. 

An estimate of the hazard ratio may
rates, or from the proportion sur
Conversion button. 

When you want to specify different hazard ratios for different time periods, you would enter those
values into a column of the
columns) by beginning your entry with an equals sign. 

For example, if you have entere

T0 (Survival Time) 
This is the time corre

When you say 0.40 survive, you must indicate the number of time periods (years) to which they 
survive. That is, you must say 40% survive over five years. For example, a value of 3 here and
proportion surviving of 0.4 means that 40% survive ove

This value is only used when S1 and S2 are entered as numbers. It is not used when a prop
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Effect Size (Mortality) 

M1 (Mortality – Control) 
Specify one or more mortality values for the control group. These values must be between zero 
and one. Constant mortalities are specified by entering them directly. The values represent the 

me period. You specify the column (or columns) by beginning the 
have entered the mortalities in column 2, you 

st 
pecified by entering them directly. The values 

s until time T0. 

 

 rates, 
rsion 

ould enter =3 here.  

When you say 0.40 die, you must indicate the number of time periods (years) on which this is 
based. For example, a value of 3 here and mortality of 0.4 means that 40% die over the first three 
years. 

This value is only used when M1 and M2 are entered as numbers. It is not used when mortality is 
entered as a column because, in that case, the time period is different for each row. 

proportions dying until time T0. 

Variable mortalities are specified as columns of the spreadsheet. When you want to specify 
different mortalities for different time periods, you would enter those times into a column of the 
spreadsheet, one row per ti
entry with an equals sign. For example, if you 
would enter =2 here.    

Treatment Group Parameter 
Specify which of the parameters below will be used to specify the proportion dying in the 
treatment group. 

M2 (Mortality – Treatment) 
Specify one or more mortalities (proportions dying) for the treatment group. These values mu
be between zero and one. Constant mortalities are s
represent the mortalitie

Variable mortalities are specified as columns of the spreadsheet. When you want to specify 
different mortalities for different time periods, you would enter those times into a column of the 
spreadsheet, one row per time period. You specify the column (or columns) by beginning the 
entry with an equals sign. For example, if you have entered the mortalities in column 3, you 
would enter =3 here.    

MR (Mortality Ratio = M2/M1) 
Specify one or more values for the mortality ratio, MR = M2/M1. Mortality ratios must be greater
than zero. The null hypothesis is that the mortality ratio is 1.0. Typical values of the mortality 
ratio are from 0.25 to 4.0. 

Constant mortality ratios are specified by entering them directly. Variable mortality ratios are 
specified as columns of the spreadsheet. 

An estimate of the mortality ratio may be obtained from median survival times, from hazard
or from the proportions surviving past a certain time point by pressing the Parameter Conve
button. 

When you want to specify different mortality ratios for different time periods, you would enter 
those values into a column of the spreadsheet, one row per time period. You specify the column 
(or columns) by beginning your entry with an equals sign. 

For example, if you have entered the hazard ratios in column 3, you w

T0 (Survival Time) 
This is the time corresponding to the mortality. It must be a value greater than zero. 
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Duration 

Accrual Time (Integers Only) 

alues must be integers. 

 or 

l (patient entry). Two types of entries are possible: 

 specify a uniform accrual rate for all time periods, enter Equal here. 

olumn of the spreadsheet, one row per time period and 
ple, 

 

y) 
mber of time periods (months, years, etc.) in the study. The 

Enter one or more values for the number of time periods (months, years, etc.) during which 
subjects are entered into the study. The total duration of the study is equal to the Accrual Time 
plus the Follow-Up Time. These v

Accrual times can range from 0 to the Total Time. That is, the accrual time must be less than
equal to the Total Time. Otherwise, the scenario is skipped. 

Enter 0 when all subjects begin the study together. 

Accrual Pattern 
This contains the pattern of accrua

• Uniform 
If you want to

• Non-Uniform 
When you want to specify accrual patterns with different accrual proportions per time period, 
you would enter the pattern into a c
specify the column, or columns, here, beginning your entry with an equals sign. For exam
if you have entered accrual patterns in columns 4 and 5, you would enter =C4 C5. 

Note that these values are standardized to sum to one. Thus, the accrual pattern 0.25 0.50 0.25
would result in the same accrual pattern as 1 2 1 or 25 50 25. 

Total Time (Integers Onl
Enter one or more values for the nu
follow-up time is equal to the Total Time minus the Accrual Time. These values must be integers. 

Test 

Alternative 
Specify whether the statistical test is two-sided or one-sided.  

• Two-Sided 
This option tests whether the two hazards rates, median survival times, survival proportions, 

is 
hazard rate (h1) is less than the treatment hazard rate 

reater than h2, rejecting the null hypothesis results in the conclusion that 

or mortalities are different (H1: h1<>h2). This is the option that is usually selected. 

• One-Sided 
When this option is used and the value of h1 is less than h2, rejecting the null hypothes
results in the conclusion that the control 
(h2). When h1 is g
the control hazard rate (h1) is greater than the treatment hazard rate (h2).  

When you use a one-sided test, you should divide your alpha level by two. 
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Reports Tab 
The Reports tab contains additional settings for this procedure.  

Report Column Width 

Report Column Width 
This option sets the width of the each column of the numeric report. 

ins many columns, so the maximum number 
of decimal places that can be displayed is four. If you try to increase that number, the numbers 

ou can increase the width of each column using this option. 

l places or 
e sample sizes is 0.49. 

Options Tab 

The numeric report for this option necessarily conta

may run together. Y

The recommended report column width for scenarios without large numbers of decima
extremely larg

The

Op

 Options tab contains additional settings for this procedure.  

tions 

Number of Intervals w
The
inte ential distribution. This option 

als. All parameters such as hazard rates, loss to follow-up rates, 

private communication, he indicated that 100 ought to be adequate. This seems to work when the 
 is less than 1.0.  

 rate increases above 1.0, this number must increase. A value of 2000 should be 
zard rates (h1 and h2) are less than 10. When the hazard rates are 

 even 10000. 

ithin a Time Period 
 algorithm requires that each time period be partitioned into a number of equal-width 
rvals. Each of these subintervals is assumed to follow an expon

controls the number of subinterv
and noncompliance rates are assumed to be constant within a subinterval. 

Lakatos (1988) gives little input as to how the number of subintervals should be chosen. In a 

hazard

As the hazard
sufficient as long as the ha
greater than 10, you may want to increase this value to 5000 or
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Example 1 – Finding the Power using Proportion 
Surviving 
A researcher is planning a clinical trial using a parallel, two-group, equal sample allocation 

bility of a new treatment with that of the current treatment. The 
ear after the current treatment is 0.50. The new treatment will be 
rviving after one year can be shown to be higher than the current 

k test to detect a difference 

s a loss-to-follow-up rate of 5% per year in both the 
control and the experimental groups. Past experience has lead to estimates of noncompliance and 

%, respectively. 

en 50 and 250 at a significance 

design to compare the surviva
proportion surviving one-y
adopted if the proportion su
treatment. The researcher wishes to determine the power of the logran
in survival when the true proportion surviving in the new treatment group at one year is 0.70. To 
obtain a better understanding of the relationship between power and survivability, the researcher 
also wants to see the results when the proportion surviving is 0.65 and 0.75.   

The trial will include a recruitment period of one-year after which participants will be followed 
for an additional two-years. It is assumed that patients will enter the study uniformly over the 
accrual period. The researcher estimate

drop in of 4% and 3

The researcher decides to investigate various sample sizes betwe
level of 0.05.   

Setup 
This section presents the values of each of the parameters needed to run this example. Firs
the PASS Home window, load the Logrank Tests (Lakatos) [Proportion Surviving] procedure 
window by clicking on Survival Analysis and Reliability, then Logrank Tests, then Logrank 
Tests (Lakatos) using Proportion Surviving. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Exampl

t, from 

e1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................50 to 250 by 50 
Proportion in Control Group ....................0.5 
Proportion of Controls Lost .....................0.05 
Proportion of Treatment Lost ..................0.05 
Proportion of Controls Switch .................0.03 
Proportion of Treatment Switch ..............0.04 
S1 ............................................................0.50 
Treatment Group Parameter ...................S2 
S2 ............................................................0.65 0.70 0.75 
T0 ............................................................1 
Accrual Time ...........................................1 
Accrual Pattern........................................Equal 
Total Time ...............................................3 
Test .........................................................Two-Sided 
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Reports Tab 
Show Detail Numeric Reports.................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results in Terms of Sample Size when the Test is Two-Sided and T0 is 1 
 
        Acc-       
     Ctrl Trt  rual       
    Haz Prop Prop Acc- Time/   Ctrl Trt   
    Ratio Surv Surv rual Total Ctrl Trt to to   
Power N1 N2 N (HR) (S1) (S2) Pat'n Time Loss Loss Trt Ctrl Alpha Beta 
.2608 25 25 50 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .7392 
.4615 50 50 100 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .5385 
.6262 75 75 150 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .3738 
.7500 100 100 200 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .2500 
.8378 125 125 250 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .1622 
.4320 25 25 50 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .5680 
.7162 50 50 100 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .2838 
.8732 75 75 150 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .1268 
.9477 100 100 200 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0523 
.9796 125 125 250 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0204 
.6293 25 25 50 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .3707 
.9010 50 50 100 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0990 
.9784 75 75 150 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0216 
.9959 100 100 200 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0041 
.9993 125 125 250 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0007 
 
References 
Lakatos, Edward. 1988. 'Sample Sizes Based on the Log-Rank Statistic in Complex Clinical Trials', Biometrics, 
Volume 44, March, pages 229-241. 
Lakatos, Edward. 2002. 'Designing Complex Group Sequential Survival Trials', Statistics in Medicine, Volume 
21, pages 1969-1989. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1|N2|N are the sample sizes of the control group, treatment group, and both groups, respectively. 
E1|E2|E are the number of events in the control group, treatment group, and both groups, respectively. 
Hazard Ratio (HR) is the treatment group's hazard rate divided by the control group's hazard rate. 
Proportion Surviving is the proportion surviving past time T0. 
Accrual Time is the number of time periods (years or months) during which accrual takes place. 
Total Time is the total number of time periods in the study. Follow-up time = (Total Time) - (Accrual Time). 
Ctrl Loss is the proportion of the control group that is lost (drop out) during a single time period (year or 
month). 
Trt Loss is the proportion of the treatment group that is lost (drop out) during a single time period (year or 
month). 
Ctrl to Trt (drop in) is the proportion of the control group that switch to a group with a hazard rate equal 
to the treatment group. 
Trt to Ctrl (noncompliance) is the proportion of the treatment group that switch to a group with a hazard rate 
equal to the control group. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 

 

This report shows the values of each of the parameters, one scenario per row. In addition to the 
ard ratio is displayed. parameters that were set on the template, the haz
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Next, a report displaying the number of required events rather than the sample size is displayed. 
 
Numeric Results in Terms of Events when the Test is Two-Sided and T0 is 1 
        Acc-       
     Ctrl Trt  rual       
 Ctrl Trt Total Haz Prop Prop Acc- Time/   Ctrl Trt   
 Evts Evts Evts Ratio Surv Surv rual Total Ctrl Trt to to   
Power E1 E2 E (HR) (S1) (S2) Pat'n Time Loss Loss Trt Ctrl Alpha Beta 
.2608 19.5 15.8 35.2 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .7392 
.4615 38.9 31.6 70.5 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .5385 
.6262 58.4 47.4 105.7 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .3738 
.7500 77.8 63.1 140.9 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .2500 
.8378 97.3 78.9 176.2 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .1622 
.4320 19.4 14.2 33.6 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .5680 
.7162 28.4 67.2 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .2838 38.8 
.8732  42.7 100.9 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .1268 58.2
.9477  56.9 134.5 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0523 77.6
.9796  71.1 168.1 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0204 97.0
.6293 19.4 2.5 .8 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .3707 1 31
.9010 38.7 5.0 .7 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0990 2 63
.9784 8.1 7.5 95.5 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0216 5 3
.9959 7.4 9.9 127.4 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0041 7 4
.9993 96.8 62.4 159.2 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0007 
 

M th p  e 
nu
Next, reports display

ost of is re ort is dentical to the last report, except that the sample sizes are replaced by thi
mber of required events. 

ing the individual settings year-by-year for each scenario are displayed. 
 
Detailed Input hen Power=.2608  N1=25  N2=25  N=50  Alpha=.0500  Accrual/Total Time=1 / 3   w
          
 Control Treatment Hazard  Percent   Control Treatment 
 Prop Prop Ratio Percent Admin. Control Treatment to to 
Time Surviving Surviving (HR) Accrual Censored Loss Loss Treatment Control 
Period (.5000) (.6500) (.6215) (Equal) (Calc.) (.0500) (.0500) (.0300) (.0400) 
1 .5000 .6500 .7692 100.00 .00 .0500 .0500 .0300 .0400 
2 .5000 .6500 .7692 .00 .00 .0500 .0500 .0300 .0400 
3 .5000 .6500 .7692 .00 100.00 .0500 .0500 .0300 .0400 
 

This report shows the individual settings for each time period (year). It becomes very useful when 
yo
O ame for 
ea decrease as time 
pa entered as a 
si .0), not 
the row num
id

N

u want to document a study in which these parameters vary from year to year. 
ne subtle point should be mentioned here. Note that the proportion surviving is the s
ch of the three years. Obviously, if deaths occur, the proportion surviving must 
sses. The reason that these stay the same is that this proportion surviving was 

ngle value. Hence, it is converted to a hazard rate using T0 (which in this example is 1
ber. Since the power is based on the hazard rates, the proportions surviving can be 

entical. 

ext, summary statements are displayed. 
 
Summary Statements 
A two-sided logrank test with an overall sample size of 50 subjects (25 in the control group 
and 25 in the treatment group) achieves 26.1% power at a 0.050 significance level to detect a 
hazard ratio of 0.6215 when the proportion surviving in the control group is 0.5000. The study 
lasts for 3 time periods of which subject accrual (entry) occurs in the first time period. The 
proportion dropping out of the control group is 0.0500. The proportion dropping out of the 
treatment group is 0.0500. The proportion switching from the control group to another group 
with a hazard ratio equal to that of the treatment group is 0.0300. The proportion switching 
from the treatment group to another group with a hazard equal to that of the control group is 
is 0.0400. 
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Finally, a scatter plot of the results is displayed. 

Plots S tion ec
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This plot shows the relationship between sample size and power for the three values of S2. No
that for 90% power, a total sample size of about 160 is required. The exact number will be found 

te 

in

E

 Example 2.  

xample 2 – Finding the Sample Size 
C g
necessary t
Example 1. 

ontinuin  with the previous example, the researcher wants to investigate the sample sizes 
o achieve 80% and 90% power. All other parameters will remain the same as in 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests (Lakatos) [Proportion Surviving] proced
window by clicking on Survival Analysis and Reliability, then Logrank Tests, then Logrank 
Tests (Lakatos) using Proportion Surviving. You may then follow along here by making the 
appropriat

ure 

e entries as listed below or load the completed template Example2 from the Template 

Option
tab on the procedure window. 

 Value 
D
F
P
A
N  
P
Proportion of Controls Lost .....................0.05 
Proportion of Treatment Lost ..................0.05 

ata Tab 
ind (Solve For) ......................................N 
ower ......................................................0.80 0.90 
lpha .......................................................0.05 
 (Total Sample Size) ............................. Ignored since this is the Find setting
roportion in Control Group ....................0.5 
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Data Tab (continued) 
Proportion of Controls Switch .................0.03 

ment Switch ..............0.04 
...................................0.50 

ent Group Parameter ...................S2 
S2 ............................................................0.65 0.70 0.75 
T0 ............................................................1 
Accrual Time ...........................................1 
Accrual Pattern........................................Equal 
Total Time ...............................................3 
Test .........................................................Two-Sided 

Output 

Proportion of Treat
1 .........................S

Treatm

Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results in Terms of Sample Size when the Test is Two-Side d T0 is 1 d an
 
        Acc-       
     Ctrl Trt  rual       
    Haz Prop Prop Acc- Time/   Ctrl Trt   
    Ratio Surv Surv rual Total Ctrl Trt to to   
Power N1 N2 N (HR) (S1) (S2) Pat'n Time Loss Loss Trt Ctrl Alpha Beta 
.9002 151 152 303 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0998 
.8014 113 114 227 .6215 .5000 .6500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .1986 
.9004 82 82 164 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0996 
.8019 61 62 123 .5146 .5000 .7000 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .1981 
.9010 50 50 100 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .0990 
.8022 37 38 75 .4150 .5000 .7500 Equal 1 / 3 .0500 .0500 .0300 .0400 .0500 .1978 
 

N vs S2 by Pwr : S1=.50 AT=1 T=3 P1=.50 A=.05
E=U CT=.03 TC=.04 LC=.05 LT=.05 2S

.90

.80
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ta

l N
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The total sample size need to achieve 90% power when the proportion surviving with the new 
oportion surviving (effect size) increases, the treatment is 0.70, is 164. It is apparent that as the pr

sample size decreases. 
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Example 3 – Validation using Lakatos 
Lakatos (1988) pages 231-234 presents an example that will be used to validate this procedure. In 

ll subjects begin the trial together, so there is no 
.5 for the control and treatment groups, respectively. 

s. Noncompliance and drop-in rates are 
e power is set to 90%. A two-sided logrank test with 
n of the sample to both control and experiment 

139.   

this example, a two-year trial is investigated. A
accrual period. The hazard rates are 1.0 and 0
The yearly loss to follow-up is 3% per year in both group
assumed to be 4% and 5%, respectively. Th
alpha set to 0.05 is assumed. Equal allocatio
groups is used. Lakatos obtains a sample size of 

Setup 
This section presents the values of each 
the PASS H

of the parameters needed to run this example. First, from 
ome window, load the Logrank Tests (Lakatos) [Hazard Ratio] procedure window 

nk Tests 

entries as listed below or load the completed template Example3 from the Template tab on the 

O

by clicking on Survival Analysis and Reliability, then Logrank Tests, then Logra
(Lakatos) using Hazard Rate. You may then follow along here by making the appropriate 

procedure window. 

ption Value 
Data Tab 
F
P
A
N (Total Samp
P n o l
P n o l
P n r e
Proportion of Controls Switch .................0.04 
Proportion of Treatment Switch ..............0.05 
h1 ............................................................1.0 
Treatment Group Parameter...................h2 
h2 ............................................................0.5 
Accrual Time ...........................................0 
Accrual Pattern........................................Equal 
Total Time ...............................................2 
Test .........................................................Two-Sided 

ind .........................................................N 
ower ......................................................0.90 
lpha .......................................................0.05 

le Size) ............................. Ignored since this is the Find setting 
roportio  in C ntro  Group ....................0.5 
roportio  of C ntro s Lost .....................0.03 
roportio  of T eatm nt Lost ..................0.03 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results in Terms of Sample Size when the Test is Two-Sided and T0 is 1 
 
        Acc-       
     Ctrl Trt  rual       
    Haz Haz Haz Acc- Time/   Ctrl Trt   
    Ratio Rate Rate rual Total Ctrl Trt to to   
Power N1 N2 N (HR) (h1) (h2) Pat'n Time Loss Loss Trt Ctrl Alpha Beta 
.9014 69 70 139 .5000 1.00 .5000 Equal 0 / 2 .0300 .0300 .0400 .0500 .0500 .0986 

 

The total sample size of 139 matches the value published in Lakatos’ article.  

Example 4 – Inputting Time-Dependent Hazard Rates 
from a Spreadsheet  
This exam
from a spre

ple shows how time-dependent hazard rates and other parameters can be input directly 
adsheet.  

ed treatment will cut the hazard rate in half, when 
al is being designed to confirm the finding of the 

 sample size 

 immediately following either treatment (during the 
e second year, and then gradually increases. Fifty 
d during the first year, followed by 25% each of 
 shows the time-dependent parameters for the 5-

A pre-trial study indicates that a newly develop
compared to the current treatment. A 5-year tri
pre-trial study. The goal for this portion of the study design is to determine the
needed to detect a decrease in hazard rate with 90% power. 

The pre-trial study showed that the hazard rate
first year) is high, drops considerably during th
percent of the study participants will be enrolle
the second and third years. The following table
year trial, based on the pre-trial study. 
 

PRETRIAL dataset 

Year H1 Ls1 Ls2 NCom Acc 
1 0.08 0.04 0.06 0.04 50 
2 0.04 0.04 0.06 0.04 25 
3 0.05 0.05 0.07 0.05 25 
4 0.06 0.06 0.07 0.06  
5 0.07 0.07 0.08 0.07  

 

The column H1 refers to the anticipated hazard rates for each of the five years. Ls1 and Ls2 refer 
to the proportions lost to follow-up in the control group and the treatment group, respectively. 
The proportion that are noncompliant are also expected to increase after the second year 
according the proportions shown. The final column specifies the accrual rate as outlined in the 
previous paragraph. 

Following the 5-year trial, a two-sided logrank test with alpha equal to 0.05, will be used to 
determine the evidence of difference among the current and new treatments.  
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Setup 
In order to run this example the PRETRIAL.S0 data must be loaded into the spreadsheet. To 
open the spreadsheet window from the PASS Home Window, click on the Tools menu and select 

 spreadsheet is open, the PRETRIAL.S0 data is loaded by clicking the 
 Open. The PRETRIAL.S0 file is then selected from the DATA folder 

(t 2008). Then click Open. 

T ion
th  H
by ng 
(Lakatos) using Haz
en  d w
rocedure window. 

Spreadsheet. Once the
File menu and selecting

he default location for this folder is C:\...\[My] Documents\NCSS\PASS

his sect  presents the values of each of the parameters needed to run this example. First, from 
e PASS ome window, load the Logrank Tests (Lakatos) [Hazard Ratio] procedure window 
 clicki on Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests 

a ard Rate. You may then follow along here by m king the appropriate 
tries as liste belo  or load the completed template Example4 from the Template tab on the 

p

Option Value 
Data Tab 

......0.05 

Group ....................0.5 

..5 
............................Two-Sided 

Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .................................................
N (Total Sample Size) ............................. Ignored since this is the Find setting 
Proportion in Control 
Proportion of Controls Lost .....................=Ls1 
Proportion of Treatment Lost ..................=Ls2 
Proportion of Controls Switch .................0.02 
Proportion of Treatment Switch ..............=NCom 
h1 ............................................................=H1 
Treatment Group Parameter...................HR (Hazard Ratio = h2/h1) 
HR ...........................................................0.5 
Accrual Time ...........................................3 
Accrual Pattern........................................=Acc 
Total Time .............................................
Alternative Hypothesis
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results in Terms of Sample Size when the Test is Two-Sided 
Using Spreadsheet: C:\PASS2008\DATA\PRETRIAL.S0 
        Acc-       
     Ctrl Trt  rual       
    Haz Haz Haz Acc- Time/   Ctrl Trt   
    Ratio Rate Rate rual Total Ctrl Trt to to   
Power N1 N2 N (HR) (h1) (h2) Pat'n Time Loss Loss Trt Ctrl Alpha Beta 
.9001 418 419 837 .5000 H1 Calc. Acc 3 / 5 Ls1 Ls2 .0200 NCom .0500 .0999 
 
 
Numeric e Test is TResults in Terms of Events when th wo-Sided 
Using Sp TRIAL.S0 readsheet: C:\PASS2008\DATA\PRE
        Acc-       
     Ctrl Trt  rual       
 Ctrl Trt Total Haz Haz Haz Acc- Time/   Ctrl Trt   
 Evts Evts Evts Ratio Rate Rate rual Total Ctrl Trt to to   
Power (E1) (E2) (E) (HR) (h1) (h2) Pat'n Time Loss Loss Trt Ctrl Alpha Beta 
.9001 74.4 41.2 115.6 .5000 H1 Calc. Acc 3 / 5 Ls1 Ls2 .0200 NCom .0500 .0999 
 
 
Detailed Input when Power=.9001  N1=418  N2=419  N=837  Alpha=.0500  Accrual/Total Time=3 / 5 
Using Spreadsheet: C:\PASS2008\DATA\PRETRIAL.S0 
 
 Control Treatment Hazard  Percent   Control Treatment 
 Hazard Hazard Ratio Percent Admin. Control Treatment to to 
Time Rate Rate (HR) Accrual Censored Loss Loss Treatment Control 
Period (H1) (Calc.) (.5000) (Acc) (Calc.) (Ls1) (Ls2) (.0200) (NCom) 
1 .0800 .0400 .5000 50.00 .00 .0400 .0600 .0200 .0400 
2 .0400 .0200 .5000 25.00 .00 .0400 .0600 .0200 .0400 
3 .0500 .0250 .5000 25.00 25.00 .0500 .0700 .0200 .0500 
4 .0600 .0300 .5000 .00 33.33 .0600 .0700 .0200 .0600 
5 .0700 .0350 .5000 .00 100.00 .0700 .0800 .0200 .0700 
 
Summary Statements 
A two-sided logrank test with an overall sample size of 837 subjects (418 in the control group 
and 419 in the treatment group) achieves 90.0% power at a 0.050 significance level to detect a 
hazard ratio of 0.5000 when the control group hazard rate is given in column H1. The study 
lasts for 5 time periods of which subject accrual (entry) occurs in the first 3 time periods. 
The accrual pattern across time periods is given in column Acc. The proportion dropping out of 
the control group is given in column Ls1. The proportion dropping out of the treatment group 
is given in column Ls2. The proportion switching from the control group to another group with 
a hazard rate equal to the treatment group is 0.0200. The proportion switching from the 
treatment group to another group with a hazard rate equal to the control group is given in 
column NCom. 
 

For the 5-year study, the total sample size needed to detect a change in hazard rate, if the true 
hazard ratio is 0.5, is 837 subjects.  
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Example 5 – Finding the Power using Median Survival 
Time 
A researcher is planning a clinical trial usi
design to compare the s

ng a parallel, two-group, equal sample allocation 
urvivability of a new treatment with that of the current treatment. The 

median survival time for the curre w treatment will be adopted if 
th rrent treatment. Because the true 
m
te tec
2.0, 2.5, or 3

T  
for an additional two years. It is assumed that patients will enter the study uniformly over the 
ac te of 4% per year in both the control 
an ates of noncompliance and drop in 
of d 5

T
le

S

nt treatment is 1.6 years. The ne
er than the cue median survival time can be shown to be high

urvedian s ival time is unknown, the researcher wishes to determine the power of the logrank 
st to de t a difference in survival when the true median survival time for the new treatment is 

.0 years.  

he trial will include a recruitment period of one year, after which participants will be followed

crual period. The researcher estimates a loss-to-follow ra
lead to estimd the experimental groups. Past experience has 

 6% an %, respectively. 

he researcher decides to investigate various sample sizes between 50 and 200 at a significance 
vel of 0.05.   

etup 
This section presents the values of each ters needed to run this example. First, from 
th
pr
L
m e
T

O

of the parame
e PASS Home window, load the Logrank Tests (Lakatos) [Median Survival Time] 
ocedure window by clicking on Survival Analysis and Reliability, then Logrank Tests, then 
ogrank Tests (Lakatos) using Median Survival Time. You may then follow along here by 
aking th  appropriate entries as listed below or load the completed template Example5 from the 
emplate tab on the procedure window. 

ption Value 
D
F
P
A
N
P
P
Proportion of Treatment Lost ..................0.04 
Proportion of Controls Switch .................0.05 

.......1.6 
Treatment Group Parameter...................T2 
T2 ............................................................2.0 2.5 3.0 
Accrual Time ...........................................1 
Accrual Pattern........................................Equal 
Total Time ...............................................3 
Alternative Hypothesis ............................Two-Sided 

ata Tab 
ind (Solve For) ......................................Power and Beta 
ower ...................................................... Ignored since this is the Find setting 
lpha .......................................................0.05 
 (Total Sample Size) .............................50 to 200 by 50 
roportion in Control Group ....................0.5 
roportion of Controls Lost .....................0.04 

Proportion of Treatment Switch ..............0.06 
T1 .....................................................
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
  

Numeric Results in Terms of Sample Size when the Test is Two-Sided 
 
     Ctrl Trt  Acc-       
     Med Med  rual       
    Haz Surv Surv Acc- Time/   Ctrl Trt   
    Ratio Time Time rual Total Ctrl Trt to to   
Power N1 N2 N (HR) (M1) (M2) Pat'n Time Loss Loss Trt Ctrl Alpha Beta 
.4628 25 25 50 .5000 1.00 2.00 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .5372 
.7525 50 50 100 .5000 1.00 2.00 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .2475 
.8993 75 75 150 .5000 1.00 2.00 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .1007 
.9624 100 100 200 .5000 1.00 2.00 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .0376 
.6643 25 25 50 .4000 1.00 2.50 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .3357 
.9224 50 50 100 .4000 1.00 2.50 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .0776 
.9856 75 75 150 .4000 1.00 2.50 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .0144 
.9977 100 100 200 .4000 1.00 2.50 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .0023 
.7944 25 25 50 .3333 1.00 3.00 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .2056 
.9769 50 50 100 .3333 1.00 3.00 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .0231 
.9981 75 75 150 .3333 1.00 3.00 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .0019 
.9999 100 100 200 .3333 1.00 3.00 Equal 1 / 3 .0400 .0400 .0300 .0400 .0500 .0001 
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This plot shows the relationship between sample size and power for the three median survival 
times. 
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Example 6 – Finding the Power using Mortality 
A researcher is planning a clinical trial using a parallel, two-group, equal sample allocation 
design to compare the mortality rate of a new treatment with that of the current treatment. The 

urrent treatment is 0.40. The new treatment will be adopted if 
n to be lower than the current treatment. The 

re detect a difference in mortality 
when the true m

T wi
fo diti
ac  es l 
an x m  in 
of , r

T a  d e e 
le .

Setup 

mortality rate at one-year after the c
lity rate after one year can be showthe morta

searcher wishes to determine the power of the logrank test to 
ortality rate in the new treatment group at one year is 0.20, 0.25, or 0.30.  

he trial ll include a recruitment period of one year, after which participants will be followed 
r an ad onal two years. It is assumed that patients will enter the study uniformly over the 
crual period. The r earcher estimates a loss-to-follow rate of 5% per year in both the contro
d the e peri ental groups. Past experience has lead to estimates of noncompliance and drop
 3% and 4% espectively. 

he rese rcher ecid s to investigate various sample sizes between 50 and 250 at a significanc
vel of 0 05.   

T om 
the PASS Home window, load the Logrank Tests (Lakatos) [Mortality] procedure window by 
clicking on Survival Analysis and Reliability, then Logrank Tests, then Logrank Tests 
(Lakatos) using Mortality. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example6 from the Template tab on the procedure 
window. 

Option

his section presents the values of each of the parameters needed to run this example. First, fr

 Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Total Sample Size) .............................50 to 250 by 50 
Proportion in Control Group ....................0.5 
Proportion of Controls Lost .....................0.05 
Proportion of Treatment Lost ..................0.05 
Proportion of Controls Switch .................0.04 
Proportion of Treatment Switch ..............0.03 
M1 ...........................................................0.4 
Treatment Group Parameter...................M2 
M2 ...........................................................0.20 0.25 0.30 
T0 (Survival Time)...................................1 

crual Time ...........................................1 
attern........................................Equal 

Two-Sided 

Ac
Accrual P
Total Time ...............................................3 
Alternative Hypothesis ............................
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results in Terms of Sample Size when the Test is Two-Sided and T0 is 1 
 
        Acc-       
        rual       
    Mort Ctrl Trt Acc- Time/   Ctrl Trt   
    Ratio Mort Mort rual Total Ctrl Trt to to   
Power N1 N2 N (MR) (M1) (M2) Pat'n Time Loss Loss Trt Ctrl Alpha Beta 
.5079 25 25 50 .5000 .4000 .2000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .4921 
.8044 50 50 100 .5000 .4000 .2000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .1956 
.9332 75 75 150 .5000 .4000 .2000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .0668 
.9794 100 100 200 .5000 .4000 .2000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .0206 
.9941 125 125 250 .5000 .4000 .2000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .0059 
.2988 25 25 50 .6250 .4000 .2500 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .7012 
.5281 50 50 100 .6250 .4000 .2500 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .4719 
.7021 75 75 150 .6250 .4000 .2500 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .2979 
.8207 100 100 200 .6250 .4000 .2500 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .1793 
.8961 125 125 250 .6250 .4000 .2500 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .1039 
.1529 25 25 50 .7500 .4000 .3000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .8471 
.2597 50 50 100 .7500 .4000 .3000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .7403 
.3635 75 75 150 .7500 .4000 .3000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .6365 
.4603 100 100 200 .7500 .4000 .3000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .5397 
.5479 125 125 250 .7500 .4000 .3000 Equal 1 / 3 .0500 .0500 .0400 .0300 .0500 .4521 
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This plot shows the relationship between sample size and power for the three mortality rates. 
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Example 7 – Converting Years to Months  
A researcher is planning a clinical trial using a parallel, two-group, equal sample allocation 
design to compare the hazard rate of a new treatment with that of the current treatment. The 

 is 0.14. The new treatment will be adopted if the hazard rate 
treatment. The researcher wishes to determine the 

po t of 0.4, 0.5, and 0.6.  

T wi
fo  fo
un  o
ye o
no l e 

T e 
le

B n g 
in o r s ing 
th s

 

hazard rate for the current treatment
fter can be shown to be lower than the current a

wer of the logrank test to detect true hazard ratios for the new treatmen

he trial ll include a recruitment period of four months, after which participants will be 
llowed r an additional year and 8 months. It is assumed that patients will enter the study 
iformly ver the accrual period. The researcher estimates a loss-to-follow proportion of 4% per 
ar in both the contr l and the experimental groups. Past experience has lead to estimates of 
ncomp ianc and drop in of 3% each. 

he researcher decides to investigate various sample sizes between 50 and 350 at a significanc
vel of 0.05. 

efore e terin the values into the Logrank Test (Hazard Ratio) window, the values stated above 
 terms f yea s mu t be converted to the corresponding monthly values. This can be done us
e Proportion  (Years to Months) tab of the Survival Parameter Conversion Tool. 
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The number of sub time units in one main time unit is 12, since there are 
yearly proportion 0.04 corresponding to the loss-to-follow 4% is converte

12 months in a year. The 
d to the monthly value 

early of 0.00339605319892 using the relationship P(annual) = 1-(1-P(monthly))12. Similarly, the y
noncompliance and drop in values of 3% are converted to the monthly value of 
0.00253504861384. The annual hazard rate of 0.14 is converted to the monthly hazard rate of 
0.01166666666667 using the relationship R(monthly) = R(annual)/12. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logrank Tests (Lakatos) [Hazard Ratio] procedure wind
by clicking on Survival Analysis and R

ow 
eliability, then Logrank Tests, then Logrank Tests 

dow. 

(Lakatos) using Hazard Ratio. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example7 from the Template tab on the 
procedure win

Option Value 
Data Tab 
F
P

ind (Solve For) ......................................Power and Beta 
ower ......................................................Ignored since this is the Find setting 

Alpha .......................................................0.05 
N (Total Sample Size) .............................50 to 350 by 50 
Proportion in Control Group ....................0.5 
Proportion of Controls Lost .....................0.00339605319892 
Proportion of Treatment Lost ..................0.00339605319892 
Proportion of Controls Switch .................0.00253504861384 
Proportion of Treatment Switch ..............0.00253504861384 
h1 ............................................................0.01166666666667 
Treatment Group Parameter ...................HR (Hazard Ratio = h2/h1) 
HR ...........................................................0.4 0.5 0.6 
Accrual Time ...........................................4 
Accrual Pattern........................................Equal 
Total Time ...............................................24 
Alternative Hypothesis ............................Two-Sided 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results in Terms of Sample Size when the Test is Two-Sided 
        Acc-       
     Ctrl Trt  rual       
    Haz Haz Haz Acc- Time/   Ctrl Trt   
    Ratio Rate Rate rual Total Ctrl Trt to to   
Power N1 N2 N (HR) (h1) (h2) Pat'n Time Loss Loss Trt Ctrl Alpha Beta 
.1922 25 25 50 .4000 .0117 .0047 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .8078 
.3610 50 50 100 .4000 .0117 .0047 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .6390 
.5157 75 75 150 .4000 .0117 .0047 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .4843 
.6453 100 100 200 .4000 .0117 .0047 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .3547 
.7474 125 125 250 .4000 .0117 .0047 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .2526 
.8243 150 150 300 .4000 .0117 .0047 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .1757 
.8802 175 175 350 .4000 .0117 .0047 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .1198 
.1407 58 Equal 25 25 50 .5000 .0117 .00 4 / 24 .0034 .0034 .0025 .0025 .0500 .8593 
.2473 58 Equal 50 50 100 .5000 .0117 .00 4 / 24 .0034 .0034 .0025 .0025 .0500 .7527 
.3530 75 75 150 .5000 .0117 .0058 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .6470 
.4526 100 100 200 .5000 .0117 .0058 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .5474 
.5431 125 125 250 .5000 .0117 .0058 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .4569 
.6232 150 150 300 .5000 .0117 .0058 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .3768 
.6926 175 175 350 .5000 .0117 .0058 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .3074 
.1037 25 25 50 .6000 .0117 .0070 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .8963 
.1656 50 50 100 .6000 .0117 .0070 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .8344 
.2287 75 75 150 .6000 .0117 .0070 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .7713 
.2915 100 100 200 .6000 .0117 .0070 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .7085 
.3529 125 125 250 .6000 .0117 .0070 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .6471 
.4120 150 150 300 .6000 .0117 .0070 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .5880 
.4683 175 175 350 .6000 .0117 .0070 Equal 4 / 24 .0034 .0034 .0025 .0025 .0500 .5317 
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This plot shows the relationship between sample size and power for the three hazard ratios. 
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Chapter 800 

Inequality Tests 
for One 
Correlation 
Introduction 
The correlation coefficient, ρ  (rho), is a popular statistic for describing the strength of the 
relationship between two variables. The correlation coefficient is the slope of the regression line 
between two variables when both variables have been standardized by subtracting their means 
and dividing by their standard deviations. The correlation ranges between plus and minus one.  

When ρ  is used as a descriptive statistic, no special distributional assumptions need to be made 
about the variables (Y and X) from which it is calculated. When hypothesis tests are made, you 
assume that the observations are independent and that the variables are distributed according to 
the bivariate-normal density function. However, as with the t-test, tests based on the correlation 
coefficient are robust to moderate departures from this normality assumption. 

The population correlation ρ  is estimated by the sample correlation coefficient r. Note we use 
the symbol R on the screens and printouts to represent the population correlation. 

Difference between Linear Regression and Correlation 
The correlation coefficient is used when both X and Y are from the normal distribution (in fact, 
the assumption actually is that X and Y follow a bivariate normal distribution). The point is, X is 
assumed to be a random variable whose distribution is normal. In the linear regression context, no 
statement is made about the distribution of X. In fact, X is not even a random variable. Instead, it 
is a set of fixed values such as 10, 20, 30 or -1, 0, 1. Because of this difference in definition, we 
have included both Linear Regression and Correlation algorithms. This module deals with the 
Correlation (random X) case.  

Test Procedure 
The testing procedure is as follows.  is the null hypothesis that the true correlation is a 
specific value, 

H0

ρ0  (usually, ρ0 0= ).  represents the alternative hypothesis that the actual HA

. Choose a value , based on the Rαcorrelation of the population is ρ1 , which is not equal to ρ0
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distribution of the sample correlation coefficient, so that the probability of rejecting H0  when 
H0  is true is equal to a specified value, α . Select a sample of n items from the popu on and

pute the sample correlation coefficient, rS . If r RS > α  reject the null hypothesis that 
lati  

com ρ ρ= 0

in favor of an alternative hypothesis that 
 

ρ ρ= 1 , where ρ ρ1 0> . The power is the probab  
rejecting H0  when the true correlation is 

ility of
ρ1 . 

All calcul ns are based on the algorithmatio  described by Guenther (1977) fo

Calculating the Power 

r calculating the 
cumulative correlation coefficient distribution. 

Let ( )R r N| ,ρ  represent the area under t e to the left of r. ion density curv N is the sample  a correla
ρ  is size and the population correlation. The power of the significance test of ρ ρ1 0> is 

calculated as follows: 

1.  Find rα  such that

low for the t-test. First find the 

 1 R r Nα | ,( )0− =

N

ρ α

( )1ρ

the same pattern as 

. 

2.  Compute the power = | , . 1− R rα

Notice that the calculations fol rejection region 
by finding the critical value ( rα ) under the null hypothesis. Next, calculate the probability that a 
sample of size N drawn from e population defined by setting the correlation to th ρ1  is in this 
rejection region. This is the power. 

Procedure Options 
This section describes the options that a this procedure. These are lo

Data Tab 

re specific to cated on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

The Data tab contains most of the parameters u will be concerned with. 

Solve For 

 and options that yo

Find (Solve For) 
 the parameter to be calculated from the values of the other 

e a given po

and Beta when yo

This option specifies parame

wer a

ters. 

nd alpha 

Under most conditions, you would either select Power and Beta or N. 

Select N when you want to determine the sample size needed to achiev
error level.  

Select Power u want to calculate the power.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal 
correlations when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when you reject the null hypothesis of equal correlations when in fact they are equal.  

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Sample Size) 
The number of observations in the sample. Each observation is made up of two values: one for X 
and one for Y. 

Effect Size 

R0 (Baseline Correlation) 
Specify the value of ρ0 . Note that the range of the correlation is between plus and minus one. 
This value is usually set to zero. 

R1 (Alternative Correlation) 
Specify the value of 1ρ , the population correlation under the alternative hypothesis. Note that the 
range of the correlation is between plus and minus one. The difference between R0 and R1 is 
being tested by this significance test. 

You can enter a range of values separated by blanks or commas. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is 100 : ρρ =H . 
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Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Possible selections are: 

• Ha: R0 <> R1 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether the correlation values are different, but you do not want to specify beforehand 
which correlation is larger. 

• Ha: R0 < R1 
This option yields a one-tailed test. 

• Ha: R0 > R1 
This option also yields a one-tailed test. 

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Finding the Power 
Suppose a study will be run to test whether the correlation between forced vital capacity (X) and 
forced expiratory value (Y) in a particular population is 0.30. Find the power when alpha is 0.01, 
0.05, and 0.10 and the N = 20, 60, 100.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Correlation procedure window by 
clicking on Correlation, then One Correlation. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.01 0.05 0.10 
N (Sample Size) ......................................20 60 100 
R0 (Baseline Correlation)........................0.0 
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Data Tab (continued) 
R1 (Alternative Correlation) ....................0.3 
Alternative Hypothesis ............................Ha: R0 <> R1 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Ha: R0<>R1 
 
Power N Alpha Beta R0 R1 
0.09401 20 0.01000 0.90599 0.00000 0.30000 
0.40755 60 0.01000 0.59245 0.00000 0.30000 
0.68475 100 0.01000 0.31525 0.00000 0.30000 
0.25394 20 0.05000 0.74606 0.00000 0.30000 
0.65396 60 0.05000 0.34604 0.00000 0.30000 
0.86524 100 0.05000 0.13476 0.00000 0.30000 
0.37052 20 0.10000 0.62948 0.00000 0.30000 
0.76282 60 0.10000 0.23718 0.00000 0.30000 
0.92230 100 0.10000 0.07770 0.00000 0.30000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
R0 is the value of the population correlation under the null hypothesis. 
R1 is the value of the population correlation under the alternative hypothesis. 
 
 
Summary Statements 
A sample size of 20 achieves 9% power to detect a difference of -0.30000 between the null 
hypothesis correlation of 0.00000 and the alternative hypothesis correlation of 0.30000 using a 
two-sided hypothesis test with a significance level of 0.01000. 
 

This report shows the values of each of the parameters, one scenario per row. The values from 
this table are plotted in the chart below.  

Plots Section 
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This plot shows the relationship between alpha and power in this example.  
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Example 2 – Finding the Sample Size 
Continuing with the last example, find the sample size necessary to achieve a power of 90% with 
a 0.05 significance level. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Correlation procedure window by 
clicking on Correlation, then One Correlation. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
R0 (Baseline Correlation)........................0.0 
R1 (Alternative Correlation).....................0.3 
Alternative Hypothesis ............................Ha: R0 <> R1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Ha: R0<>R1 
 
Power N Alpha Beta R0 Ra 
0.90081 112 0.05000 0.09919 0.00000 0.30000 
 

The required sample size is 112. You would now experiment with the parameters to find out how 
much varying each will influence the sample size.  
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Example 3 – Validation using Zar 
Zar (1984) page 312 presents an example in which the power of a correlation coefficient is 
calculated. If N = 12, alpha = 0.05, R0 = 0, and R1 = 0.866, Zar calculates a power of 98% for a 
two-sided test.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Correlation procedure window by 
clicking on Correlation, then One Correlation. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example3 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................12 
R0 (Baseline Correlation)........................0.0 
R1 (Alternative Correlation) ....................0.866 
Alternative Hypothesis ............................Ha: R0 <> R1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Ha: R0<>R1 
 
Power N Alpha Beta R0 R1 
0.98398 12 0.05000 0.01602 0.00000 0.86600 
 

The power of 0.98 matches Zar’s results.  
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Example 4 – Validation using Graybill 
Graybill (1961) pages 211-212 presents an example in which the power of a correlation 
coefficient is calculated when the baseline correlation is different from zero. Let N = 24, alpha = 
0.05, and R0 = 0.5. Graybill calculates the power of a two-sided test when R1 = 0.2 and 0.3 to be 
0.363 and 0.193. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Correlation procedure window by 
clicking on Correlation, then One Correlation. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example4 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................24 
R0 (Baseline Correlation)........................0.5 
R1 (Alternative Correlation).....................0.2 0.3 
Alternative Hypothesis ............................Ha: R0 <> R1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Ha: R0<>R1 
 
Power N Alpha Beta R0 R1 
0.36583 24 0.05000 0.63417 0.50000 0.20000 
0.19950 24 0.05000 0.80050 0.50000 0.30000 
 

The power values match Graybill’s results to two decimal places.  
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Chapter 801 

Confidence 
Intervals for One 
Correlation 
Introduction 
This routine calculates the sample size necessary to achieve a specified interval width or distance 
from the sample correlation to the confidence limit at a stated confidence level for a confidence 
interval for one correlation.  

Caution: This procedure assumes that the correlation of the future sample will be the same as the 
correlation that is specified. If the sample correlation is different from the one specified when 
running this procedure, the interval width may be narrower or wider than specified.  

Technical Details 
Assuming a bivariate normal population with population correlation ρ, the transformation of the 
sample correlation, r, 
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One-sided limits may be obtained by replacing α/2 by α. 

For two-sided intervals, the distance from the sample correlation to each of the limits may be 
different. Thus, instead of specifying the distance to the limits we specify the width of the interval, 
W.  

The basic equation for determining sample size for a two-sided interval when W has been specified 
is 

LU rrW −=  

For one-sided intervals, the distance from the sample correlation to limit, D, is specified. 

The basic equation for determining sample size for a one-sided upper limit when D has been 
specified is 

rrD U −=  

The basic equation for determining sample size for a one-sided lower limit when D has been 
specified is 

LrrD −=  

Each of these equations can be solved for any of the unknown quantities in terms of the others. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population correlation is 1 – 
α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  
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Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population correlation is 1 – 
α. 

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit. 

You can enter a single value or a list of values. The value(s) must be between 0 and 2.  

Distance from R to Limit (One-Sided) 
This is the distance from the sample correlation to the lower or upper limit of the confidence 
interval, depending on whether the Interval Type is set to Lower Limit or Upper Limit. 

You can enter a single value or a list of values. The value(s) must be between 0 and 2.  

Correlation 

R (Sample Correlation) 
Enter an estimate of the sample correlation. The sample size and width calculations assume that 
the value entered here is the correlation estimate that is obtained from the sample. If the sample 
correlation is different from the one specified here, the width may be narrower or wider than 
specified. 

The range of the values of the sample correlation that can be entered is -1 to 1. 

You can enter a range of values such as .1 .2 .3 or .1 to .5 by .1. 
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Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the population correlation such that the width of the interval is no wider 
than 0.08. The researcher would like to examine a large range of correlation values to determine 
the effect of the correlation estimate on necessary sample size. Instead of examining only the 
interval width of 0.08, widths of 0.06 and 0.10 will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Correlation procedure 
window by clicking on Confidence Intervals, then Correlation and Regression, then One 
Correlation. You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.06 0.08 0.10 
R (Sample Correlation) ...........................-0.9 to 0.9 by 0.1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for One Correlation 
 
 Sample       
Confidence Size Target Actual Correlation Lower Upper Width if 
Level (N) Width Width (R) Limit Limit R = 0.0 
0.950 161 0.060 0.060 -0.900 -0.926 -0.866 0.309 
0.950 559 0.060 0.060 -0.800 -0.828 -0.768 0.166 
0.950 1115 0.060 0.060 -0.700 -0.729 -0.669 0.117 
0.950 1752 0.060 0.060 -0.600 -0.629 -0.569 0.094 
0.950 2404 0.060 0.060 -0.500 -0.529 -0.469 0.080 
0.950 3014 0.060 0.060 -0.400 -0.430 -0.370 0.071 
0.950 3536 0.060 0.060 -0.300 -0.330 -0.270 0.066 
0.950 3935 0.060 0.060 -0.200 -0.230 -0.170 0.062 
0.950 4184 0.060 0.060 -0.100 -0.130 -0.070 0.061 
0.950 4269 0.060 0.060 0.000 -0.030 0.030 0.060 
0.950 4184 0.060 0.060 0.100 0.070 0.130 0.061 
0.950 3935 0.060 0.060 0.200 0.170 0.230 0.062 
0.950 3536 0.060 0.060 0.300 0.270 0.330 0.066 
0.950 3014 0.060 0.060 0.400 0.370 0.430 0.071 
0.950 2404 0.060 0.060 0.500 0.469 0.529 0.080 
0.950 1752 0.060 0.060 0.600 0.569 0.629 0.094 
0.950 1115 0.060 0.060 0.700 0.669 0.729 0.117 
0.950 559 0.060 0.060 0.800 0.768 0.828 0.166 
0.950 161 0.060 0.060 0.900 0.866 0.926 0.309 
0.950 94 0.080 0.080 -0.900 -0.933 -0.853 0.405 
0.950 317 0.080 0.080 -0.800 -0.836 -0.757 0.220 
0.950 629 0.080 0.080 -0.700 -0.738 -0.658 0.156 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 
 
References 
Cook, R. D. and Weisburg, S. 1999. Applied Regression Including Computing and Graphics. John Wiley and Sons, 
     Inc. 
Ostle, B. and Malone, L.C. 1988. Statistics in Research. Iowa State University Press. Ames, Iowa. 
Zar, J. H. 1984. Biostatistical Analysis. Second Edition. Prentice-Hall. Englewood Cliffs, New Jersey. 
Fisher, R. A. 1921. 'On the probable error of a coefficient of correlation deduced from a small sample.' 
     Metron, i (4), 1-32. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true correlation. 
Sample Size (N) is the size of the sample drawn from the population. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
Correlation (R) is the assumed sample correlation. 
Lower and Upper Limit are the lower and upper limits of the confidence interval. 
Width if R = 0.0 is the maximum width for a confidence interval with sample size N. 
 
Summary Statements 
A sample size of 161 produces a two-sided 95% confidence interval with a width equal to 0.060 
when the sample correlation is -0.900. 
 

This report shows the calculated sample size for each of the scenarios.  
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Plots Section 
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This plot shows the sample size versus the sample correlation for the three confidence interval 
widths. 
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Example 2 – Validation using Cook and Weisberg 
Cook and Weisberg (1999), page 78, give an example of a calculation for an two-sided 
confidence interval for a single correlation when the confidence level is 95%, the sample 
correlation is -0.889, and the confidence interval width is 0.428. The sample size is 9.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Correlation procedure 
window by clicking on Confidence Intervals, then Correlation and Regression, then One 
Correlation. You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.428 
R (Sample Correlation) ...........................-0.889 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Sample       
Confidence Size Target Actual Correlation Lower Upper Width if 
Level (N) Width Width (R) Limit Limit R = 0.0 
0.950 9 0.428 0.428 -0.889 -0.977 -0.549 1.328 
 

PASS also calculated the sample size to be 9.  
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Chapter 805 

Inequality Tests 
for Two 
Correlations 
Introduction 
The correlation coefficient (or correlation), ρ , is a popular parameter for describing the strength 
of the association between two variables. The correlation coefficient is the slope of the regression 
line between two variables when both variables have been standardized. It ranges between plus 
and minus one. This chapter covers the case in which you want to test the difference between two 
correlations, each coming from a separate sample.  

Since the correlation is the standardized slope between two variables, you could also apply this 
procedure to the case in which you want to test whether the slopes in two groups are equal. 

Test Procedure 
In the following discussion, ρ  is the population correlation coefficient and r is the value 
calculated from a sample. The testing procedure is as follows.  is the null hypothesis that H0

ρ ρ1 2= .  represents the alternative hypothesis that HA ρ ρ1 2≠  (one-tailed hypotheses are also 
available). To construct the hypothesis test, transform the correlations using the Fisher-z 
transformation. 
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This transformation is used because the combined distribution of r  and  is too difficult to work 
with, but the distributions of  and  are approximately normal. 
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Once the correlations have been converted into z values, the normal distribution may be used to 
conduct the test of . The standard deviation of the difference is given by Z Z1 − 2

σ z z  =  
N N1 2

1
3

1
31 2

− −
+

−
 

The test statistic is given by 

( ) ( )z =  
z z Z Z

z z

1 2 1 2

1 2

− − −

−σ
 

Note that the lower case z’s represent the values calculated from the two samples and the upper 
case Z’s represent the hypothesized population values. 

Calculating the Power 
1. Find zα  such that , where ( )1− =Φ zα α ( )Φ x is the area under the standardized normal 

curve to the left of x.  
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6. Calculate: z = x
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7. Calculate:  ( )Power = −1 Φ za
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are R1, R2, N1, N2, Alpha, and Power and Beta. Under most situations, you 
will select either Power and Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal 
correlations when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when you reject the null hypothesis of equal correlations when in fact they are equal.  

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R( N1)] 

where R is the Sample Allocation Ratio and [Y] is the first integer greater than or equal to Y. 
For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2=[R( N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size 

R1 (Correlation Group 1) 
Specify the value of the population correlation coefficient of group one. Possible values range 
between plus and minus one.  

You can enter a single value or a range of values separated by commas or blanks. 

Note that the power depends on the specific values of R1 and R2, not just their difference. Hence, 
R1 = 0 and R2 = 0.3 will have a different power from R1 = 0.3 and R2 = 0.6. 

R2 (Correlation Group 2) 
Specify the value of the population correlation coefficient from group two under the alternative 
hypothesis. Possible values range between plus and minus one. 

You can enter a single value or a range of values separated by commas or blanks. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0 1 2: ρ ρ= . 

Possible selections are: 

• Ha: R1 <> R2 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether the correlation values are different, but you do not want to specify beforehand 
which value is larger. 



Inequality Tests for Two Correlations  805-5 

• Ha: R1 < R2 
This option yields a one-tailed test. When you use this option, you should be careful to enter 
values for R1 and R2 that follow this relationship. 

• Ha: R1 > R2 
This option yields a one-tailed test. When you use this option, you should be careful to enter 
values for R1 and R2 that follow this relationship. 

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Finding the Power 
A researcher wants to compare the relationship between weight and heart rate in males and 
females. If the correlation between weight and heart rate is 0.3 in a sample of 100 males and 0.5 
in a sample of 100 females, what is the power of a two sided test for the difference between 
correlations at the 0.01 and 0.05 significance levels? Also compute the power for samples of 20, 
200, 300, 400,  and 600.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Correlations procedure window by 
clicking on Correlation, then Two Correlations. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting. 
Alpha .......................................................0.01 0.05 
N1 (Sample Size Group 1) ......................20 100 200 300 400 600 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
R1 (Correlation Group 1).........................0.3 
R2 (Correlation Group 2).........................0.5 
Alternative Hypothesis ............................Ha: R1 <> R2 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when Ha: R1<>R2 
   Allocation   Difference   
Power N1 N2 Ratio R1 R2 (R1-R2) Alpha Beta 
0.03081 20 20 1.000 0.30000 0.50000 -0.20000 0.01000 0.96919 
0.18250 100 100 1.000 0.30000 0.50000 -0.20000 0.01000 0.81750 
0.42230 200 200 1.000 0.30000 0.50000 -0.20000 0.01000 0.57770 
0.63541 300 300 1.000 0.30000 0.50000 -0.20000 0.01000 0.36459 
0.78888 400 400 1.000 0.30000 0.50000 -0.20000 0.01000 0.21112 
0.94144 600 600 1.000 0.30000 0.50000 -0.20000 0.01000 0.05856 
0.10760 20 20 1.000 0.30000 0.50000 -0.20000 0.05000 0.89240 
0.38603 100 100 1.000 0.30000 0.50000 -0.20000 0.05000 0.61397 
0.66271 200 200 1.000 0.30000 0.50000 -0.20000 0.05000 0.33729 
0.83200 300 300 1.000 0.30000 0.50000 -0.20000 0.05000 0.16800 
0.92196 400 400 1.000 0.30000 0.50000 -0.20000 0.05000 0.07804 
0.98548 600 600 1.000 0.30000 0.50000 -0.20000 0.05000 0.01452 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N1 and N2 are the sizes of the samples drawn from the two populations. To conserve resources, it should be small. 
Allocation Ratio is N1/N2 so that N2 = N1 x R. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
R1 is the value of both correlations under the null hypothesis. 
R2 is the correlation in group two under the alternative hypothesis. 
 
 
Summary Statements 
Group sample sizes of 20 and 20 achieve 3% power to detect a difference of 0.20000 between the 
null hypothesis that both group correlations are 0.30000 and the alternative hypothesis that 
the correlation in group 2 is 0.50000 using a two-sided z test (which uses Fisher's 
z-transformation) with a significance level of 0.01000. 
 
 

This report shows the values of each of the parameters, one scenario per row. The definitions of 
each column are given in the Report Definitions section of the report, so they will not be repeated 
here. 
The values from this table are plotted in the chart below.  

Plots Section 
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This plot shows the relationship between alpha, power, and sample size in this example. 
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Example 2 – Finding the Sample Size 
Continuing with the previous example, suppose the researchers want to determine the exact 
sample size necessary to achieve 90% power at a 0.05 significance level. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Correlations procedure window by 
clicking on Correlation, then Two Correlations. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
R1 (Correlation Group 1).........................0.3 
R2 (Correlation Group 2).........................0.5 
Alternative Hypothesis ............................Ha: R1 <> R2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when Ha: R1<>R2 
   Allocation   Difference   
Power N1 N2 Ratio R1 R2 (R1-R2) Alpha Beta 
0.90040 369 369 1.000 0.30000 0.50000 -0.20000 0.05000 0.09960 
 

PASS has calculated the sample size as 369 per group. 
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Example 3 – Validation using Zar 
Zar (1984) page 314 presents an example of calculating the power for a test of two correlations. 
In his example, when N1 = 95, N2 = 98, R1 = 0.84, R2 = 0.78, and alpha = 0.05, the power is 
22% for a two-sided test.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Correlations procedure window by 
clicking on Correlation, then Two Correlations. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example3 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
R1 (Correlation Group 1).........................0.84 
R2 (Correlation Group 2).........................0.78 
Alpha .......................................................0.05 
Power ......................................................Ignored since this is the Find setting 
Alternative Hypothesis ............................Ha: R1 <> R2 
N1 (Sample Size Group 1) ......................95 
N2 (Sample Size Group 2) ......................98 
R (Sample Allocation Ratio) ....................1.0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when Ha: R1<>R2 
   Allocation   Difference   
Power N1 N2 Ratio R1 R2 (R1-R2) Alpha Beta 
0.22498 95 98 1.032 0.84000 0.78000 0.06000 0.05000 0.77502 
 

PASS has also calculated the power to be 22%. 



  810-1 

Chapter 810 

Inequality Tests 
for Intraclass 
Correlation 
Introduction 
The intraclass correlation coefficient is often used as an index of reliability in a measurement 
study. In these studies, there are N observations made on each of K individuals. These individuals 
represent a factor observed at random. This design arises when K subjects are each rated by N 
raters.  

The intraclass correlation coefficient may be thought of as the correlation between any two 
observations made on the same subject. When this correlation is high, the observations on a 
subject tend to match, and the measurement reliability is ‘high.’  

Technical Details 
Our formulation comes from Walter, Eliasziw, and Donner (1998) and Winer (1991). Denote 
response j of subject i by , where i = 1, 2, …, K and j = 1, 2, …, N. The model for this situation 
is 

Yij

Y aij i ije= + +μ  

where the random subject effects  are normally distributed with mean 0 and variance and the 
measurement errors,  are normally distributed with mean 0 and variance . We assume that the 
subject effects and the measurement errors are independent. The intraclass correlation is then 
defined as 
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The hypothesis test is stated formally as 
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This hypothesis is tested from the data of a one-way analysis of variance table using the value: 
MS
MS

a

e

. The critical value for the test statistic is 

( )C F df df1 2 1 2−α/ , ,  
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df K1 1= −  

( )df K N2 1= −  

The power of this test procedure is given by 

Power P F C F df df= − ≥ −1 0 1 2 1 2( )/ , ,α  

where  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are R0, R1, K, N, Alpha, and Power (or Beta).  

Under most situations, you will select either Power and Beta to calculate power or N to calculate 
sample size. 

Note that the value selected here always appears as the vertical axis on the charts. 

The program is set up to evaluate power directly. For the other parameters, a search is made using 
an iterative procedure until an appropriate value is found.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when you reject the null hypothesis when it is true. 

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

K (Number of Subjects) 
Enter a value (or range of values) for the number of subjects, K, that are measured. 

You may enter a range of values such as 50,150,250 or 50 to 300 by 50. 

N (Observations Per Subject) 
Enter a value (or range of values) for the number of observations, N, per subjects. In a reliability 
study, this is the number of raters (assuming each subject is rated by all raters). 

You may enter a range of values such as 2,3,4 or 2 to 12 by 2. 

Effect Size 

R0 (Intraclass Correlation 0) 
This is the value(s) of the intraclass correlation coefficient when the null hypothesis is true. You 
may enter a single value or a list of values. The range of R0 is between zero and R1. 

The intraclass correlation is calculated as V(A)/[V(A)+V(E)] where V(E) is the variation within a 
subject and V(A) is the variation between subjects. It is a measure of the extent to which the 
observations within a subject are similar (or dependent) relative to observations from other 
subjects. 

R1 (Intraclass Correlation 1) > R0 
This is the value(s) of the intraclass correlation coefficient when the alternative hypothesis is true. 
You may enter a single value or a list of values. The range of R1 is between R0 and one. 
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Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Power 
Suppose that a study is to be conducted in which R0 = 0.2; R1 = 0.3; K = 50 to 250 by 100; Alpha 
= 0.05; and N = 2 to 5 by 1 and beta is to be calculated.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Intraclass Correlation procedure 
window by clicking on Correlation, then Intraclass Correlation. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
K (Number of Subjects)...........................50 to 250 by 100 
N (Observations Per Subject) .................2 to 5 by 1 
R0 (Intraclass Correlation 0) ...................0.2 
R1 (Intraclass Correlation 1) > R0 ..........0.3 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results  
 Number of Observations Intraclass Intraclass 
Power Subjects Per Subject Correlation 0 Correlation 1 Alpha Beta 
0.18333 50 2 0.200 0.300 0.05000 0.81667   
0.29534 50 3 0.200 0.300 0.05000 0.70466   
0.38528 50 4 0.200 0.300 0.05000 0.61472   
0.45522 50 5 0.200 0.300 0.05000 0.54478   
0.36558 150 2 0.200 0.300 0.05000 0.63442   
0.60094 150 3 0.200 0.300 0.05000 0.39906   
0.74538 150 4 0.200 0.300 0.05000 0.25462   
0.83005 150 5 0.200 0.300 0.05000 0.16995   
0.51549 250 2 0.200 0.300 0.05000 0.48451   
0.78790 250 3 0.200 0.300 0.05000 0.21210   
0.90522 250 4 0.200 0.300 0.05000 0.09478   
0.95403 250 5 0.200 0.300 0.05000 0.04597   
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
K is the number of subjects. 
N is the number of observations per subject in the sample. 
R0 is intraclass correlation assuming the null hypothesis. 
R1 is intraclass correlation assuming the alternative hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
A sample size of 50 subjects with 2 observations per subject achieves 18% power to detect an 
intraclass correlation of 0.300 under the alternative hypothesis when the intraclass 
correlation under the null hypothesis is 0.200 using an F-test with a significance level of 
0.05000. 
 

This report shows the power for each of the scenarios.  

Plots Section 
 

 

Power vs N by K with R0=0.200 R1=0.300
Alpha=0.050 F Test

50

150

250

Po
w

er

K

N

0.1

0.3

0.5

0.7

0.9

1.1

1 2 3 4 5

 
 

This plot shows the relation between power, number of subjects (K), and observations per subject 
(N). 
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Example 2 – Validation using Walter 
Walter et al. (1998) page 106 give a table of sample sizes. When R0 is 0.2, R1 is 0.3, K is 544, N 
is 2, and Alpha is 0.05, Beta is 0.80.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Intraclass Correlation procedure 
window by clicking on Correlation, then Intraclass Correlation. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
K (Number of Subjects)...........................544 
N (Observations Per Subject) .................2 
R0 (Intraclass Correlation 0) ...................0.2 
R1 (Intraclass Correlation 1) > R0 ..........0.3 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results  
 Number of Observations Intraclass Intraclass 
Power Subjects Per Subject Correlation 0 Correlation 1 Alpha Beta 
0.80033 544 2 0.200 0.300 0.05000 0.19967 
 

PASS has also calculated the power as 0.80.  
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Chapter 811 

Kappa Test for 
Agreement 
Between Two 
Raters 
Introduction 
This module computes power and sample size for the test of agreement between two raters using 
the kappa statistic. The power calculations are based on the results in Flack, Afifi, Lachenbruch, 
and Schouten (1988). Calculations are based on ratings for k categories from two raters or judges. 
You are able to vary category frequencies on a single run of the procedure to analyze a wide 
range of scenarios all at once. For further information about kappa analysis, see chapter 18 of 
Fleiss, Levin, and Paik (2003).  

Technical Details  
Suppose that N subjects are each assigned independently to one of k categories by two separate 
judges or raters. The results are placed in a k × k contingency table. Each  represents the 
proportion of subjects that Rater A classified in category i, but Rater B classified in category j, 
with i, j = 1, 2, …, k. The proportions and  are the frequencies or marginal probabilities of 
assignment into categories i and j for Rater A and Rater B, respectively. For each rater, the 
category frequencies sum to one. 

ijp

.ip jp.

 

 Rater B  
Rater A 1 2 K k Total 

1 11p  12p  K kp1  .1p  
2 21p  22p  K kp2  .2p  
M  M  M  O M  M  
k 1kp  2kp  K kkp  .kp  

Total 1 1.p  2.p  K kp.  
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The proportions on gonal, , represent the proportion of subjects in each category for 
 a  

, 

and the overall proportion of agreement expected by chance is  

The overall value of kappa, which measures the degree of rater agreement, is then 
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Again, an estimate of the standard error can be obtained by replacing the unknown values  by 
their sample estimates . 
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Hypothesis Tests 
One- and two-sided hypo hesis tests cant  be conducted using the test statistic 

( )κ
κκ
ˆ..

ˆ 0

es
z −
= , 

where 0κ  is the null hypothesized value of kappa, and the denominator is the estimated standard 
error. For a one-sided alternative, the test rejects H0 if αzz ≥ , where  is the value that leaves 
α per tail of the standard normal distribution. r a two-side ernative, the test rejects 

αz
d alt in the up Fo

H0 if 2/αzz . 

Power Calculation 

≥

The st rrandard e or for the kappa statistic is based on values , which are unknown prior to 
conducting a study. Therefore, the power is computed at the maximum standard error based on 

 marginal probabilities.  The following steps are taken to compute 

ry 
, 
l 

 Therefore, only one set of frequencies is needed. 

ijp

given category frequencies or
the power of the test.  

1. Determine the category assignment frequencies for both raters. In practice, the catego
frequencies may not be equivalent, but the standard error maximization method of Flack
Afifi, Lachenbruch, and Schouten (1988) assumes that the category frequencies are equa
for both raters.

2. Determine the maximum standard error under the null and alternative hypotheses for the 
given marginal frequencies. This is equivalent to finding the maximum ( )κτ ˆ  under the 
null and alternative hypotheses. 

3. Find the critical value using the standard normal distribution. The critical value, criticalz , is 
that value of z that leaves exactly the target value of alpha (or alpha/2) in the upper tail of
the standard normal distribution. For example, for an upper-tailed test with a target alpha
of 0.05, the critical value is 1.645.  

 
 

4. Without loss of generality, for a one-sided test of the alternative hypothesis that 0κκ > , 
compute the power at an alternative value of kappa, 1κ , as 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Power and Beta, N (Sample Size), or K1. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size / Groups – Sample Size 
Multiplier 

N (Sample Size) 
Enter a value for the sample size (N). This is the number of subjects rated by the two judges in the 
study. You may enter a range such as 10 to 100 by 10 or a list of values separated by commas or 
blanks such as 50 60 70. 
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Effect Size – Kappa 

K1 (Kappa|H1) 
This is the value of Kappa under the alternative hypothesis, H1. Values must be between -1 and 1. 
If a one-sided hypothesis is used, the alternative value(s) for Kappa in relation to the null 
value(s), K0, should match the direction of the alternative hypothesis. You can enter a list of 
values separated by blanks or commas such as 0.6 0.7 0.8 or 0.6 to 0.8 by 0.05. 

K0 (Kappa|H0) 
This is the value of Kappa under the null hypothesis, H0. Values must be between -1 and 1. If a 
one-sided hypothesis is used, the alternative value(s) for Kappa in relation to the null value(s), 
K0, should match the direction of the alternative hypothesis. You can enter a list of values 
separated by blanks or commas such as 0.2 0.3 0.4 or 0.2 to 0.4 by 0.05. 

Effect Size – Categories 

P (Category Frequencies) 
Specify two or more category frequencies, proportions, or marginal proportions. These are the 
proportions of subjects assigned to each category by the two raters or judges. In practice the 
proportions may not be exactly equal for the two raters, but the power calculations assume that 
the category frequencies are equal for the two raters. Each proportion set must sum to 1.  

Several sets of proportions can be entered by using the PASS spreadsheet. To launch the 
spreadsheet, click on the “Spreadsheet” button above the box. To select columns from the 
spreadsheet, click on the button with the arrow pointing down on the right of the box. Specify the 
column (or columns) to be used by beginning your entry with an equals sign, e.g. enter =C1-C3. 

List Input 
Specify a single set of proportions as a list. For example, with three groups you might enter 0.2 
0.3 0.5. 

Spreadsheet Column Input 
Specify more than one set of proportions using the column input syntax  

=[column 1] [column 2] etc.  

For example, if you have three proportion sets stored in the spreadsheet in columns C1, C2, and 
C3, you would enter =C1 C2 C3 in the P (Category Frequencies) box. 

Each column in the spreadsheet corresponds to a single set of proportions. The columns may 
contain different numbers of frequencies, but in all cases, the values in each column must sum to 
1. 

Test 

Alternative Hypothesis (H1) 
Specify the alternative hypothesis of the test. Since the null hypothesis is the opposite, specifying 
the alternative is all that is needed. The alternative hypothesis determines how the alternative 
value(s) of Kappa (K1) should be entered. Usually, the two-sided option is selected.  

For a one-sided alternative hypothesis test of K1 > K0, all values for K1 should be greater than 
K0.  
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For a one-sided alternative hypothesis test of K1 < K0, all values for K1 should be less than K0.  

For a two-sided test, the values for K1 can be either greater than or less than K0. 

Example 1 – Finding the Power 
Suppose a study is being planned to measure the degree of inter-rater agreement for two 
psychiatrists. The two psychiatrists will independently classify each of a series of patients into 
one of three diagnostic categories: personality disorder, neurosis, or psychosis. The study will 
then determine how well the psychiatrists “agree” with a hypothesis test using the kappa statistic.  

Before the data are collected, the organizers would like to study the relationship between sample 
size and power. From previous experience, they have determined to use frequencies of 0.4, 0.5, 
and 0.1 for the personality disorder, neurosis, and psychosis diagnoses, respectively. They would 
like to determine the power for detecting alternative kappa values of 0.5, 0.6, and 0.7 when the 
null value is 0.4. A two-sided hypothesis test will be conducted at alpha = 0.05. What will be the 
power for a wide range of sample sizes?  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Kappa Test for Agreement Between Two Raters procedure 
window by clicking on Correlation, then Kappa Test for Rater Agreement. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................30 to 200 by 10 
K1 ............................................................0.5 0.6 0.7 
K0 ............................................................0.4 
P (Category Frequencies) .......................0.4 0.5 0.1 
Alternative Hypothesis (H1) ....................Two-Sided 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = Two-sided Z test. 
H0: Kappa = K0 vs. H1: Kappa <> K0. 
 
 Sample       
 Size Kappa|H0 Kappa|H1   - Rating Categories -  
Power N K0 K1 Alpha Beta k Frequencies 
0.07748 30 0.40 0.50 0.05000 0.92252 3 0.40, 0.50, 0.10 
0.19421 30 0.40 0.60 0.05000 0.80579 3 0.40, 0.50, 0.10 
0.43345 30 0.40 0.70 0.05000 0.56655 3 0.40, 0.50, 0.10 
0.09199 40 0.40 0.50 0.05000 0.90801 3 0.40, 0.50, 0.10 
0.26055 40 0.40 0.60 0.05000 0.73945 3 0.40, 0.50, 0.10 
0.58208 40 0.40 0.70 0.05000 0.41792 3 0.40, 0.50, 0.10 
0.10677 50 0.40 0.50 0.05000 0.89323 3 0.40, 0.50, 0.10 
0.32746 50 0.40 0.60 0.05000 0.67254 3 0.40, 0.50, 0.10 
0.70452 50 0.40 0.70 0.05000 0.29548 3 0.40, 0.50, 0.10 
0.12180 60 0.40 0.50 0.05000 0.87820 3 0.40, 0.50, 0.10 
0.39325 60 0.40 0.60 0.05000 0.60675 3 0.40, 0.50, 0.10 
0.79842 60 0.40 0.70 0.05000 0.20158 3 0.40, 0.50, 0.10 
0.13704 70 0.40 0.50 0.05000 0.86296 3 0.40, 0.50, 0.10 
0.45663 70 0.40 0.60 0.05000 0.54337 3 0.40, 0.50, 0.10 
0.86661 70 0.40 0.70 0.05000 0.13339 3 0.40, 0.50, 0.10 
0.15246 80 0.40 0.50 0.05000 0.84754 3 0.40, 0.50, 0.10 
0.51666 80 0.40 0.60 0.05000 0.48334 3 0.40, 0.50, 0.10 
0.91404 80 0.40 0.70 0.05000 0.08596 3 0.40, 0.50, 0.10 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 
(Report Continues) 
 
References 
Flack, V.F., Afifi, A.A., Lachenbruch, P.A., and Schouten, H.J.A. 1988. 'Sample Size Determinations for the 
     Two Rater Kappa Statistic'. Psychometrika 53, No. 3, 321-325. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the total sample size. 
K0 is the value of Kappa under the null hypothesis, H0. 
K1 is the value of Kappa under the alternative hypothesis, H1. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
k is the number of rating categories. 
Frequencies lists the rating category frequencies. The number of frequencies is equal to k. 
 
Summary Statements 
In a test for agreement between two raters using the Kappa statistic, a sample size of 30 
subjects achieves 8% power to detect a true Kappa value of 0.50 in a test of H0: Kappa = 0.40 
vs. H1: Kappa <> 0.40 when there are 3 categories with frequencies equal to 0.40, 0.50, and 
0.10. This power calculation is based on a significance level of 0.05000. 

 

This report shows the numeric results of this power study. Following are the definitions of the 
columns of the report. 

Power 
The probability of rejecting a false null hypothesis. 

N 
The total sample size for the study. 
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K0 
The value of kappa under the null hypothesis. 

K1 
The value of kappa under the alternative hypothesis. 

Alpha 
The probability of rejecting a true null hypothesis. This is often called the significance level. 

Beta 
The probability of accepting a false null hypothesis. 

k 
The number of rating categories. 

Frequencies 
The rating category frequencies used. 

Plots Section 
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This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the 
impact on the power of increasing the sample size for the different values of K1. 
When you create one of these plots, it is important to use trial and error to find an appropriate 
range for the horizontal variable so that you have results with both low and high power. 
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Example 2 – Finding the Sample Size 
Continuing with the last example, we will determine how large the sample size would need to be 
for the three values of K1 to have the power at least 0.95 with an alpha level of 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Kappa Test for Agreement Between Two Raters procedure 
window by clicking on Correlation, then Kappa Test for Rater Agreement. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power ......................................................0.95 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
K1 ............................................................0.5 0.6 0.7 
K0 ............................................................0.4 
P (Category Frequencies).......................0.4 0.5 0.1 
Alternative Hypothesis (H1) ....................Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = Two-sided Z test. 
H0: Kappa = K0 vs. H1: Kappa <> K0. 
 
 Sample       
 Size Kappa|H0 Kappa|H1   - Rating Categories -  
Power N K0 K1 Alpha Beta k Frequencies 
0.95003 983 0.40 0.50 0.05000 0.04997 3 0.40, 0.50, 0.10 
0.95031 228 0.40 0.60 0.05000 0.04969 3 0.40, 0.50, 0.10 
0.95078 92 0.40 0.70 0.05000 0.04922 3 0.40, 0.50, 0.10 

 

The required sample sizes are 983, 228, and 92 for alternative kappa values of 0.5, 0.6, and 0.7, 
respectively. 
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Example 3 – Finding the Minimum Detectable Kappa 
Continuing with the last example, we will now determine what is the minimum value of kappa 
that can be detected with 100 subjects and power of 0.95. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Kappa Test for Agreement Between Two Raters procedure 
window by clicking on Correlation, then Kappa Test for Rater Agreement. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................K1 (K1 > K0) 
Power ......................................................0.95 
Alpha .......................................................0.05 
N (Sample Size) ......................................200 
K1 ............................................................Ignored since this is the Find setting 
K0 ............................................................0.4 
P (Category Frequencies) .......................0.4 0.5 0.1 
Alternative Hypothesis (H1) ....................Two-Sided 

Reports Tab 
Decimal Places - Kappa..........................4 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = Two-sided Z test. 
H0: Kappa = K0 vs. H1: Kappa <> K0. 
 
 Sample       
 Size Kappa|H0 Kappa|H1   - Rating Categories -  
Power N K0 K1 Alpha Beta k Frequencies 
0.95000 200 0.4000 0.6122 0.05000 0.05000 3 0.40, 0.50, 0.10 

 

The test detects a kappa value of 0.6122 with 95% power. 
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Example 4 – Validation using Flack, Afifi, Lachenbruch, 
and Schouten (1988) 
Flack, Afifi, Lachenbruch, and Schouten (1988) page 324 presents a table (Table 2) of calculated 
sample sizes required for 80% power in a one-sided test of H1: Kappa > 0.4 vs. H1: Kappa = 0.4 
computed at K1 = 0.6 and alpha = 0.05. The sample sizes are computed for various sets of 
category frequencies. 
 

Table 2 
  

Frequencies Sample Size 
PD N PS for 80% Power 
0.50 0.26 0.24 93 
0.50 0.30 0.20 99 
0.55 0.30 0.15 109 
0.60 0.30 0.10 119 
0.60 0.21 0.19 107 

 
 
This example will replicate these results. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, you 
will need to open the Flack Validation Proportions.S0 dataset by selecting Tools, then 
Spreadsheet from the PASS Home window menus. On the Spreadsheet window, select File, then 
Open from the menus. Navigate to the Data folder that is located in your documents folder and 
select Flack Validation Proportions.S0. Once the dataset is loaded, go back to the PASS Home 
window, load the Kappa Test for Agreement Between Two Raters procedure window by 
clicking on Correlation, then Kappa Test for Rater Agreement. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example4 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power ......................................................0.80 0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
K1 ............................................................0.6 
K0 ............................................................0.4 
P (Category Frequencies).......................=C1-C5 
Alternative Hypothesis (H1) ....................One-Sided (H1: K1 > K0) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = One-sided Z test. 
H0: Kappa <= K0 vs. H1: Kappa > K0. 
 
 Sample       
 Size Kappa|H0 Kappa|H1   - Rating Categories -  
Power N K0 K1 Alpha Beta k Frequencies 
0.80218 93 0.40 0.60 0.05000 0.19782 3 0.50, 0.26, 0.24 
0.80143 99 0.40 0.60 0.05000 0.19857 3 0.50, 0.30, 0.20 
0.80253 109 0.40 0.60 0.05000 0.19747 3 0.55, 0.30, 0.15 
0.80286 120 0.40 0.60 0.05000 0.19714 3 0.60, 0.30, 0.10 
0.80259 106 0.40 0.60 0.05000 0.19741 3 0.60, 0.21, 0.19 
 

The sample sizes computed by PASS match those in Flack, Afifi, Lachenbruch, and Schouten 
(1988). Slight differences are due to rounding.  
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Chapter 815 

Inequality Tests 
for One 
Coefficient Alpha 
Introduction 
Coefficient alpha, or Cronbach’s alpha, is a measure of the reliability of a scale consisting of k 
parts. The k parts usually often represent k items on a questionnaire or k raters. This module 
calculates power and sample size for testing whether coefficient alpha, ρ , is different from a 
given value such as zero.   

Technical Details 
Feldt et al. (1987) has shown that if $ρ  is the estimated value of coefficient alpha computed from 
a sample of size N questionnaires with k items, the statistic W is distributed as an F ratio with 
degrees of freedom N-1 and (k-1)(N-1), where  

W =
−
−

1
1

0ρ
ρ$

 

and ρ0  is the value of ρ  assumed by the null hypothesis, H0. 

Calculating the Power 
Using the above definition of W, the power of the significance test of ρ ρ> 0 is calculated as 
follows: 

1.  Find Fα  such that ( )Prob F N k N1 1 1 1 1− − − − = −α α, ,( )( )  

2.  Compute ρC  = 
F

F
α

α

ρ+ −0 1
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3.  Compute W1  = 
1
1

1−
−
ρ
ρc

, where ρ1   is the value of ρ  at which the power is calculated. 

4.  Compute the power = 1  ( )1 1 1 1− > − − −Pr ,( )( )W FN k N

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would either select Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when you reject the null hypothesis when in fact it is true.  

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  
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Sample Size 

N (Sample Size) 
Specify the number of observations in the sample. You may enter a range such as 10 to 100 by 10 
or a list of values separated by commas or blanks such as 20 50 100. 

K (Number of Items or Raters) 
K is the number of items or raters in the study. Since it is a count, it must be an integer greater 
than one. You may enter a list of values separated by blanks. 

Effect Size 

CA0 (Coefficient Alpha|H0) 
Specify the value of ρ0 , the value of coefficient alpha under the null hypothesis. Usually, this 
value will be zero, but any value between -1 and 1 is valid as long as it is not equal to CA1. 

You may enter a list of values separated by blanks such as 0 0.1 0.2. 

CA1 (Coefficient Alpha|H1) 
Specify the value of ρ1 , the value of coefficient alpha at which the power is computed. Usually, 
this value is positive, but any value between -1 and 1 is valid as long as it is not equal to CA0. 

You may enter a list of values separated by blanks such as 0.1 0.2 0.3. 

Test 

Alternative Hypothesis 
This option specifies whether the alternative hypothesis is one-sided or two-sided. It also 
specifies the direction of the hypothesis test. The null hypothesis is H0 0: ρ ρ= .The alternative 
hypothesis enters into power calculations by specifying the rejection region of the hypothesis test. 
Its accuracy is critical. 

Possible selections are: 

• H1: CA0 <> CA1 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether values are different, but you do not want to specify beforehand which is 
larger. 

• H1: CA0 < CA1 
This option yields a one-tailed test. 

• H1: CA0 > CA1 
This option also yields a one-tailed test. 
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Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Finding the Power 
Suppose a study is being designed to test whether the coefficient alpha is 0.6 against the two-
sided alternative. Find the power when K = 20, alpha = 0.05, CA1 = 0.65 0.70  0.75, and N = 50  
100  200  300  500  700  1000  and 1400.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Coefficient Alpha procedure 
window by clicking on Correlation, then One Coefficient Alpha. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................50 100 200 300 500 700 1000 1400 
K (Number of Items or Raters) ................20 
CA0 (Coefficient Alpha | H0) ...................0.6 
CA1 (Coefficient Alpha | H1) ...................0.65 0.70 0.75 
Alternative Hypothesis ............................H1: CA0 <> CA1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H1: CA0<>CA1 
 Sample Number Coefficient Coefficient Signif.  
 Size of Items Alpha|H1 Alpha|H0 Level  
Power (N) (K) (CA1) (CA0) (Alpha) Beta 
0.11084 50 20 0.65000 0.60000 0.05000 0.88916 
0.16444 100 20 0.65000 0.60000 0.05000 0.83556 
0.27111 200 20 0.65000 0.60000 0.05000 0.72889 
0.37314 300 20 0.65000 0.60000 0.05000 0.62686 
0.55224 500 20 0.65000 0.60000 0.05000 0.44776 
0.69191 700 20 0.65000 0.60000 0.05000 0.30809 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the total sample size.  
K is the number of items or raters.  
CA1 is the value of coefficient alpha at which the power is computed. 
CA0 is the value of coefficient alpha under the null hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
H0 is the null hypothesis that coefficient alpha equals CA0. 
H1 is the alternative hypothesis that coefficient alpha does not equal CA0. 
 
Summary Statements 
A sample of 50 subjects each responding to 20 items achieves 11% power to detect the difference 
between the coefficient alpha under the null hypothesis of 0.60000 and the coefficient alpha 
under the alternative hypothesis of 0.65000 using a two-sided F-test with a significance level 
of 0.05000. 
 

This report shows the values of each of the parameters, one scenario per row. The values from 
this table are plotted in the chart below.  

Plots Section 
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This plot shows the relationship between CA1, N, and power.  
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Example 2 – Finding the Sample Size 
Continuing with the last example, find the sample size necessary to achieve a power of 90% with 
a 0.05 significance level. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Coefficient Alpha procedure 
window by clicking on Correlation, then One Coefficient Alpha. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
K (Number of Items or Raters) ................20 
CA0 (Coefficient Alpha | H0) ...................0.6 
CA1 (Coefficient Alpha | H1) ...................0.65 0.70 0.75 
Alternative Hypothesis ............................H1: CA0 <> CA1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H1: CA0<>CA1 
 
 Sample Number Coefficient Coefficient Signif.  
 Size of Items Alpha|H1 Alpha|H0 Level  
Power (N) (K) (CA1) (CA0) (Alpha) Beta 
0.90022 1233 20 0.65000 0.60000 0.05000 0.09978 
0.90073 265 20 0.70000 0.60000 0.05000 0.09927 
0.90261 100 20 0.75000 0.60000 0.05000 0.09739 
 

This report shows the dramatic increase in sample size that is needed to achieve the desired 
sample power as CA1 gets closer to CA0.  
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Example 3 – Validation using Bonett 
Bonett (2002) page 337 presents a table in which the sample sizes were calculated for several 
parameter configurations. When CA0 = 0, CA1 = 0.50, alpha = 0.10, beta = 0.05, and k = 2, 5, 10, 
and 100, he finds N to be 93, 59, 52, and 48, respectively.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Coefficient Alpha procedure 
window by clicking on Correlation, then One Coefficient Alpha. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example3 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.95 
Alpha .......................................................0.1 
N (Sample Size) ......................................Ignored since this is the Find setting 
K (Number of Items or Raters)................2 5 10 100 
CA0 (Coefficient Alpha | H0) ...................0 
CA1 (Coefficient Alpha | H1) ...................0.5 
Alternative Hypothesis ............................H1: CA0 <> CA1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H1: CA0<>CA1 
 
 Sample Number Coefficient Coefficient Signif.  
 Size of Items Alpha|H1 Alpha|H0 Level  
Power (N) (K) (CA1) (CA0) (Alpha) Beta 
0.95176 93 2 0.50000 0.00000 0.10000 0.04824 
0.95253 59 5 0.50000 0.00000 0.10000 0.04747 
0.95047 52 10 0.50000 0.00000 0.10000 0.04953 
0.95213 48 100 0.50000 0.00000 0.10000 0.04787 
 

The sample sizes match Bonett’s results exactly.  
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Chapter 820 

Inequality Tests 
for Two Coefficient 
Alphas 
Introduction 
Coefficient alpha, or Cronbach’s alpha, is a popular measure of the reliability of a scale 
consisting of k parts. The k parts often represent k items on a questionnaire (scale) or k raters. 
This module calculates power and sample size for testing whether two coefficient alphas are 
different when the two samples are either dependent or independent.   

Technical Details 
Feldt et al. (1999) presents methods for testing one-, or two-, sided hypotheses about two 
coefficient alphas, which we label ρ1  and ρ2

N2

. The results assume that observations for each 
of items are available for one scale and observations for each of items are available for 
another scale. These sets of observations may either be from two independent groups of subjects 
(independent case) or two sets of observations on each subject (dependent case). In the dependent 
case,  and the correlation coefficient between the overall scores of each scale is 
represented by 

N1

k2k1

N N1 = 2

φ . For the independent case φ = 0 . 

Suppose $ρ1  and $ρ2  are the sample estimates of ρ1  and ρ2 , respectively. Hypothesis tests are 
based on the result that the test statistic,  
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is approximately distributed as a central F variable with degrees of freedom ν1  and ν2 . The 
values of ν1  and ν2  depend on , , , , and N1 N2 k1 k2 φ .  
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Also define 

( )( )c N k ii i i= − − =1 1 1, ,2  

Independent Case 
When the two scales are independent, there are two situations that must be considered separately. 
If c , the values of and ki >1000 25i > ν1  and ν2  are computed using  

ν1 1 1= −N  

ν2 2 1= −N  

otherwise, they are computed using 
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Dependent Case  
When the two scales are dependent, it follows that N N N1 2= = . There are two situations that 
must be considered separately. 

 If , the values of c and ki >1000 25i > ν1  and ν2  are computed using 
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Calculating the Power 
Let ρ20 be the value of coefficient alpha in the second set under H0, ρ21 be the value of coefficient 
alpha in the second set at which the power is calculated, andρ1

0 2:
be the value of coefficient alpha in 

the first set. The power of the one-sided hypothesis that H 0 1ρ ρ≤  versus the alternative that 
H 0 11 2:ρ ρ>  is calculated as follows: 

1.  Find Fα  such that ( )Prob F F< =α ν ν α, ,1 2  

2.  Compute ′δ  = 
1 1
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4.  Compute the power = ( )1 1 1 2− >Pr ,W Fν ν  

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options of interest for this procedure. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would either select Power and Beta or N1. 

Select N1 when you want to determine the sample size needed to achieve a given power and 
alpha error level.  

Select Power and Beta when you want to calculate the power of an experiment.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when you reject the null hypothesis when in fact it is true.  

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size – Set 1 

N1 (Sample Size in Set 1) 
N1 is the sample size (number of observations or subjects) in dataset one. Feldt (1999) states that 
it is ill-advised to use sample sizes less than 30. 

You may enter a list of values separated with blanks or a range of values. 

K1 (Items/Scale in Set 1) 
K1 is the number of items or raters in dataset one. Since it is a count, it must be an integer. K1 
must be greater than or equal to two. 

You may enter a list of values separated with blanks or a range of values. 

Sample Size – Set 1 

N2 (Sample Size in Set 2) 
N2 is the sample size (number of observations or subjects) in dataset two. Feldt (1999) states that 
it is ill-advised to use sample sizes less than 30. Note that if phi is non-zero, this value will be 
forced equal to N1 regardless of what is entered here. 

For ease of input, when phi is non-zero, you can enter multiples of N1. For example, all of the 
following entries are allowed: 

N1 2N1 0.5N1 

You may enter a list of values separated with blanks or a range of values. 
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K2 (Items/Scale in Set 2) 
K2 is the number of items or raters in dataset two. Since it is a count, it must be an integer greater 
than or equal to two.  

You may enter a list of values separated with blanks or a range of values. 

For ease of input, you can enter multiples of K1. For example, all of the following entries are 
allowed: 

K1 2K1 0.5K1 

Effect Size – Coefficient Alpha Set 1 

CA1 (Coefficient Alpha Set 1) 
Specify the value of ρ1 , the value of coefficient alpha, for dataset one. Often, this value will be 
zero, but any value between -1 and 1 is valid as long as it is not equal to CA21. 

You may enter a list of values separated with blanks or a range of values. 

Effect Size – Coefficient Alpha Set 2 

CA20 (Coefficient Alpha Set 2|H0) 
Enter the value of coefficient alpha in dataset two under the null hypothesis. The null hypothesis 
is H0: CA1=CA20, so often you will set this value equal to CA1. Any value between -1 and 1 
(non-inclusive) is valid as long as it is not equal to CA21.  

You may enter CA1 to indicate that you want the value of CA1 copied here. You may also enter a 
multiple of CA1 such as 1.5CA1. 

You may enter a list of values separated with blanks or a range of values. 

CA21 (Coefficient Alpha Set 2|H1) 
Enter the value of coefficient alpha in dataset two at which the power is computed. Any value 
between -1 and 1 (non-inclusive) is valid as long as it is not equal to CA20. The values of CA20 
and CA21 should match the direction set by the ‘Alternative Hypothesis’ option. 

You may enter a list of values separated with blanks or a range of values. 

Effect Size – Correlation 

Phi (Correlation Between Sets) 
This option implicitly specifies the two datasets as being either independent (datasets on different 
subjects) or dependent (both datasets on the same subjects). Suppose you calculate the average 
score for each subject for both dataset one and dataset two. This parameter is the correlation 
between those two averages over all subjects. If the correlation is zero, the two datasets are 
assumed to be independent. That is, it is assumed that they come from different sets of subjects. 

If the correlation is non-zero, the two datasets are assumed to be dependent. That is, it is assumed 
that both sets of items were measured on the same subjects. Typical values in this case are 
between 0.2 and 0.7. When the datasets are dependent, it is assumed that N1=N2. 

Since this is a correlation, the theoretical range is from -1 to 1. Typical values are 0.0 for 
independent designs and between 0.2 and 0.7 for dependent designs. 
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Test 

Alternative Hypothesis 
This option specifies whether the alternative hypothesis is one-sided or two-sided. It also 
specifies the direction of the hypothesis test. The null hypothesis is 210 : ρρ =H . The alternative 
hypothesis enters into power calculations by specifying the rejection region of the hypothesis test. 
Its accuracy is critical. 

Possible selections are: 

• H1: CA1 <> CA2 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether values are different, but you do not want to specify beforehand which is 
larger. 

• H1: CA1 < CA2 
This option yields a one-tailed test. 

• H1: CA1 > CA2 
This option also yields a one-tailed test. 

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Finding the Power 
Suppose a study is being designed to compare the coefficient alphas of two scales. The 
researchers are going to use a two-sided F-test at a significance level of 0.05. Past experience has 
shown that CA1 is approximately 0.4. The researchers will use different subjects in each dataset. 
Find the power when K1 = K2 = 10, CA20 = CA1, N1 = 50, 100, 150, 200, 250, and 300, N2 = 
N1, and CA21 = 0.6 and 0.7.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Coefficient Alphas procedure 
window by clicking on Correlation, then Two Coefficient Alphas. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size in Set 1).......................50 to 300 by 50 
K1 (Items/Scale in Set 1) ........................10 
N2 (Sample Size in Set 2).......................N1 
K2 (Items/Scale in Set 2) ........................K1 
CA1 (Coefficient Alpha Set 1) .................0.4 
CA20 (Coefficient Alpha Set 2|H0) .........CA1 
CA21 (Coefficient Alpha Set 2|H1) .........0.60 0.70  
Phi (Correlation Between Sets)...............0 
Alternative Hypothesis (H1) ....................H1: CA1 <> CA2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Comparing Two Coefficient Alphas 
H1: CA1 <> CA2 
 
   Coef. Coef. Coef.  Corr.  
 Sample Number Alpha Alpha Alpha Signif. Between  
 Sizes of Items Set 2|H1 Set 2|H0 Set 1 Level Datasets  
Power N1/N2 K1/K2 (CA21) (CA20) (CA1) (Alpha) (Phi) Beta 
0.2642 50/50 10/10 0.6000 0.4000 0.4000 0.0500 0.0000 0.7358 
0.4775 100/100 10/10 0.6000 0.4000 0.4000 0.0500 0.0000 0.5225 
0.6481 150/150 10/10 0.6000 0.4000 0.4000 0.0500 0.0000 0.3519 
0.7725 200/200 10/10 0.6000 0.4000 0.4000 0.0500 0.0000 0.2275 
0.8576 250/250 10/10 0.6000 0.4000 0.4000 0.0500 0.0000 0.1424 
0.9132 300/300 10/10 0.6000 0.4000 0.4000 0.0500 0.0000 0.0868 
0.6253 50/50 10/10 0.7000 0.4000 0.4000 0.0500 0.0000 0.3747 
0.9026 100/100 10/10 0.7000 0.4000 0.4000 0.0500 0.0000 0.0974 
0.9793 150/150 10/10 0.7000 0.4000 0.4000 0.0500 0.0000 0.0207 
0.9961 200/200 10/10 0.7000 0.4000 0.4000 0.0500 0.0000 0.0039 
0.9993 250/250 10/10 0.7000 0.4000 0.4000 0.0500 0.0000 0.0007 
0.9999 300/300 10/10 0.7000 0.4000 0.4000 0.0500 0.0000 0.0001 
 
Report Definitions 
H0, H1 abbreviate the null and alternative hypotheses, respectively. 
Power is the probability of rejecting H0 when it is false. It should be close to one. 
N1 & N2 are the sample sizes of datasets one and two, respectively. 
K1 & K2 are the number of items in datasets one and two, respectively. 
CA21 is the coefficient alpha in dataset two at which the power is calculated.  
CA20 is the coefficient alpha in dataset two under H0.  
CA1 is the coefficient alpha in dataset one.  
Phi is the correlation between the average scores of each of the two datasets. 
Alpha is the probability of a type-I error: rejecting H0 when it is true. 
Beta is the probability of a type-II error: accepting H0 when it is false. Power = 1 - Beta. 
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Summary Statements 
Samples of 10 items on 50 subjects in dataset one and 10 items on 50 subjects in dataset two 
achieve 26% power to detect the difference between the coefficient alphas in the two datasets. 
Under the null hypothesis, the coefficient alphas in datasets one and two are 0.4000 and 
0.4000, respectively. The power is computed assuming that the coefficient alpha of dataset two 
is actually 0.6000. The test statistic used is the two-sided F-test. The significance level of 
the test was 0.0500. 
 

This report shows the values of each of the parameters, one scenario per row. The values from 
this table are plotted in the chart below.  

Plots Section 
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This plot shows the relationship between CA21, N1, and power.  
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Example 2 – Finding the Sample Size 
Continuing with the last example, find the sample size necessary to achieve a power of 90% at the 
0.05 significance level. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Coefficient Alphas procedure 
window by clicking on Correlation, then Two Coefficient Alphas. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size in Set 1)....................... Ignored since this is the Find setting 
K1 (Items/Scale in Set 1) ........................10 
N2 (Sample Size in Set 2).......................N1 
K2 (Items/Scale in Set 2) ........................K1 
CA1 (Coefficient Alpha Set 1) .................0.4 
CA20 (Coefficient Alpha Set 2|H0) .........CA1 
CA21 (Coefficient Alpha Set 2|H1) .........0.60 0.70  
Phi (Correlation Between Sets)...............0 
Alternative Hypothesis (H1) ....................H1: CA1 <> CA2 

Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Comparing Two Coefficient Alphas 
H1: CA1 <> CA2 
 
   Coef. Coef. Coef.  Corr.  
 Sample Number Alpha Alpha Alpha Signif. Between  
 Sizes of Items Set 2|H1 Set 2|H0 Set 1 Level Datasets  
Power N1/N2 K1/K2 (CA21) (CA20) (CA1) (Alpha) (Phi) Beta 
0.9000 286/286 10/10 0.6000 0.4000 0.4000 0.0500 0.0000 0.1000 
0.9026 100/100 10/10 0.7000 0.4000 0.4000 0.0500 0.0000 0.0974 
 

This report shows that 286 subjects per dataset are needed when CA21 is 0.60 and 100 subjects 
per dataset are needed when CA21 is 0.70.  
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Example 3 – Validation using Feldt 
Feldt et al. (1999) presents an example in which CA1 = 0, CA20 = 0, CA21 = 0.5, alpha = 0.05, 
Phi = 0, N1 = N2 = 60,and k = 5. They find the power of a one-sided test to be 0.761.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Coefficient Alphas procedure 
window by clicking on Correlation, then Two Coefficient Alphas. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example3 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size in Set 1).......................60 
K1 (Items/Scale in Set 1) ........................5 
N2 (Sample Size in Set 2).......................N1 
K2 (Items/Scale in Set 2) ........................K1 
CA1 (Coefficient Alpha Set 1) .................0.0 
CA20 (Coefficient Alpha Set 2|H0)..........CA1 
CA21 (Coefficient Alpha Set 2|H1)..........0.5  
Phi (Correlation Between Sets)...............0 
Alternative Hypothesis (H1) ....................H1: CA1 < CA2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H1: CA0<>CA1 
 
   Coef. Coef. Coef.  Corr.  
 Sample Number Alpha Alpha Alpha Signif. Between  
 Sizes of Items Set 2|H1 Set 2|H0 Set 1 Level Datasets  
Power N1/N2 K1/K2 (CA21) (CA20) (CA1) (Alpha) (Phi) Beta 
0.7655 60/60 5/5 0.5000 0.0000 0.0000 0.0500 0.0000 0.2345 
 

Note that PASS’s result is slightly different from Feldt’s because PASS uses fractional degrees of 
freedom and Feldt rounds to the closest integer. Although the difference in power is small, 
allowing fractional degrees of freedom is more accurate. 
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Chapter 850 

Cox Regression 
Introduction 
Cox proportional hazards regression models the relationship between the hazard function ( )λ t X|  
of survival time and k covariates using the following formula 
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where ( )λ0 t  is the baseline hazard. Note that the covariates may be discrete or continuous. 

This procedure calculates power and sample size for testing the hypothesis that β1 0=  versus the 
alternative that β1 = B . Note that β1  is the change in log hazards for a one-unit change in  
when the rest of the covariates are held constant. The procedure assumes that this hypothesis will 
be tested using the Wald (or score) statistic 
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Power Calculations 
Suppose you want to test the null hypothesis that β1 0=  versus the alternative that β1 = B . 
Hsieh and Lavori (2000) gave a formula relating sample size, α , β , and B when  is normally 
distributed. The sample size formula is 

X1
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where D is the number of events,  is the variance of , and σ 2 X1 R2  is the proportion of variance 
explained by the multiple regression of  on the remaining covariates. It is interesting to note 
that the number of censored observations does not enter in to the power calculations. To obtain a 
formula for the sample size, N, we inflate D by dividing by P, the proportion of subjects that fail. 

X1
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Thus, the formula for N is 

( )
( )N =  
z z
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This formula is an extension of an earlier formula for the case of a single, binary covariate 
derived by Schoenfeld (1983). Thus, it may be used with discrete or continuous covariates.  

Assumptions 
It is important to note that this formulation assumes that proportional hazards model with k 
covariates is valid. However, it does not assume exponential survival times. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal 
probabilities of the event of interest when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal probabilities when in fact they are 
equal. 

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Sample Size) 
This option specifies the total number of observations in the sample. You may enter a single 
value or a list of values.  

Note that when the Overall Event Rate is set to 1.0, the sample size becomes the number of 
events. 

P (Overall Event Rate) 
Enter one or more values for the event rate. The event rate is the proportion of subjects in which 
the event of interest occurs during the duration of the study. This is the proportion of non-
censored subjects. Since the values entered here are proportions, they must be in the range 

. 0 1< ≤P

Note that when this value is set to 1.0, the sample size is the number of events (deaths). 

Effect Size – Hazard Ratio 

B (Log Hazard Ratio) 
This procedure calculates power or sample size for testing the hypothesis that β1 0=  versus the 
alternative that β1 = B  in a Cox regression. Enter one or more values of B here. 

B is the predicted change in log (base e) hazards corresponding to a one unit change in X1 when 
the other covariates are held constant. Thus, if you want to detect a hazard ratio of 1.5, enter 
ln(1.5) = 0.4055. Although any non-zero value may be entered, common values are between -3 
and 3. 

Effect Size – Covariates (X1 is the 
Variable of Interest) 

R-Squared of X1 with Other X’s 
This is the R-Squared that is obtained when X1 is regressed on the other X’s (covariates) in the 
model. Use this to account for the influence on power and sample size of adding other covariates. 
Note that the number of additional variables does not matter in this formulation. Only their 
overall relationship with X1 through this R-Squared value is used.  

Of course, this value is restricted to being greater than or equal to zero and less than one. Use 
zero when there are no other covariates. 
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S (Standard Deviation of X1) 
Enter an estimate of the standard deviation of X1, the predictor variable of interest. The 
formulation used here assumes that X1 follows the normal distribution. However, you can obtain 
approximate results for non-normal variables by putting in the correct value here. For example, if 
X1 is binary, the standard deviation is given by ( )p p1−  where p is the proportion of either of 
the binary values in the population of X1.  

If you don’t have an estimate, you can press the SD button to obtain a window that will help you 
determine a rough estimate of the standard deviation. 

Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided hypothesis is selected, the 
value of alpha is halved by PASS. Everything else remains the same. 

Note that the accepted procedure is to use the Two Sided option unless you can justify using a 
one-sided test.  

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Power for Several Sample Sizes 
Cox regression will be used to analyze the power of a survival time study. From past experience, 
the researchers want to evaluate the sample size needs for detecting regression coefficients of 0.2 
and 0.3 for the independent variable of interest. The variable has a standard deviation of 1.20. The 
R-squared of this variable with seven other covariates is 0.18.   

The event rate is thought to be 70% over the 3-year duration of the study. The researchers will 
test their hypothesis using a 5% significance level with a two-sided Wald test. They decide to 
calculate the power at sample sizes between 5 and 250. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Cox Regression procedure window by clicking on Regression 
(Y is a Function of X’s), then Cox Regression (Y is Elapsed Time). You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................5 to 250 by 40 
P (Overall Event Rate) ............................0.70 
B (Log Hazard Ratio) ..............................0.2 0.3 
R-Squared of X1 with Other X’s..............0.18 
S (Standard Deviation of X1) ..................1.2 
Alternative Hypothesis ............................Two-Sided 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
     R-Squared   
 Sample Reg. S.D. Event X1 vs Two-  
 Size Coef. of X1 Rate Other X's Sided  
Power (N) (B) (SD) (P) (R2) Alpha Beta 
0.06017 5 0.2000 1.2000 0.7000 0.1800 0.05000 0.93983 
0.22959 45 0.2000 1.2000 0.7000 0.1800 0.05000 0.77041 
0.38837 85 0.2000 1.2000 0.7000 0.1800 0.05000 0.61163 
0.52908 125 0.2000 1.2000 0.7000 0.1800 0.05000 0.47092 
0.64643 165 0.2000 1.2000 0.7000 0.1800 0.05000 0.35357 
0.74004 205 0.2000 1.2000 0.7000 0.1800 0.05000 0.25996 
0.81223 245 0.2000 1.2000 0.7000 0.1800 0.05000 0.18777 
0.08849 5 0.3000 1.2000 0.7000 0.1800 0.05000 0.91151 
0.44815 45 0.3000 1.2000 0.7000 0.1800 0.05000 0.55185 
0.71043 85 0.3000 1.2000 0.7000 0.1800 0.05000 0.28957 
0.86202 125 0.3000 1.2000 0.7000 0.1800 0.05000 0.13798 
0.93865 165 0.3000 1.2000 0.7000 0.1800 0.05000 0.06135 
0.97412 205 0.3000 1.2000 0.7000 0.1800 0.05000 0.02588 
0.98953 245 0.3000 1.2000 0.7000 0.1800 0.05000 0.01047 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. 
B is the size of the regression coefficent to be detected. 
SD is the standard deviation of X1. 
P is the event rate. 
R2 is the R-squared achieved when X1 is regressed on the other covariates. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A Cox regression of the log hazard ratio on a covariate with a standard deviation of 1.2000 
based on a sample of 5 observations achieves 6% power at a 0.93983 significance level to detect 
a regression coefficient equal to 0.2000. The sample size was adjusted since a multiple 
regression of the variable of interest on the other covariates in the Cox regression is 
expected to have an R-Squared of 0.1800. The sample size was adjusted for an anticipated event 
rate of 0.7000. 
 

This report shows the power for each of the scenarios.  
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Plots Section 
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Example 2 – Validation using Hsieh 
Hsieh and Lavori (2000) present an example which we will use to validate this program. In this 
example, B = 1.0, S = 0.3126, R2 = 0.1837, P = 0.738, one-sided alpha = 0.05, and power = 0.80. 
They calculated N = 107.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Cox Regression procedure window by clicking on Regression 
(Y is a Function of X’s), then Cox Regression (Y is Elapsed Time). You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
P (Overall Event Rate) ............................0.738 
B (Log Hazard Ratio) ..............................1.0 
R-Squared of X1 with Other X’s..............0.1837 
S (Standard Deviation of X1) ..................0.3126 
Alternative Hypothesis ............................One-Sided 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
     R-Squared   
 Sample Reg. S.D. Event X1 vs One-  
 Size Coef. of X1 Rate Other X's Sided  
Power (N) (B) (SD) (P) (R2) Alpha Beta 
0.80321 106 1.000 0.313 0.738 0.184 0.05000 0.19679 
 

Note that PASS calculated 106 rather than the 107 calculated by Hsieh and Lavori (2000). The 
discrepancy is due to the intermediate rounding that they did. To show this, we will run a second 
example from Hsieh and Lavori in which R2 = 0 and P = 1.0. In this case, N = 64. 

Numeric Results with R2 = 0 and P = 1.0 
 
     R-Squared   
 Sample Reg. S.D. Event X1 vs One-  
 Size Coef. of X1 Rate Other X's Sided  
Power (N) (B) (SD) (P) (R2) Alpha Beta 
0.80399 64 1.000 0.313 1.000 0.000 0.05000 0.19601 
 

Note that PASS also calculated 64. Hsieh and Lavori obtained the 107 by adjusting this 64 for P 
first and then for R2. PASS does both adjustments at once, obtaining the 106. Thus, the difference 
is due to intermediate rounding. 

Example 3 – Validation for Binary X1 using Schoenfeld 
Schoenfeld (1983), page 502, presents an example for the case when X1 is binary. In this 
example, B = ln(1.5) = 0.4055, S = 0.5, R2 = 0.0, P = 0.71, one-sided alpha = 0.05, and power = 
0.80. Schoenfeld calculated N = 212. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Cox Regression procedure window by clicking on Regression 
(Y is a Function of X’s), then Cox Regression (Y is Elapsed Time). You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example3 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
P (Overall Event Rate) ............................0.71 
B (Log Hazard Ratio) ..............................0.4055 
R-Squared of X1 with Other X’s..............0.0 
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Data Tab (continued) 
S (Standard Deviation of X1) ..................0.5 
Alternative Hypothesis ............................One-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
     R-Squared   
 Sample Reg. S.D. Event X1 vs One-  
 Size Coef. of X1 Rate Other X's Sided  
Power (N) (B) (SD) (P) (R2) Alpha Beta 
0.80028 212 0.406 0.500 0.710 0.000 0.05000 0.19972 
 

Note that PASS also obtains N = 212.  
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Chapter 855 

Linear Regression 
Introduction 
Linear regression is a commonly used procedure in statistical analysis. One of the main objectives 
in linear regression analysis is to test hypotheses about the slope (sometimes called the regression 
coefficient) of the regression equation. This module calculates power and sample size for testing 
whether the slope is a value other than the value specified by the null hypothesis.  

Difference between Linear Regression and Correlation 
The correlation coefficient is used when both X and Y are from the normal distribution (in fact, 
the assumption actually is that X and Y follow a bivariate normal distribution). That is, X is 
assumed to be a random variable whose distribution is normal. In the linear regression context, no 
statement is made about the distribution of X. In fact, X is not even a random variable. Instead, it 
is a set of fixed values such as 10, 20, 30 or -1, 0, 1. Because of this difference in definition, we 
have included both Linear Regression and Correlation algorithms. They gave different results. 
This module deals with the Linear Regression (fixed X) case. 

Technical Details 
Suppose that the dependence of a variable Y on another variable X can be modeled using the 
simple linear equation 

Y = A + BX 

In this equation, A is the Y-intercept, B is the slope, Y is the dependent variable, and X is the 
independent variable.  

The nature of the relationship between Y and X is studied using a sample of N observations. Each 
observation consists of a data pair: the X value and the Y value. The values of A and B are 
estimated from these observations. Since the linear equation will not fit the observations exactly, 
estimated values of A and B must be used. These estimates are found using the method of least 
squares. Using these estimated values, each data pair may be modeled using the equation 

Y a bX ei i i= + +  

Note that a and b are the estimates of the population parameters A and B. The e values represent the 
discrepancies between the estimated values (a + bX) and the actual values Y. They are called the 
errors or residuals.  

If it is assumed that these e values are normally distributed, tests of hypotheses about A and B can 
be constructed. Specifically, we can employ an F ratio to test the null hypothesis that the slope is B0 
versus the alternative hypothesis that the slope is B (B not B0). The power function of this F test can 
be written 
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( )Power F F= >Pr α  

where  is the critical value based on the central-F distribution with 1 and N - 2 degrees of 
freedom and the significant level

Fα

α and F is distributed as a non-central F with degrees of 
freedom 1 and N - 2 and non-centrality parameterλ . The value of λ is  
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The values of each of the parameters α , β , , N, SX, and B can be determined from the others 
using the above formulation. 

σ 2

Note that the power for a one-sided test may be found by using 2α  for α in the above formulation. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  
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Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis when in fact it is true. 

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Sample Size) 
This is the number of observations in the study. 

Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided hypothesis is selected, the 
value of alpha is halved by PASS. Everything else remains the same. 

Note that the accepted procedure is to use the Two Sided option unless you can justify using a 
one-sided test.  

Effect Size – Slope 

B0 (Slope|H0) 
This is the value of the slope assumed by the null hypothesis. Often this value is set to zero, but 
this is not necessary. The alternative hypothesis is that the slope is not equal to this value. 

B1 (Slope|H1) 
This is the value of the slope at which the power is computed. The hypothesis being tested is that 
the slope is some value other than B0. 

Effect Size – Standard Deviation of 
X’s 

SX (Standard Deviation of X’s) 
This is the standard deviation of the X values in the sample. It is not necessarily the standard 
deviation of X in the population. For example, suppose the X values are five -1's and five 1's. The 
computed standard deviation of these values (dividing by N rather than N - 1) is 1.0.  
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You will often want to compute the power or sample size for a specific set of X values. Instead of 
computing SX by hand, you can use the keyword XS (short for X’s) followed by the list of X 
values. For example, the phrase 

XS -1,1 

is translated into a 1.0 (which is the standard deviation of these two values). This calculation 
assumes that the sample is allocated equally to the two values. Hence, an N of 10 implies that five 
are assigned to -1 and five to 1. 

If you are planning a study involving two random variables, X and Y, that come from a bivariate 
normal population, you should enter the actual standard deviation of X here. 

Effect Size – Residual Variance 
Calculation 

Residual Variance Method 
The standard deviation of the residuals is needed for the power and sample size calculations. 
These residuals are the e  in the regression model i

Y a bX ei i i= + +  

However, their standard deviation is not available until after the study is complete. PASS 
provides three methods for specifying the standard deviation of the residuals: Std Deviation of Y, 
Correlation, and specifying it directly.  

SY (Standard Deviation of Y) 
Enter an estimate of the standard deviation of Y. This standard deviation ignores X. An estimate 
of this value must be found from previous studies, pilot studies, or using your best guess. This 
option is used when 'Residual Variance Method' is set to 'SY'. 

When this value is used, the standard deviation of the residuals is computed using the relationship 

σ σ= −Y B SX2 2 2  

This value must be greater than zero. 

R (Correlation) 
Enter an estimate of the correlation between Y and the X values. An estimate of this correlation 
must be found from previous studies, pilot studies, or using your best guess. This value must be 
greater than zero and less than one—negative values are allowed. This option is used when 
'Residual Variance Method' is set to 'R'. 

When this method is used, the standard deviation of the residuals is computed using the 
relationship 

( )σ = −B SX R1 12/  

where R is the correlation. 

S (Standard Deviation of Residuals) 
Enter an estimate for the value of the standard deviation of the residuals. This option is used when 
'Residual Variance Method' is set to 'S'. 
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Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating the Power 
Suppose a power analysis must be conducted for a linear regression study that will test the 
relationship between two variables, Y and X. The test will look at the power using two 
significance levels, 0.01 and 0.05 and several sample sizes between 5 and 85. Based on previous 
studies, the standard deviation of Y will be assumed to be 1.0. The standard deviation of the X’s in 
the sample will also be assumed as 1.0. The experimenter decides that unless the slope is at least 
0.5, the relationship between X and Y is too weak to be considered.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Linear Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Linear Regression (Y is Continuous). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.01, 0.05 
N (Sample Size) ......................................5 to 85 by 10 
Alternative Hypothesis ............................Two-Sided 
B0 (Slope|H0)..........................................0.0 
B1 (Slope|H1)..........................................0.5 
SX (Standard Deviation of X’s) ...............1 
Residual Variance Method......................SY (Std. Dev. of Y) 
SY (Standard Deviation of Y)..................1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Testing of B=B0 where B0 = 0.00 
 
   Standard Standard Standard   
 Sample  Deviation Deviation Deviation   
 Size Slope of X of Y of Residuals   
Power (N) (B) (SX) (SY) (S) Alpha Beta 
0.03533 5 0.50 1.00 1.00 0.87 0.01000 0.96467 
0.15194 5 0.50 1.00 1.00 0.87 0.05000 0.84806 
0.26836 15 0.50 1.00 1.00 0.87 0.01000 0.73164 
0.54369 15 0.50 1.00 1.00 0.87 0.05000 0.45631 
0.54097 25 0.50 1.00 1.00 0.87 0.01000 0.45903 
0.78944 25 0.50 1.00 1.00 0.87 0.05000 0.21056 
0.74759 35 0.50 1.00 1.00 0.87 0.01000 0.25241 
0.91225 35 0.50 1.00 1.00 0.87 0.05000 0.08775 
0.87415 45 0.50 1.00 1.00 0.87 0.01000 0.12585 
0.96601 45 0.50 1.00 1.00 0.87 0.05000 0.03399 
0.94183 55 0.50 1.00 1.00 0.87 0.01000 0.05817 
0.98755 55 0.50 1.00 1.00 0.87 0.05000 0.01245 
0.97470 65 0.50 1.00 1.00 0.87 0.01000 0.02530 
0.99564 65 0.50 1.00 1.00 0.87 0.05000 0.00436 
0.98953 75 0.50 1.00 1.00 0.87 0.01000 0.01047 
0.99853 75 0.50 1.00 1.00 0.87 0.05000 0.00147 
0.99585 85 0.50 1.00 1.00 0.87 0.01000 0.00415 
0.99952 85 0.50 1.00 1.00 0.87 0.05000 0.00048 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
B0 is the slope under the null hypothesis. 
B is the slope at which the power is calculated. 
SX is the standard deviation of the X values. 
SY is the standard deviation of Y. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
A sample size of 5 achieves 4% power to detect a change in slope from 0.00 under the null 
hypothesis to 0.50 under the alternative hypothesis when the standard deviation of the X's is 
1.00, the standard deviation of Y is 1.00, and the two-sided significance level is 0.01000. 
 

This report shows the calculated sample size for each of the scenarios.  
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Plots Section 
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This plot shows the power versus the sample size for the two values of alpha. 

Example 2 – Validation using Neter, Wasserman, and 
Kutner 
Neter, Wasserman, and Kutner (1983) pages 71 and 72 present a power analysis when N = 10, 
Slope = 0.25, alpha = 0.05, ( )SX = =3400 10 18 439/ . , and 

( ) ( )SY = + =10 0 25 3400 10 5590152. / . . They found the power to be approximately 0.97.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Linear Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Linear Regression (Y is Continuous). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................10 
Alternative Hypothesis ............................Two-Sided 
B0 (Slope|H0)..........................................0.00 
B1 (Slope|H1)..........................................0.25 
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Data Tab (continued) 
SX (Standard Deviation of X’s) ...............18.439 
Residual Variance Method......................SY (Std. Dev. of Y) 
SY (Standard Deviation of Y) ..................5.59015 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Testing of B=B0 where B0 = 0.00 
 
   Standard Standard Standard   
 Sample  Deviation Deviation Deviation   
 Size Slope of X of Y of Residuals   
Power (N) (B) (SX) (SY) (S) Alpha Beta 
0.97975 10 0.25 18.44 5.59 3.16 0.05000 0.02025 
 

The power of 0.97975 matches their result to two decimals. Note that they used interpolation 
from a table to obtain their answer.  
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Confidence 
Intervals for Linear 
Regression Slope 
Introduction 
This routine calculates the sample size necessary to achieve a specified distance from the slope to 
the confidence limit at a stated confidence level for a confidence interval about the slope in 
simple linear regression.  

Caution: This procedure assumes that the slope and standard deviation/correlation estimates of 
the future sample will be the same as the slope and standard deviation/correlation estimates that 
are specified. If the slope and standard deviation/correlation estimates are different from those 
specified when running this procedure, the interval width may be narrower or wider than 
specified. 

Technical Details 
For a single slope in simple linear regression analysis, a two-sided, 100(1 – α)% confidence 
interval is calculated by  

12,2/11 bn stb −−± α  

where b1 is the calculated slope and  is the estimated standard deviation of b1, or 
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The value s2 is often obtained from regression tables as MSE. 
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A one-sided 100(1 – α)% upper confidence limit is calculated by 

12,11 bn stb −−+ α  

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

12,11 bn stb −−− α  

Each confidence interval is calculated using an estimate of the slope plus and/or minus a quantity 
that represents the distance from the mean to the edge of the interval. For two-sided confidence 
intervals, this distance is sometimes called the precision, margin of error, or half-width. We will 
label this distance, D.  

The basic equation for determining sample size when D has been specified is 

12,2/1 bn stD −−= α  

This equation can be solved for any of the unknown quantities in terms of the others. The value 
α / 2 is replaced by α  when a one-sided interval is used. 

In this procedure, the slope and the standard deviation of the X’s are entered as input, where 
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One of three different additional inputs can be used to calculate s. 

1. Standard deviation of the Y’s: 
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In this case s is generated using 
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  which is often obtained from regression tables as the square root of MSE.  

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items 
are drawn from a population using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
slope is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items 
are drawn from a population using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
slope is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 
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Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

N must be greater than or equal to 3. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

Precision 

Distance from Slope to Limit(s) 
This is the distance from the confidence limit(s) to the sample slope. For two-sided intervals, it is 
also known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Regression – Slope 

B (Slope) 
Enter the magnitude of the sample slope. 

In the linear equation, Y=A+BX, B represents the slope of the line relating the dependent variable 
Y to the independent variable X.  

Caution: The sample size estimates for this procedure assume that the slope that is achieved when 
the confidence interval is produced is the same as the slope entered here. If the sample slope is 
different from the one specified here, the width of the interval may be narrower or wider than 
specified. 

You can enter a single value or a range of values such as 1,2,3. 

This value must be greater than zero.  



Confidence Intervals for Linear Regression Slope  856-5 

Regression – Standard Deviation of 
X’s 

SX (Standard Deviation of X’s) 
This is the standard deviation of the X values in the sample. 

Caution: The sample size estimates for this procedure assume that the SX that is achieved when 
the confidence interval is produced is the same as the SX entered here. If the sample SX is 
different from the one specified here, the width of the interval may be narrower or wider than 
specified. 

It is assumed that the standard deviation formula used in calculating SX uses the divisor N-1.  

The value must be greater than zero.  

Regression – Residual Variance 
Calculation 

Residual Variance Method 
Three methods can be used to calculate the standard deviation of the residuals. This option 
specifies which method should be used. 

• SY 
This option specifies that the formula 

S = SQRT[SY^2 – (B*SX)^2] 

should be used to calculate the standard deviation of the residuals. Notice that this formula 
requires only SY, SX, and B (the correlation is not used). 

• R 
This option specifies that the formula 

S=B(SX)SQRT[1/R^2 – 1] 

should be used to calculate the standard deviation of the residuals. Notice that this formula 
requires only SX, B, and R (the value of SY is not used). 

• S 
This option specifies the value of S directly. The values of SY and R are not used. 

SY (Standard Deviation of Y) 
This is the standard deviation of the Y values in the sample. 

This value is only used when the Residual Variance Method is set to 'SY (Std. Dev. of Y)'. 

Caution: The sample size estimates for this procedure assume that the SY that is achieved when 
the confidence interval is produced is the same as the SY entered here. If the sample SY is 
different from the one specified here, the width of the interval may be narrower or wider than 
specified. 

It is assumed that the standard deviation formula used in calculating SY uses the divisor N-1.  

The value must be greater than zero. 
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R (Correlation) 
This is an estimate of the correlation between Y and X. 

This value is only used when the Residual Variance Method is set to 'R (Correlation)'. 

Caution: The sample size estimates for this procedure assume that the correlation that is achieved 
when the confidence interval is produced is the same as the correlation entered here. If the sample 
correlation is different from the one specified here, the width of the interval may be narrower or 
wider than specified. 

Range: 0 < R < 1 

Note that R cannot be 0 or negative. 

S (Standard Deviation of Residuals) 
This is the standard deviation of the residuals from the regression of Y on X. 

This value is only used when the Residual Variance Method is set to 'S (Std. Dev. of Residuals)'. 

Caution: The sample size estimates for this procedure assume that the S that is achieved when the 
confidence interval is produced is the same as the S entered here. If the sample S is different from 
the one specified here, the width of the interval may be narrower or wider than specified. 

It is assumed that the standard deviation formula used in calculating S is sqrt(MSE), which uses 
the divisor N-2. 

The value (or values) must be greater than zero. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the slope such that the distance from the slope to the limits is no more than 
1 unit. The confidence level is set at 0.95, but 0.99 is included for comparative purposes. The 
estimated slope is 1.7 and the standard deviation of the X’s is 11.2. The standard deviation of the 
residuals estimate, based on the MSE from a similar study, is 48.6. Instead of examining only the 
interval width of 1, a series of widths from 0.5 to 1.5 will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Linear Regression Slope 
procedure window by clicking on Confidence Intervals, then Correlation and Regression, then 
Linear Regression Slope. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 0.99 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Slope to Limits .................0.5 to 1.5 by 0.1 
B (Slope) .................................................1.7 
SX (Standard Deviation of X’s) ...............11.2 
Residual Variance Method......................S (Std. Dev. of Residuals) 
S (Standard Deviation of Residuals).......48.6 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Slope in Simple Linear Regression 
 
  Target Actual  Standard Standard 
 Sample Distance Distance  Deviation Deviation 
Confidence Size from Slope from Slope Slope of X of Residuals 
Level (N) to Limits to Limits (B) (SX) (S) 
0.950 293 0.500 0.500 1.70 11.20 48.60 
0.950 205 0.600 0.599 1.70 11.20 48.60 
0.950 152 0.700 0.698 1.70 11.20 48.60 
0.950 117 0.800 0.798 1.70 11.20 48.60 
0.950 93 0.900 0.899 1.70 11.20 48.60 
0.950 76 1.000 0.998 1.70 11.20 48.60 
0.950 64 1.100 1.093 1.70 11.20 48.60 
0.950 54 1.200 1.196 1.70 11.20 48.60 
0.950 47 1.300 1.289 1.70 11.20 48.60 
0.950 41 1.400 1.388 1.70 11.20 48.60 
0.950 36 1.500 1.491 1.70 11.20 48.60 
0.990 505 0.500 0.500 1.70 11.20 48.60 
0.990 352 0.600 0.600 1.70 11.20 48.60 
0.990 260 0.700 0.700 1.70 11.20 48.60 
0.990 201 0.800 0.798 1.70 11.20 48.60 
0.990 160 0.900 0.897 1.70 11.20 48.60 
0.990 130 1.000 0.999 1.70 11.20 48.60 
0.990 109 1.100 1.095 1.70 11.20 48.60 
0.990 92 1.200 1.197 1.70 11.20 48.60 
0.990 79 1.300 1.298 1.70 11.20 48.60 
0.990 69 1.400 1.395 1.70 11.20 48.60 
0.990 61 1.500 1.491 1.70 11.20 48.60 
 
References 
Ostle, B. and Malone, L.C. 1988. Statistics in Research. Iowa State University Press. Ames, Iowa. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true slope. 
N is the size of the sample drawn from the population. 
Distance from Slope to Limit is the distance from the confidence limit(s) to the sample slope. For two-sided 
     intervals, it is also know as the precision, half-width, or margin of error. 
Target Distance from Slope to Limit is the value of the distance that is entered into the procedure. 
Actual Distance from Slope to Limit is the value of the distance that is obtained from the procedure. 
B is the sample slope. 
SX is the sample standard deviation of the X values. 
S is the standard deviation of the sample residuals. 
 
Summary Statements 
A sample size of 293 produces a two-sided 95% confidence interval with a distance from the 
sample slope to the limits that is equal to 0.500 when the sample slope is 1.70, the standard 
deviation of the X's is 11.20, and the standard deviation of the residuals is 48.60. 
 

This report shows the calculated sample size for each of the scenarios.  
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Plots Section 
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This plot shows the sample size versus the distance from the sample slope to the limits for the two 
confidence levels. 
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Example 2 – Validation using Ostle and Malone 
Ostle and Malone (1988) page 234 give an example of a calculation for a confidence interval for 
the slope when the confidence level is 95%, the slope is 7.478, the standard deviation of the X’s 
is 3.8944, the standard deviation of the residuals is 5.369792, and the distance from the slope to 
the limits is 0.87608. The sample size is 13.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Linear Regression Slope 
procedure window by clicking on Confidence Intervals, then Correlation and Regression, then 
Linear Regression Slope. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Distance from Slope to Limits .................0.87608 
B (Slope) .................................................7.478 
SX (Standard Deviation of X’s) ...............3.8944 
Residual Variance Method......................S (Std. Dev. of Residuals) 
S (Standard Deviation of Residuals).......5.369792 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Target Actual  Standard Standard 
 Sample Distance Distance  Deviation Deviation 
Confidence Size from Slope from Slope Slope of X of Residuals 
Level (N) to Limits to Limits (B) (SX) (S) 
0.95000 13 0.87608 0.87608 7.48 3.89 5.37 
 

PASS also calculated the sample size to be 13.  
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Chapter 860 

Logistic 
Regression 
Introduction 
Logistic regression expresses the relationship between a binary response variable and one or more 
independent variables called covariates. A covariate can be discrete or continuous.  

Consider a study of death from disease at various ages. This can be put in a logistic regression 
format as follows. Let a binary response variable Y be one if death has occurred and zero if not. 
Let X  be the individual’s age. Suppose a large group of various ages is followed for ten years and 
then both Y and X are recorded for each person. In order to study the pattern of death versus age, 
the age values are grouped into intervals and the proportions that have died in each age group are 
calculated. The results are displayed in the following plot. 
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As you would expect, as age increases, the proportion dying of disease increases. However, since 
the proportion dying is bounded below by zero and above by one, the relationship is 
approximated by an “S” shaped curve. Although a straight-line might be used to summarize the 
relationship between ages 40 and 60, it certainly could not be used for the young or the elderly.  

Under the logistic model, the proportion dying, P, at a given age can be calculated using the 
formula 

P =  e
e

X

X

β β

β β

0 1

0 11

+

++
 

This formula can be rearranged so that it is linear in X as follows 

Log P
P

= X
1 0 1−
⎛
⎝⎜

⎞
⎠⎟

+β β  
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Note that the left side is the logarithm of the odds of death versus non-death and the right side is a 
linear equation for X. This is sometimes called the logit transformation of P. When the scale of 
the vertical axis of the plot is modified using the logit transformation, the following straight-line 
plot results.  
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In the logistic regression model, the influence of X on Y is measured by the value of the slope of 
X which we have calledβ1 . The hypothesis that β1 0=  versus the alternative that β1 0= ≠B  is 
of interest since if β1 = 0 , X is not related to Y.  

Under the alternative hypothesis that β1 = B , the logistic model becomes 

log P
- P

 =  BX1

1
01

⎛
⎝
⎜

⎞
⎠
⎟ +β  

Under the null hypothesis, this reduces to 

log P
- P

 =  0

0
01

⎛
⎝
⎜

⎞
⎠
⎟ β  

To test whether the slope is zero at a given value of X, the difference between these to quantities 
is formed giving 

β β0 0
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where OR is odds ratio of  and . This relationship may be solved for OR giving P1 P0

OR eBX=  
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This shows that the odds ratio of  and  is directly related to the slope of the logistic 
regression equation. It also shows that the value of the odds ratio depends on the value of X. For a 
given value of X, testing that B is zero is equivalent to testing OR is one. Since OR is commonly 
used and well understood, it is used as a measure of effect size in power analysis and sample size 
calculations. 

P1 P0

Power Calculations 
Suppose you want to test the null hypothesis that β1 0=  versus the alternative that β1 = B . 
Hsieh, Block, and Larsen (1998) have presented formulae relating sample size, α , power, and B 
for two situations: when  is normally distributed and when  is binomially distributed. X1 X1

When  is normally distributed, the sample size formula is X1

( )
( )

N =  
z z

P P
1 2 1

2

21
− −+

−
α β/

* * B
 

where  is the event rate (probability that Y = 1) at the mean of . Note that B is defined in 
terms of an increase of one standard deviation of  above the mean. 

P * X1

X1

When  is binomially distributed and  = 0 or 1, the sample size formula is X1 X1

( ) ( ) ( )( )

( ) ( )
N =  

z
P P

R
z P P

P P R
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where  is the event rate at P0 X1 0=  and  is the event rate at P1 X1 1= , R is the proportion of the 
sample with , and X1 1= P  is the overall event rate given by 

( ) ( )P R P R= − +1 0 1P . 

Multiple Logistic Regression 
The multiple logistic regression model relates the probability distribution of Y to two or more 
covariates  by the formula X X Xk1 2, , ,L

log P
- P

 =  X ... Xk k1 0 1 1
⎛
⎝⎜

⎞
⎠⎟

+ + +β β β  

where P is the probability that Y = 1 given the values of the covariates. It is a simple extension of 
the simple logistic regression model that was just presented. In power analysis and sample size 
work, attention is placed on a single covariate while the influence of the other covariates is 
statistically removed by placing them at their mean values. 
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When there are multiple covariates, the following adjustment was given by Hsieh (1998) to give 
the total sample size,  Nm

N  =  N
1 -m 2ρ

 

where ρ  is the multiple correlation coefficient between  (the variable of interest) and the 
remaining covariates. Notice that the number of extra covariates does not matter in this 
approximation. 

X1

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are P1, N, Alpha, and Power and Beta. Under most situations, you will select 
either Power and Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. A 
type-II error occurs when you fail to reject the null hypothesis of equal probabilities of the event 
of interest when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal probabilities when in fact they are 
equal.  

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Sample Size) 
This option specifies the total number of observations in the sample. You may enter a single 
value or a list of values. 

Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided hypothesis is selected, the 
value of alpha is halved by PASS. Everything else remains the same. 

Note that the accepted procedure is to use the Two Sided option unless you can justify using a 
one-sided test.  

Effect Size – Baseline Probability 

P0 (Baseline Probability that Y=1) 
This option specifies one or more  values. The interpretation of  depends on whether  is 
binary or continuous. 

P0 P0 X1

Binomial Covariate 
When  is binary,  is the probability that Y = 1 when  = 0. All other covariates are 
assumed to be equal to their mean values. In this case, the logistic equation reduces to 

X1 P0 X1

log P
- P

 =  0

0
01

⎛
⎝
⎜

⎞
⎠
⎟ β  

so that  

P  =  e
e0

0

01

β

β+
 

Normal Covariate 
When  is normally distributed,  is the probability that Y = 1 when X1 P0 X X1 1

= μ , where μX1
is 

the mean of . That is,  is the baseline probability that Y = 1 when  is ignored. All other X1 P0 X1
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covariates are assumed to be equal to their mean values. In this case, the logistic equation reduces 
to 

log P
- P

 =  X
0

0
0 11 1

⎛
⎝
⎜

⎞
⎠
⎟ +β β μ  

so that  

P  =  e
e

X

X0
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Effect Size – Alternative Probability 

Use P1 or Odds Ratio 
This option specifies the whether to specify P1 directly or to specify it by specifying the odds 
ratio. Since the relationship between the odds ration, P1, and P0 is given by 

( )
( )

OR
P - P
P - P

= 1 1

0 0

1
1

/
/

 

specifying OR and P0 implicitly specifies P1. 

This options lets you specify whether you want to state the alternative hypothesis in terms of P1 
or the odds ratio. 

P1 (Alternative Probability that Y=1) 
This option specifies the effect size to be detected by specifying . As was shown earlier,  the 
slope of the logistic regression can be expressed in terms of  and . Hence, by specifying , 
you are also specifying the slope. 

P1

P0 P1 P1

This option is only used when the User P1 or Odds Ratio option is set to P1. Its interpretation 
depends on whether  is binomial or normal. X1

Binomial Covariate 
When  is binary, P1 is the probability that Y = 1 when  = 1. All other covariates are 
assumed to be equal to their mean values. In this case, the logistic equation reduces to 

X1 X1

log P
- P

 =  1

1
0 11

⎛
⎝
⎜

⎞
⎠
⎟ +β β  

since  = 1. X1

Normal Covariate 
When  is normally distributed, P1 is the probability that Y = 1 when X1 X x1 1 x1

= +μ σ  . That is, 

when  is one standard deviation above the mean. All other covariates are assumed to be equal 
to their mean values. In this case, the logistic equation reduces to 

x1
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log P
- P

 =  x1
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Odds Ratio (Odds1/Odds0) 
This option specifies the odds ratio to be detected by the study. As was shown earlier, the slope of 
the logistic regression can be expressed in terms of  and the odds ratio. Hence, by specifying 
OR, you are also specifying the slope. Using the formula 

P0

( )
( )

P
OR P
P OR P1

0

0 01
=

− +
 

specifying OR and  implicitly specifies . P0 P1

This option is only used when the User P1 or Odds Ratio option is set to Odds Ratio. Its 
interpretation depends on whether  is binomial or normal. X1

Binomial Covariate 
When  is binary, this option gives the odds ratio of  and . All other covariates are 
assumed to be equal to their mean values. In this case, the logistic equation reduces to 

X1 P1 P0

log P
- P

 =  1

1
0 11

⎛
⎝
⎜

⎞
⎠
⎟ +β β  

since  = 1.  X1

This odds ratio compares the odds of obtaining Y = 1 when  = 1 to the odds of obtaining Y = 1 
when  = 0. 

X1

X1

Normal Covariate 
When  is normally distributed, this option gives the odds ratio of  and , where  is the 
probability that Y = 1 when 

X1 P1 P0 P1

X x1 1= , where is a value other than x1 μx1
. All other covariates are 

assumed to be equal to their mean values. In this case, the logistic equation reduces to 

log P
- P

 =  x1

1
0 11

⎛
⎝
⎜

⎞
⎠
⎟ +β β 1  

so that  

P =  e
e

x

x1

0 1 1

0 1 11

β β

β β

+

++
 

This odds ratio compares the odds of obtaining Y = 1 when  =  to the odds of obtaining Y 
when  = 

X1 x1

X1 μx1
. 
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Effect Size – Covariates (X1 is the 
Variable of Interest) 

R-Squared of X1 with Other X’s 
This is the R-Squared that is obtained when  is regressed on the other X’s (covariates) in the 
model. Use this to study the influence on power and sample size of adding other covariates. Note 
that the number of additional variables does not matter in this formulation. Only their overall 
relationship with  through this R-Squared value is used.  

1X

1X

Of course, this value is restricted to being greater than or equal to zero and less than one. Use 
zero when there are no other covariates. 

X1 (Independent Variable of Interest) 
This option specifies whether the covariate is binary (binomial) or continuous (normal). This is a 
very important distinction since the sample size required for a particular power level is much 
larger for a binary covariate than for a continuous covariate.  

This selection also changes the meaning of P0 and P1. 

Percent of N with X1 = 1 
When  is binary, this option specifies the proportion, R, of the sample in which  = 1. Note 
that the value is specified as a percentage.  

X1 X1

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Power for a Continuous Covariate 
A study is to be undertaken to study the relationship between post-traumatic stress disorder and 
heart rate after viewing video tapes containing violent sequences. Heart rate is assumed to be 
normally distributed. The event rate is thought to be 7% among soldiers. The researchers want a 
sample size large enough to detect an odds ratios of 1.5 or 2.0 with 90% power at the 0.05 
significance level with a two-sided test. They decide to calculate the power at level sample sizes 
between 20 and 1200.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logistic Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Logistic Regression (Y is Binary). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................20 50 100 200 300 500 700 1000 1200 
Alternative Hypothesis ............................Two-Sided 
P0 (Baseline Probability that Y=1) ..........0.07 
Use P1 or Odds Ratio .............................Odds Ratio 
Odds Ratio (Odds1/Odds0) ....................1.5 2.0 
R-Squared of X1 with Other X’s..............0 
X1 (Independent Variable of Interest) .....Continuous (Normal) 
Percent of N with X1=1 ........................... Ignored since X is continuous 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

    Odds R 
Power N P0 P1 Ratio Squared Alpha Beta 
0.06716 20 0.070 0.101 1.500 0.000 0.05000 0.93284 
0.10964 50 0.070 0.101 1.500 0.000 0.05000 0.89036 
0.17737 100 0.070 0.101 1.500 0.000 0.05000 0.82263 
0.30962 200 0.070 0.101 1.500 0.000 0.05000 0.69038 
0.43325 300 0.070 0.101 1.500 0.000 0.05000 0.56675 
0.63808 500 0.070 0.101 1.500 0.000 0.05000 0.36192 
0.78147 700 0.070 0.101 1.500 0.000 0.05000 0.21853 
0.90516 1000 0.070 0.101 1.500 0.000 0.05000 0.09484 
0.94779 1200 0.070 0.101 1.500 0.000 0.05000 0.05221 
0.12119 20 0.070 0.131 2.000 0.000 0.05000 0.87881 
0.23903 50 0.070 0.131 2.000 0.000 0.05000 0.76097 
0.42410 100 0.070 0.131 2.000 0.000 0.05000 0.57590 
0.70579 200 0.070 0.131 2.000 0.000 0.05000 0.29421 
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0.86504 300 0.070 0.131 2.000 0.000 0.05000 0.13496 
0.97696 500 0.070 0.131 2.000 0.000 0.05000 0.02304 
0.99673 700 0.070 0.131 2.000 0.000 0.05000 0.00327 
0.99986 1000 0.070 0.131 2.000 0.000 0.05000 0.00014 
0.99998 1200 0.070 0.131 2.000 0.000 0.05000 0.00002 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. 
P0 is the response probability at the mean of the covariate, X. 
P1 is the response probability when X is increased to one standard deviation above the mean. 
Odds Ratio is the odds ratio when P1 is on top. That is, it is [P1/(1-P1)]/[P0/(1-P0)]. 
R-Squared is the R2 achieved when X is regressed on the other independent variables in the regression. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A logistic regression of a binary response variable (Y) on a continuous, normally distributed, 
independent variable (X) with a sample size of 20 observations achieves 7% power at a 0.050 
significance level to detect a change in Prob(Y=1) from the value of 0.070 at the mean of X to 0.101 when X 
is increased to one standard deviation above the mean.This change corresponds to an odds ratio of 1.500. 
 

This report shows the power for each of the scenarios. The report shows that a power of 90% is 
reached at a sample size of about 300 for an odds ratio of 2.0 and 1000 for an odds ratio of 1.5. 

Plot Section 
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This plot shows the power versus the sample size for the two values of the odds ratio. 
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Example 2 – Sample Size for a Continuous Covariate 
Continuing with the previous study, determine the exact sample size necessary to attain a power 
of 90%.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logistic Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Logistic Regression (Y is Binary). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Alternative Hypothesis ............................Two-Sided 
P0 (Baseline Probability that Y=1) ..........0.07 
Use P1 or Odds Ratio .............................Odds Ratio 
Odds Ratio (Odds1/Odds0) ....................1.5 2.0 
R-Squared of X1 with Other X’s..............0 
X1 (Independent Variable of Interest) .....Continuous (Normal) 
Percent of N with X1=1 ........................... Ignored since X is continuous 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

    Odds R 
Power N P0 P1 Ratio Squared Alpha Beta 
0.89978 981 0.070 0.101 1.500 0.000 0.05000 0.10022 
0.89920 335 0.070 0.131 2.000 0.000 0.05000 0.10080 
 

This report shows the power for each of the scenarios. The report shows that a power of 90% is 
achieved at a sample size of 335 for an odds ratio of 2.0 and 981 for an odds ratio of 1.5. 



860-12  Logistic Regression 

Example 3 – Effect Size for a Continuous Covariate 
Continuing the previous study, suppose the researchers can only afford a sample size of 500 
individuals. They want to determine if a meaningful odds ratio can be detected with this sample 
size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logistic Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Logistic Regression (Y is Binary). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................P1>P0 or Odds Ratio>1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................500 
Alternative Hypothesis ............................Two-Sided 
P0 (Baseline Probability that Y=1) ..........0.07 
Use P1 or Odds Ratio .............................Ignored since this is the Find setting 
Odds Ratio (Odds1/Odds0).....................Ignored since this is the Find setting 
R-Squared of X1 with Other X’s..............0 
X1 (Independent Variable of Interest) .....Continuous (Normal) 
Percent of N with X1=1 ...........................Ignored since X is continuous 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

    Odds R 
Power N P0 P1 Ratio Squared Alpha Beta 
0.90000 500 0.070 0.117 1.765 0.000 0.05000 0.10000 
 

This report shows that this experimental design can detect an odds ratio of 1.765. That is, it can 
detect a shift in the event rate from 0.070 to 0.117. 



Logistic Regression  860-13 

Example 4 – Sample Size for a Binary Covariate 
A study is to be undertaken to study the relationship between post-traumatic stress disorder and 
gender. The event rate is thought to be 7% among males. The researchers want a sample size 
large enough to detect an odds ratio of 1.5 with 90% power at the 0.05 significance level with a 
two-sided test.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logistic Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Logistic Regression (Y is Binary). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Alternative Hypothesis ............................Two-Sided 
P0 (Baseline Probability that Y=1) ..........0.07 
Use P1 or Odds Ratio .............................Odds Ratio 
Odds Ratio (Odds1/Odds0) ....................1.5 
R-Squared of X1 with Other X’s..............0 
X1 (Independent Variable of Interest) .....Binary (X=0 or 1) 
Percent of N with X1=1 ...........................50 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Pcnt N   Odds R 
Power N X=1 P0 P1 Ratio Squared Alpha Beta 
0.89997 3326 50.000 0.070 0.101 1.500 0.000 0.05000 0.10003 
 

The sample size is estimated at 3326. This should be evenly divided among males and females. 
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Example 5 – Validation for a Continuous Covariate 
Hsieh (1998) page 1628 gives the power as 95% when N = 317, alpha = 0.05 (two-sided), P0 = 
0.5, and the odds ratio is 1.5. The covariate is assumed to be continuous.    

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logistic Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Logistic Regression (Y is Binary). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................317 
Alternative Hypothesis ............................Two-Sided 
P0 (Baseline Probability that Y=1) ..........0.50 
Use P1 or Odds Ratio .............................Odds Ratio 
Odds Ratio (Odds1/Odds0).....................1.5 
R-Squared of X1 with Other X’s..............0 
X1 (Independent Variable of Interest) .....Continuous (Normal) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

    Odds R 
Power N P0 P1 Ratio Squared Alpha Beta 
0.95049 317 0.500 0.600 1.500 0.000 0.05000 0.04951 
 

PASS calculates a power of 0.95049 which matches Hsieh. 
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Example 6 – Validation for a Binary Covariate 
Hsieh (1998) page 1626 gives the power as 95% when N = 1282 (equal sample sizes for both 
groups), alpha = 0.05 (two-sided), P0 = 0.4, and the P1 = 0.5. The covariate is assumed to be 
binary. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Logistic Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Logistic Regression (Y is Binary). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................1282 
Alternative Hypothesis ............................Two-Sided 
P0 (Baseline Probability that Y=1) ..........0.4 
Use P1 or Odds Ratio .............................P1 
P1 (Alternative Probability that Y=1).......0.5 
R-Squared of X1 with Other X’s..............0 
X1 (Independent Variable of Interest) .....Binary (X=0 or 1) 
Percent of N with X1=1 ...........................50 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Pcnt N   Odds R 
Power N X=1 P0 P1 Ratio Squared Alpha Beta 
0.95021 1282 50.000 0.400 0.500 1.500 0.000 0.05000 0.04979 
 

PASS calculates a power of 0.95021 which matches Hsieh. 
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Chapter 865 

Multiple 
Regression 
Introduction 
The Linear Regression chapter dealt with the regression of a dependent variable on a single 
independent variable. This module deals with the general case of multiple regression in which 
there are two or more independent variables.  

Instead of using the correlation coefficient as the index of interest, the square of the correlation 
coefficient, R2 , has been adopted, mainly because of its ease of interpretation and its ability to be 
partitioned among various subgroups of the independent variables. R2  ranges from zero to one.  

When performing a regression analysis, a typical hypothesis involves testing the significance of a 
subgroup of the independent variables after considering a second, nonoverlapping, group of 
independent variables. For example, suppose you have five independent variables. One common 
hypothesis tests whether a certain variable is influential (has a nonzero coefficient in the 
regression equation) after considering the other four variables. To perform this test, you partition 
the R2  from fitting all five variables into the R2  of the first four variables and the R2  added by 
the fifth variable. An F-test is constructed that tests whether this second R2  value is significantly 
different from zero. If it is, the fifth variable is significant after adjusting for the other four 
variables. 

Definition of Terms 
Cohen (1988) provides a comprehensive discussion of this topic. We strongly suggest that you 
refer to the examples given there for a thorough understanding of this subject. We will provide a 
brief introduction, concentrating on defining the terms and statistics that are used. 

Consider a sample of N rows of data. Suppose each row consists of the value of a dependent 
variable, Y, followed by the values of k independent variables, . The multiple 
regression equation of Y on the X’s is 

X X Xk1 2, , ,L

Y  =  X X Xj j j k kj jβ β β β ε0 1 1 2 2+ + + + +L  

The β 's

b0 1 2, ,

 are called the population regression coefficients or beta weights. They represent the true 
values in the population from which the sample was taken. Their sample estimates, 

, are calculated from the data using least squares methodology. The estimated 
regression equation becomes 
b b bk, ,L



865-2  Multiple Regression 

Y  =  b b X b X b X ej j j k0 1 1 2 2+ kj j+ + + +L  

Upon removing the residuals, , the predicted values are calculated as ej

$Y  =  b b X b X b Xj j j0 1 1 2 2+ + + +L k kj  

R2  is defined as the proportion of the variation of Y that is explained (accounted for) by the 
variation in the X’s. The equation for R2  is 

( )
( )

2 i=1

N

i

i=1

N

i

R  =  
Y Y

Y Y

∑

∑
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or 

( )
2 i=1

N

i

i=1
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i

R  =  
e
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2
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−

∑

∑
 

Notice that the numerator sum of squares in the above equations depend on the X’s through . 
Therefore, each time you change the X’s included in the regression equation, you will obtain a 
different value of 

$Yi

R2 . Hence, you need special notation to indicate on which X’s the particular 
R2  is based.  

Let C and T refer to subgroups of the X’s. Define  to be the R R RT C TC C|
2 2= − 2 R2  added when Y is 

regressed on the variables in set T after the variables in set C. Define  to be the RC
2 R2  achieved 

when Y is regressed on those in set C ignoring the variables in set T. Define  to be the RTC
2 R2  

achieved when Y is regressed on the variables in both sets C and T. 

Using the above notation, you can construct F-tests that will test whether the β 's  corresponding 
to certain sets of X’s are simultaneously zero while controlling for other variables. For example, 
to test the significance of the X’s in set T while removing the influence of the X’s in set C from 
experimental error, you would use: 

( )
( )F  =  

R u

- R - R vu v
T C

C T C
,

|

|

/

/

2

2 21
 

where u is the number of variables in T, v = N-k-1, and k is the total number of variables in C and 
T.  Note that this formula includes the effect size, . f 2

f  =  
R

- R - R
T C

C T C

2
2

2 21
|

|

⎛

⎝
⎜

⎞

⎠
⎟  

Most significance tests in regression analysis, correlation analysis, analysis of variance, and 
analysis of covariance may be constructed using these F-ratios.  



Multiple Regression  865-3 

For example, suppose the seven X’s available are dividing into two sets: set C includes variables 
 and set T includes . The above F-ratio tests the null hypothesis that X X X1 3, , 6 7X X X X2 4 5, , ,

β β β β2 = =4 5 7 0= =  after adjusting for . X X X1 3, , 6

Calculating the Power 
The calculation of the power of a particular test proceeds as follows: 

1. Determine the critical value,   where u is the numerator degrees of freedom, v is the 
denominator degrees of freedom, and 

Fu v, ,α

α  is the probability of a type-I error. 

2. Calculate the noncentrality parameter λ  using the formula: 

( )λ =  N
R

- R - R
T C

C T C

|

|

2

2 21
 

3.  Compute the power as the probability of being greater than Fu v, ,α  on a noncentral-F 
distribution with noncentrality parameter λ . 

Note that the formula for λ  is different from that used in PASS 6.0. The algorithm used in PASS 
6.0 was based on formula (9.3.1) in Cohen (1988) which gives approximate answers. This version 
of PASS using an algorithm that gives exact answers. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are R2, N, Alpha, and Power and Beta. Under most situations, you will select 
either Power and Beta or N. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis when in fact it is true. 

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for 
alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should 
pick a value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Sample Size) 
This option specifies the value(s) for N, the sample size. Note that this value must be at least one 
greater than the total number of variables specified in sets C and T. 

Effect Size – C: Variables Controlled 
These options refer to the independent variables (X’s) to be controlled (adjusted) for (these are the 
variables in set C). That is, the influence of these variables is statistically removed. These are 
variables that are included in the regression equation but are not being tested for statistical 
significance.  

Number of Independent Variables Controlled 
This option specifies the number of variables in C. This number must be greater than or equal to 
zero. Note that the total number of variables specified in the two Number options must be less 
than N-1. 

R2(C) 
This box specifies the R2  achieved by the variables in set C when they are fit alone in the 
regression equation. Note that this amount must be between zero and one and that the total of the 
two R2  values must be less than one. 
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Effect Size – T: Variables Tested 
These options refer to the set of independent variables (X’s) whose coefficients are to be tested to 
determine if they all are zero. That is, this is the set of variables to be tested for statistical 
significance. 

Number of Independent Variables Tested 
This option specifies the number of variables in T. This is u. This number must be greater than or 
equal to one. Note that the total number of variables specified in the two Number options must be 
less than N - 1. 

R2(T|C) 
This box specifies the increase in R2  due to the variables in set T after including the variables in 
set C in the regression equation. Note that this amount must be between zero and one and that the 
total of the two R2  values must be less than one. 

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Testing the Addition or Deletion of a Single 
Variable 
This example calculates the power of an F test constructed to test a fifth variable which adds 0.05 
to R2  after considering four other variables whose combined R2  value is 0.50. Sample sizes 
from 10 to 150 will be investigated. The significance level is 0.05.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Multiple Regression (Y is Continuous). You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting. 
Alpha .......................................................0.05 
N (Sample Size) ......................................10 to 150 by 20 
Number of Indep Vars Controlled ...........4 
R2(C).......................................................0.50 
Number of Indep Vars Tested.................1 
R2(T|C)....................................................0.05 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 Ind. Variables Ind. Variables  
 Tested Controlled  
Power N Alpha Beta Cnt R2 Cnt R2 
0.13037 10 0.05000 0.86963 1 0.05000 4 0.50000 
0.41799 30 0.05000 0.58201 1 0.05000 4 0.50000 
0.63511 50 0.05000 0.36489 1 0.05000 4 0.50000 
0.78431 70 0.05000 0.21569 1 0.05000 4 0.50000 
0.87818 90 0.05000 0.12182 1 0.05000 4 0.50000 
0.93366 110 0.05000 0.06634 1 0.05000 4 0.50000 
0.96493 130 0.05000 0.03507 1 0.05000 4 0.50000 
0.98192 150 0.05000 0.01808 1 0.05000 4 0.50000 



Multiple Regression  865-7 

 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the number of observations on which the multiple regression is computed. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Cnt refers to the number of independent variables in that category. 
R2 is the amount that is added to the overall R-Squared value by these variables. 
Ind. Variables Tested are those variables whose regression coefficients are tested against zero. 
Ind. Variables Controlled are those variables whose influence is removed from experimental error. 
 
Summary Statements 
A sample size of 10 achieves 13% power to detect an R-Squared of 0.05000 attributed to 1 
independent variable(s) using an F-Test with a significance level (alpha) of 0.05000. The 
variables tested are adjusted for an additional 4 independent variable(s) with an R-Squared of 
0.50000. 
 

This report shows the values of each of the parameters, one scenario per row. The definitions of 
each of the columns is given in the Report Definitions section. 
Note that in this particular example, a reasonable power of 0.90 is not reached until the sample 
size is 110. 

Plots Section 
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This plot shows the relationship between sample size and power.  
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Example 2 – Minimum Detectable R-Squared 
Suppose the researcher in Example1 can only afford a sample size of 30. He wants to know the 
minimum detectable R2  that can be detected if the power is 80% and 90%. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Multiple Regression (Y is Continuous). You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................R-Squared of IV’s Tested 
Power ......................................................0.80 0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................30 
Number of Indep Vars Controlled ...........4 
R2(C).......................................................0.50 
Number of Indep Vars Tested.................1 
R2(T|C)....................................................Ignored since this is the Find setting 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 Ind. Variables Ind. Variables  
 Tested Controlled  
Power N Alpha Beta Cnt R2 Cnt R2 
0.90000 30 0.05000 0.10000 1 0.13787 4 0.50000 
0.80000 30 0.05000 0.20000 1 0.11066 4 0.50000 
 

This report shows that at 90% power, a sample size of 30 cannot detect an R2  less than 0.13787. 
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Example 3 – Sample Size, Many X’s 
Suppose you have 25 observations on 19 independent variables. You run a regression analysis 
with all 19 variables and obtain an R2  value of 0.90. You find that 4 of these variables will result 
in an R2  of 0.60, leaving an R2  increment of 0.30 for the other 15. You decide to test the 
significance of these 15 variables. The F ratio is 

( )
( )

F  =  

 =  

15 5
0 90 0 60 15
10 0 90 5

10

,
. . /
. . /

.

−
−  

Obviously, an F of 1.0 is nonsignificant, so you might be tempted to discard these variables and 
proceed with the four that are significant. Before doing so, you decided to do a power analysis on 
this F test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Multiple Regression (Y is Continuous). You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting. 
Alpha .......................................................0.05 
N (Sample Size) ......................................25 
Number of Indep Vars Controlled ...........4 
R2(C).......................................................0.60 
Number of Indep Vars Tested.................15 
R2(T|C)....................................................0.3 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 Ind. Variables Ind. Variables  
 Tested Controlled  
Power N Alpha Beta Cnt R2 Cnt R2 
0.72022 25 0.05000 0.27978 15 0.30000 4 0.60000 
 

The power is only 0.72022, which is a little low. Hence, you cannot be certain whether these 15 
variables are unimportant or if you just do not have a large enough sample. 



865-10  Multiple Regression 

Example 4 – Validation 
Ralph O’Brien, in a private communication to Jerry Hintze, gave the result that when alpha = 
0.05, N = 15, K = 2, and R-Squared = 0.6, the power is 0.96829.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Multiple Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Multiple Regression (Y is Continuous). You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting. 
Alpha .......................................................0.05 
N (Sample Size) ......................................15 
Number of Indep Vars Controlled ...........0 
R2(C).......................................................0.0 
Number of Indep Vars Tested.................2 
R2(T|C)....................................................0.6 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 Ind. Variables Ind. Variables  
 Tested Controlled  
Power N Alpha Beta Cnt R2 Cnt R2 
0.96829 15 0.05000 0.03171 2 0.60000 6 0.00000 
 

The power of 0.96829 matches O’Brien’s result. 
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Chapter 870 

Poisson 
Regression 
Introduction 
Poisson regression is used when the dependent variable is a count. Following the results of 
Signorini (1991), this procedure calculates power and sample size for testing the hypothesis that 
β1 0=  versus the alternative that β1 = B . Note that e  is the change in the rate for a one-unit 
change in  when the rest of the covariates are held constant. The procedure assumes that this 
hypothesis will be tested using the score statistic 

β1

X1

( )
z =  

Var

$

$

β

β
1

1

 

The Poisson Distribution 
The Poisson distribution models the probability of y events (i.e. failure, death, or existence) with 
the formula 
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y

y
y

= = =
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μ μμ 0 1 2  

Notice that the Poisson distribution is specified with a single parameter μ . This is the mean 
incidence rate of a rare event per unit of exposure. Exposure may be time, space, distance, area, 
volume, or population size. Because exposure is often a period of time, we use the symbol t to 
represent the exposure. When no exposure value is given, it is assumed to be one.  

The parameter μ  may be interpreted as the risk of a new occurrence of the event during a specified 
exposure period, t. The probability of y events is then given by 
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The Poisson distribution has the property that its mean and variance are equal. 
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The Poisson Regression Model 
In Poisson regression, we suppose that the Poisson incidence rate μ  is determined by a set of k 
regressor variables (the X’s). The expression relating these quantities is 

( )μ β β β β= + + + +exp 0 1 1 2 2X X Xk kL  

β β β βThe regression coefficients 0 1 2, , , ,L k

b b0 1, ,
 are unknown parameters that are estimated from a 

set of data. Their estimates are labeled .  bk,L

Using this notation, the fundamental Poisson regression model for an observation i is written as 
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where  

( )μ λi = ′xiβ  

( ) ( )λ β β β β′ = + + + +xiβ exp 0 1 1 2 2X X Xi i kL ki  

That is, for a given set of values of the regressor variables, the outcome follows the Poisson 
distribution. 

Power Calculations 
Suppose you want to test the null hypothesis that β1 0=  versus the alternative that β1 1= B . 
Signorini (1991) gives the formula relating sample size, α , β , and B1 when  is the only 
covariate of interest as 
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where N is the sample size, φ  is a measure of over-dispersion, μT  is the mean exposure time, 
and z is the standard normal deviate. Following the extension used in Hsieh, Block, and Larsen 
(1998) and Hsieh and Lavori (2000), when there are other covariates, PASS uses the 
approximation 
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where R2  is the square of the multiple correlation coefficient when the covariate of interest is 
regressed on the other covariates. The variance in the null case is given by 

( ) ( )
V b

Var X1 1 0 1
1

|β = =   
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The variance for the non-null case depends on the underlying distribution of X. Common choices 
are given next. 

Normal  
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1
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Exponential  
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Binomial, Parameter πX1  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also very popular. 

A single value (e.g., 0.90) may be entered here or a range of values (e.g., 0.8 to 0.95 by 0.05) may 
be entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. 

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

A single value (e.g., 0.05) may be entered here or a range of values (e.g., 0.05 to 0.2 by 0.05) may 
be entered. 

Sample Size 

N (Sample Size) 
This option specifies the total number of observations in the sample. You may enter a single 
value (e.g., 25) or a list of values (e.g., 10 to 100 by 10).  
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Test 

Alternative Hypothesis 
Specify whether the alternative hypothesis is one-sided or two-sided. When a two-sided 
alternative hypothesis is selected, the specified value of alpha is divided by 2. When a one-sided 
hypothesis is selected, the value of alpha is left as specified. 

In general, the accepted procedure is to use the Two-Sided option unless a one-sided test can be 
justified.  

Effect Size – Response Rates 

Exp(B0) [Baseline Response Rate] 
Exp(B0) is the baseline response rate. This is the response rate that occurs when all covariates are 
equal to zero. Depending on the dataset being analyzed, the response rate might be the hazard 
rate, death rate, survival rate, or accident rate. 

Exp(B1)/Exp(B0) (Rate Ratio) 
B1 is the value of the regression coefficient under the alternative hypothesis. In Poisson 
regression, it is more natural to specify a value for exp(B1)/exp(B0) than for B1 because 
exp(B1)/exp(B0) represents the ratio of the response rate when X1 is increased one unit and all 
other covariates are constant to its baseline rate. Depending on the dataset being analyzed, the 
response rate might be the hazard rate, death rate, survival rate, or accident rate. 

For example, suppose the baseline response rate (the value of ( )exp β0 ) is 0.70 and you want the 
study to be large enough to detect a 30% increase in the response rate. The value entered here 
would be 1.3. 

Effect Size – Exposure Time and 
Over-dispersion 

MuT (Mean Exposure Time) 
This is the mean exposure time, μT , over which the response rate is calculated. If the response 
rates are for one year, enter 1 here. If they are for 30 days, enter 30 here. 

Phi 
Phi is the over-dispersion parameter for Poisson regression. When there is no over-dispersion, set 
this value to one.  

Effect Size – Covariates (X1 is the 
Variable of Interest) 

R-Squared of X1 with Other X’s 
This is the R-Squared that is obtained when  is regressed on the other X’s (covariates) in the 
model. Use this to account for the influence on power and sample size of adding other covariates. 
Note that the number of additional variables does not matter in this formulation. Only their 
overall relationship with  through this R-Squared value is used.  

1X

1X
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This value is restricted to being greater than or equal to zero and less than one. Use zero when 
there are no other covariates. 

Distribution of X1 
This option specifies the distribution of the covariate being analyzed. You can choose from the 
normal, exponential, uniform, and binomial distributions. Once you have selected the anticipated 
distribution of the covariate, you must also specify values for the corresponding parameter(s) of 
the distribution. 

Normal(M) 
Specify the mean of the normal covariate distribution. This option is used when Distribution of 
X1 is set to Normal(M,S).  

Normal(S) 
Specify the standard deviation of the normal covariate distribution. This option is used when 
Distribution of X1 is set to Normal(M,S).  

Uniform(C) 
Specify the minimum of the uniform covariate distribution. This option is used when Distribution 
of X1 is set to Uniform(C,D). The uniform distribution of the covariate is assumed to range from 
C to D. 

Uniform(D) 
Specify the maximum of the uniform covariate distribution. This option is used when Distribution 
of X1 is set to Uniform(C,D). The uniform distribution of the covariate is assumed to range from 
C to D. 

Exponential(L) 
Specify the value of lambda associated with the exponential covariate distribution. This option is 
used when Distribution of X1 is set to Exponential(L). Note that the pdf of the exponential 
distribution is assumed to be (lambda) exp(-lambda X). 

Binomial(P) 
Specify the value of the proportion for the binomial covariate distribution. This option is used 
when the Distribution of X1 is set to Binomial(P). For example, if the covariate being studied is 
an indicator variable of treatment and control and you anticipated having an equal number of 
treatments and controls, this value should be set to 0.50.  

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Power for Several Sample Sizes 
Poisson regression will be used to analyze the power for a study of the relationship between the 
number of flaws on a manufactured article and the experience (measured in years) of the operator. 
The researchers want to evaluate the sample size needs for detecting ratios in response rates of 
1.3 and 1.5. The experience of an operator is assumed to be normally distributed with mean 3.2 
and standard deviation 2.1. No other covariates will be included in the analysis. The researchers 
will test their hypothesis using a 5% significance level with a two-sided Wald test. They decide to 
calculate the power at sample sizes between 5 and 50.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Poisson Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Poisson Regression (Y is a Count). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................5 to 50 by 5 
Alternative Hypothesis ............................Two-Sided 
Exp(B0) ...................................................1.0 
Exp(B1) ...................................................1.3 1.5 
MuT (Mean Exposure Time) ...................1.0 
Phi ...........................................................1.0 
R-Squared of X1 with Other X’s..............0.0 
Distribution of X1.....................................Normal(M,S) 
Normal(M) ...............................................3.2 
Normal(S)................................................2.1 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results when X1 is Normal with Mean = 3.2 and Sigma = 2.1 
And Phi (Over-Dispersion Parameter) = 1.0000 
    Mean R-Squared   
 Sample Response Baseline Exposure X1 vs Two-  
 Size Rate Rate Time Other X's Sided  
Power (N) Ratio Exp(B0) (MuT) (R2) Alpha Beta 
0.28466 5 1.3000 1.0000 1.0000 0.0000 0.05000 0.71534 
0.43245 10 1.3000 1.0000 1.0000 0.0000 0.05000 0.56755 
0.55407 15 1.3000 1.0000 1.0000 0.0000 0.05000 0.44593 
0.65321 20 1.3000 1.0000 1.0000 0.0000 0.05000 0.34679 
0.73282 25 1.3000 1.0000 1.0000 0.0000 0.05000 0.26718 
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0.79585 30 1.3000 1.0000 1.0000 0.0000 0.05000 0.20415 
0.84516 35 1.3000 1.0000 1.0000 0.0000 0.05000 0.15484 
0.88334 40 1.3000 1.0000 1.0000 0.0000 0.05000 0.11666 
0.91262 45 1.3000 1.0000 1.0000 0.0000 0.05000 0.08738 
0.93491 50 1.3000 1.0000 1.0000 0.0000 0.05000 0.06509 
0.47562 5 1.5000 1.0000 1.0000 0.0000 0.05000 0.52438 
0.78817 10 1.5000 1.0000 1.0000 0.0000 0.05000 0.21183 
0.92798 15 1.5000 1.0000 1.0000 0.0000 0.05000 0.07202 
0.97821 20 1.5000 1.0000 1.0000 0.0000 0.05000 0.02179 
0.99394 25 1.5000 1.0000 1.0000 0.0000 0.05000 0.00606 
0.99842 30 1.5000 1.0000 1.0000 0.0000 0.05000 0.00158 
0.99961 35 1.5000 1.0000 1.0000 0.0000 0.05000 0.00039 
0.99991 40 1.5000 1.0000 1.0000 0.0000 0.05000 0.00009 
0.99998 45 1.5000 1.0000 1.0000 0.0000 0.05000 0.00002 
1.00000 50 1.5000 1.0000 1.0000 0.0000 0.05000 0.00000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. 
Exp(B1)/Exp(B0) is the response rate ratio due to a one-unit change in X1. 
Exp(B0) is the response rate when all covariates have a value of zero. 
Phi is the over-dispersion parameter used when the Poisson model does not fit. 
R2 is the R-squared achieved when X1 is regressed on the other covariates. 
Alpha is the probability of rejecting Exp(B1)/Exp(B0) is one. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A Poisson regression of a dependent variable of counts on normally distributed independent 
variable with mean = 3.2 and standard deviation = 2.1 using a sample of 5 observations achieves 
28% power at a 0.71534 significance level to detect a response rate ratio of at least 
1.3000 due a a one-unit change in the IV. The baseline rate is 1.0000 and the mean exposure 
time is 1.0000. 
 

This report shows the power for each of the scenarios. Note that if you were interested in B1 
instead of Exp(B1), you would simply take the natural logarithm of the value of Exp(B1). 

Plots Section 
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Example 2 – Validation using Signorini 
Signorini (1991), page 449, presents an example which we will use to validate this program. In 
the example, Exp(B1)/Exp(B0)= 1.3, Exp(B0)= 0.85, R2 = 0.0, Mu T = 1.0, and Phi = 1.0. The 
independent variable is assumed to be binomial with proportion 0.5. A one-sided test with alpha = 
0.05 will be used. Sample sizes for power = 0.80, 0.90, and 0.95 are calculated to be 406, 555, 
and 697.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Poisson Regression procedure window by clicking on 
Regression (Y is a Function of X’s), then Poisson Regression (Y is a Count). You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................N 
Power ......................................................0.80 0.90 0.95 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Alternative Hypothesis ............................One-Sided 
Exp(B0) ...................................................0.85 
Exp(B1) ...................................................1.3 
MuT (Mean Exposure Time) ...................1.0 
Phi ...........................................................1.0 
R-Squared of X1 with Other X’s..............0.0 
Distribution of X1.....................................Binomial(P) 
Binomial(P)..............................................0.5 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results when X1 is Binomial with Proportion = 0.5 
And Phi (Over-Dispersion Parameter) = 1.0000 
    Mean R-Squared   
 Sample Response Baseline Exposure X1 vs Two-  
 Size Rate Rate Time Other X's Sided  
Power (N) Ratio Exp(B0) (MuT) (R2) Alpha Beta 
0.95000 697 1.3000 0.8500 1.0000 0.0000 0.05000 0.05000 
0.90000 556 1.3000 0.8500 1.0000 0.0000 0.05000 0.10000 
0.80000 406 1.3000 0.8500 1.0000 0.0000 0.05000 0.20000 
 

Note that PASS calculated 556 rather than the 555 calculated by Signorini (1991). The 
discrepancy is due to rounding.  
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Chapter 880 

Randomization 
Lists 
Introduction 
This module is used to create a randomization list for assigning subjects to one of up to eight 
groups or treatments. Six randomization algorithms are available. Four of the algorithms (Efron’s 
biased coin randomization, Smith’s randomization, Wei’s urn randomization, and random sorting 
using maximum allowable % deviation) are designed to generate balanced random samples 
throughout the course of an experiment. The other two (complete randomization and random 
sorting) are less complex but have higher probabilities of imbalance. Technical details for each of 
these algorithms (except random sorting) as well as a discussion of randomization issues in 
general are given in Rosenberger and Lachin (2002), Pocock (1983), and Piantadosi (2005). 

Why Randomize? 
Random allocation has been an important part of scientific discovery since the time of R.A. 
Fisher. He and other scientists recognized the potential for bias in nonrandomized experiments 
that could compromise treatment comparisons. Randomization controls the influence of unknown 
factors, reducing potential bias in an experiment. Rosenberger and Lachin (2002) state on page 18 
that “…the randomization of subjects between the treatment groups is the paramount statistical 
element that allows one to claim that a study is unbiased.” The elimination of bias, however, is 
not the only reason for randomization. Pocock (1983) states on page 50 that randomization is 
used “to provide a basis for the standard methods of statistical analysis such as significance tests.” 
Clearly, randomization is necessary in order to produce accurate and generalizable statistical 
conclusions.  

Randomization in Clinical Trials 
In non-clinical (or non-human) experiments, researchers often have tight control over the 
environment and conditions surrounding an experiment, so randomization can usually be 
implemented with minor difficulty. Clinical experiments, however, are quite different. Because 
human patients are used in clinical trials, various ethical issues must be addressed. These ethical 
considerations complicate the experimental design and often require adjustments in the way 
subjects are randomly assigned to treatments. Other factors that influence randomization in 
clinical trials are purely logistical. How can the investigators ensure that treatments are 
administered the same for all patients without the patient or the doctor knowing what treatment is 
being given? These and other design factors influence how randomization is administered in 
clinical trials. 
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One of the issues that arise in clinical experiments is treatment imbalance. Clinical trials are 
usually administered over time with patients enrolling at different time points throughout the 
study. It is often desirable to maintain balance in the number of patients assigned to each 
treatment throughout the course of the experiment. This is particularly true when time-dependent 
covariates influence the response or when sequential testing will be used to analyze results. 
Several randomization algorithms have been developed to produce lists that balance the number 
of patients assigned to each treatment throughout the experiment while still maintaining the 
randomness of the assignments. These include Efron’s biased coin randomization, Smith’s 
randomization, Wei’s urn randomization, and random sorting using maximum allowable % 
deviation. Each of these algorithms will be discussed in detail in the section that follows. 

Randomization Algorithms 
Six different randomization algorithms are available in PASS. These can be roughly divided into 
two categories: those that aim to produce balanced randomization lists and those that do not. The 
following table outlines the goal of each algorithm by the number of groups each algorithm will 
allow.  
 

 Non-Balancing 
Algorithms Balancing Algorithms 

2 Groups Complete Randomization†, 
Random Sorting 

Efron’s Biased Coin*†, Smith*†, Wei’s Urn*†, 
Random Sorting using Maximum Allowable % 

Deviation  

k Groups Complete Randomization†, 
Random Sorting 

Wei’s Urn*, Random Sorting using Maximum  
Allowable % Deviation 

*These randomization algorithms have the additional restriction that unequal treatment allocation is not allowed, i.e.  
all groups must have the same target sample size. 
†These randomization algorithms produce randomization lists in which the actual group sample size may not equal 
the target group sample size. 

 

The discussion of each algorithm that follows will be based on the following scenario and 
notation. Suppose we have k treatments and that ni subjects (not necessarily all equal) are to be 
assigned to each treatment, i = 1, 2, …, k. The value ni will be referred to in discussion as the 
“target” sample size for each group. Let the actual sample size for each group be ai. For some 
algorithms, the actual group sample size may not always equal the target sample size for all 
groups. The total sample size is  

∑∑ ==
k

i

k

i anN
== ii 11

, 

and the target allocation ratio for each group is 

N
nR i

i = . 

Define the probability of assignment of subject j to treatment i as pij. 

Define the number of subjects in each group after the jth subject is assigned as ni[j]. 
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Non-Balancing Algorithms 

Complete Randomization 
The complete randomization algorithm is commonly referred to as a “coin flip”. For the case to 
two treatments, a coin is flipped each time a subject is to be randomized, determining the 
assignment. The probability of assignment to either treatment is 0.5 for all subjects.   

The algorithm generalizes to more than two groups and allows for unequal allocation. The 
probability of assignment of subject j to group i is 

iij Rp =   

for all j. If the target sample size is the same for all k groups, then 

kpij /1=  

The complete randomization algorithm proceeds by randomly assigning subjects to treatments 
using the above assignment probabilities. The algorithm may result in imbalances between groups 
even when the target group sample sizes are equal, i.e. the actual sample sizes may not always 
equal the target sample sizes for all groups. This algorithm is not recommended when balance is 
important throughout the course of an experiment. 

Random Sorting 
The random sorting algorithm can be used for any number of treatment groups and any allocation 
ratios. The random sorting algorithm always results in randomized assignment lists in which the 
actual group sample sizes match the target group sample sizes, i.e. ai = ni for all i. The algorithm 
begins by creating a virtual database containing group names. Each row corresponds to one 
group, and the ith group is represented by ni rows. For example, if we were randomly assigning 
three groups (A, B, and C) with ten subjects in each group, then the database would consist of ten 
rows containing A’s, followed by ten rows containing B’s and ten rows containing C’s, for a total 
of 30 rows. Next, a random number is assigned to each row in the database, and then the database 
is sorted based on the column of random numbers to place the group names in random order. The 
first subject is then assigned to the group in row one of the randomly sorted database, the second 
subject is assigned to the group in row two, and so forth. Although this algorithm always results 
in groups containing the target sample sizes, longitudinal imbalances among groups may still 
occur, therefore, this algorithm is not recommended when balance is important throughout the 
course of an experiment.  

Balancing Algorithms 

Efron’s Biased Coin Randomization 
This algorithm may only be used for random assignment of subjects to two treatments. The target 
sample sizes must also be the same for both groups. In order to achieve longitudinal balance 
between groups, the algorithm dynamically changes the group assignment probabilities. The 
algorithm is outlined in Efron (1971).  

First we define a constant probability p (called “Efron’s p” in PASS), where 0.5 < p ≤ 1. A 
common value for p is 2/3. Also define a difference function ][][ 21 jnjnD j −= . The probability 
of assignment of subject j to group 1 is 
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Efron’s biased coin randomization proceeds by randomly assigning subjects to treatments using 
the above assignment probabilities. When group 1 has more subjects assigned than group 2, the 
assignment probability changes to make group 2 more probable for assignment. When group 2 
has more, then group 1 becomes more probable. The algorithm may result in final imbalances 
between groups, but the degree of imbalance throughout the randomization process is greatly 
reduced. 

Smith’s Randomization 
This algorithm may only be used for random assignment of subjects to two treatments. The target 
sample sizes must also be the same for both groups. Like Efron’s biased coin randomization, 
Smith’s algorithm dynamically changes the group assignment probabilities based on the degree of 
imbalance to achieve longitudinal balance between groups.  The algorithm is outlined in Smith 
(1984).  

We define a positive exponent parameter ρ (called “Smith’s Exponent” in PASS). The probability 
of assignment of subject j to group 1 is 

ρρ

ρ

]1[]1[
]1[

21

2
1 −+−

−
=

jnjn
jnp j   

Smith’s randomization proceeds by randomly assigning subjects to treatments using the above 
assignment probabilities. When group 1 has more subjects assigned than group 2, the assignment 
probability changes to make group 2 more probable for assignment. When group 2 has more, then 
group 1 becomes more probable. The algorithm may result in final imbalances between groups, 
but the degree of imbalance throughout the randomization process is greatly reduced.  

Wei’s Urn Randomization 
This algorithm may be used for random assignment of subjects to two or more treatments. The 
target sample sizes must also be the same for all groups. Like Smith’s randomization, Wei’s urn 
randomization algorithm dynamically changes the group assignment probabilities based on the 
degree of imbalance to achieve longitudinal balance between groups. Urn randomization is 
reviewed in Wei and Lachin (1988).  

Define positive parameters A and B (called “Wei’s A” and “Wei’s B” in PASS, respectively). We 
start the algorithm by placing A balls representing each group in an urn. A single ball is then 
randomly chosen from the urn, recorded, and replaced, and then B new balls corresponding to 
each of the other groups are added to the urn. Therefore, when a ball from one group is chosen, 
the probability shifts to make the other groups more probable on the next draw. The probability of 
the first assignment is 1/k. After that, the probability of assignment of subject j to group i is 

)1)(1(
]1[)1(

−−+
−−−+

=
kjBkA

jBnjBAp i
ij . 

The algorithm continues until all subjects have been assigned to one of the groups. The algorithm 
may result in final imbalances between groups, but the degree of imbalance throughout the 
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randomization process is diminished due to the shifting of probabilities toward the 
underrepresented groups. 

Random Sorting using Maximum Allowable % Deviation 
This algorithm is equivalent to the random sorting algorithm described earlier except that a search 
is conducted to find a randomization list that satisfies the Maximum Allowable % Deviation 
criterion. The % Deviation for group i after subject j has been assigned is defined as 

( )

.100][

100][][ Deviation%

×
−

=

×
−

=

i

ii

i

ii
ij

n
jRjn

n
jnEjn

 

The % Deviation measures how far the actual sample size for group i is from the expected sample 
size after subject j is randomly assigned. The Maximum Allowable % Deviation represents the 
upper bound for this measure. The search is conducted by creating an assignment list based on 
random sorting and then running through the assignments and calculating the maximum % 
Deviation for all groups after each assignment. If the maximum % Deviation is greater than the 
Maximum Allowable % Deviation value specified, then the list is rejected, the number of 
iterations is incremented, and the random sorting algorithm is started again with a new set of 
random numbers. The search continues until a randomization list is generated for which the 
criterion is satisfied for all individual assignments. Conducting a search in this manner assures a 
degree of balance throughout the course of the experiment. 

For example, for 40 subjects to be assigned to two groups A and B with equal allocation ratios 
(0.5), suppose that there are 7 assigned A’s and 3 assigned B’s after 10 random assignments and 
the Maximum Allowable % Deviation is 10%. With the allocation ratio at 0.5, we would expect 
to have 5 A’s and 5 B’s (10 × 0.5 = 5) after 10 assignments. Therefore, the % Deviation for group 
A is |7 – 5|/20 = 10% and the % Deviation for group B is |3 – 5|/20 = 10%. Both of these are 
equal to the Maximum Allowable % Deviation so the next assignment would be tested. If the next 
assignment were to group A then the randomization list would be rejected because the % 
Deviation for group A is |8 – 5|/20 = 15% > 10%. A new randomization list based on random 
sorting would be generated and the search would continue. 

Comparison of Balancing Properties 
Rosenberger and Lachin (2002) provides a simulation comparison of the balancing properties of 
complete randomization, Efron’s biased coin (p = 2/3), Wei’s Urn (A = 0, B = 1), and Smith 
(exponent = 5). The simulation was carried out for two treatment groups with target sample sizes 
of 25 in each group. They found that complete randomization did not balance as well as the other 
three “restricted randomization” procedures. Efron’s biased coin and Smith’s randomization 
algorithms were very close in terms of bias and variability. Wei’s urn was found to be slightly 
more variable. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Design, Report, and Storage tabs. To find out more about using the Reports and Template tabs, go 
to the Procedure Window chapter. 

Design Tab 
The Design tab contains most of the parameters and options that you will be concerned with. 

Specify the Groups 

Number of Groups 
This option specifies the number of groups or treatments to which the subjects will be randomly 
assigned. Up to eight groups are allowed for random assignment. 

Specify the Groups – Group Labels 
and Target Group Sizes 

All Group Sizes are Equal 
Check this box if all groups have the same target sample size. The target sample size is then 
specified in the Equal Group Size box to the right. This is used as the target sample size for every 
group. If this box is not checked, then a target sample size must be entered for each group 
individually. 

Equal Group Size 
Specify a single target sample size to be used for all of the groups. This box is only used if the All 
Group Sizes are Equal option is checked. If the target sample sizes are not all equal, then they 
must be entered individually for each group. 

Group Label 
Specify a label or treatment name for each group. This label will be used to distinguish groups in 
the output and reports. Each group must have a different label. 

Group Size 
Specify a target sample size for the group designated to the left of this box. This option is only 
used if the All Group Sizes are Equal box is unchecked. 

If all of the target group sizes are equal, check the All Group Sizes are Equal box and enter a 
single number in the Equal Group Size box. 

Randomization Algorithm 

Randomization Algorithm 
Choose one of six randomization algorithms. These algorithms are each described in detail in the 
Randomization Algorithms section above. Some of the algorithms may result in actual (final) 
sample sizes that are not equal to the target sample sizes. To search for a randomization list in 
which the final group sizes are equal to the target group sample sizes for every group, check the 
“Search for a randomization list…” box.  
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The following algorithms are available. 

• Complete Randomization 
This is the simplest of all randomization algorithms and is commonly known as “coin 
flipping”. The algorithm may result in imbalances between groups even when the target 
group sample sizes are equal, i.e. the actual sample sizes may not always equal the target 
sample sizes for all groups. This algorithm is not recommended when balance is important 
throughout the course of an experiment.  

• Efron’s Biased Coin (2 Treatments, Equal Sample Sizes) 
This algorithm may only be used for random assignment of subjects to two treatments. The 
target sample sizes must also be the same for both groups. In order to achieve longitudinal 
balance between groups, the algorithm dynamically changes the group assignment 
probabilities. A value for Efron’s p must also be specified. 

• Random Sorting 
The random sorting algorithm can be used for any number of treatment groups and any 
allocation ratio set. The random sorting algorithm always results in randomized assignment 
lists in which the actual group sample sizes match the target group sample sizes, i.e. ai = ni 
for all i. The random assignment is conducted by sorting a database of group labels using a 
column of random numbers. This algorithm is not recommended when balance is important 
throughout the course of an experiment. 

• Random Sorting using Max Allowable % Deviation (Search) 
This algorithm is equivalent to the random sorting algorithm except that a search is conducted 
to find a randomized list for which all % Deviations are less than or equal to the Maximum 
Allowable % Deviation specified. The search is conducted until a list is found or the 
maximum iterations are reached. A value for Maximum Allowable % Deviation must also be 
specified. 

• Smith (2 Treatments, Equal Sample Sizes) 
This algorithm may only be used for random assignment of subjects to two treatments. The 
target sample sizes must also be the same for both groups. Smith’s algorithm dynamically 
changes the group assignment probabilities based on the degree of imbalance to achieve 
longitudinal balance between groups. A value for Smith’s Exponent must also be specified. 

• Wei’s Urn (Equal Sample Sizes) 
This algorithm may be used for random assignment of subjects to two or more treatments. 
The target sample sizes must also be the same for all groups. Wei’s urn randomization 
algorithm dynamically changes the group assignment probabilities based on the degree of 
imbalance to achieve longitudinal balance between groups. Values for Wei’s A and Wei’s B 
must also be specified. 

Search for a randomization list in which all final group sizes exactly match the 
target group sizes 
Some of the randomization algorithms may result is actual group sample sizes that do not exactly 
match the target group sample sizes specified. This option forces a search to find a randomization 
list in which the final sample sizes match the target sample sizes for all groups. 
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The search is conducted by creating a randomization list using the user-specified randomization 
algorithm and then looking at the final sample sizes. If the sample sizes do not match the target 
sample sizes for all groups, then the list is discarded and the algorithm is restarted. This continues 
until a list with the exact sample sizes is found. 

Maximum Iterations in Search 
Specify the number of iterations before the randomization list search is terminated. This option is 
used for the Random Sorting using Max Allowable % Deviation (Search) algorithm and in 
searching for a randomization list where final group sizes match the target group sizes. 

Algorithm Parameters 

Efron’s p 
Specify the probability parameter p for Efron’s bias coin algorithm. This value must be greater 
than 0.5 and less than or equal to 1. A probability of 0.67 is often used. 

Maximum Allowable % Deviation 
Specify a single value for the Maximum Allowable % Deviation for the random sorting using 
maximum allowable % deviation algorithm. You can enter the value as a percentage (e.g. 10%) or 
as a decimal (e.g. 0.10). 

Smith’s Exponent 
Specify the exponent parameter ρ for Smith’s randomization algorithm. Smith (1984) favors the 
design with ρ = 5. 

Wei’s A 
Specify the initialization parameter A for Wei’s urn algorithm. This is the number of balls in the 
urn for each group when the algorithm starts. A value of 0 is often used. 

Wei’s B 
Specify the parameter B for Wei’s urn algorithm. This is the number of balls added to the other 
urns when a ball is selected. A value of 1 is often used. If B is 0 then Wei’s algorithm is the same 
as complete randomization. 

Reports Tab 
The Reports tab contains options influencing the reports. 

Output Options 

Subject ID Prefix 
Enter a text value to be added to the beginning of each subject ID. For example, if this value were 
“sub_” then the subjects would be labeled sub_1, sub_2, sub_3, etc. in the reports. 
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Storage Tab 
The storage tab contains options for specifying spreadsheet storage variables. 

Spreadsheet Storage 

Write List to Spreadsheet 
If this box is checked, then the randomization list will be written to the spreadsheet using the 
variables specified. Writing the list to the spreadsheet allows you to easily store the 
randomization list for further analysis in NCSS or other software. The spreadsheet can be saved 
as a data file. 

Store Subject ID’s In 
Specify a spreadsheet variable in which to store the subject ID values. 

Store Group Assignments In 
Specify a spreadsheet variable in which to store the randomized group assignments. 

Example 1 – Randomization with Equal Allocation Ratios 
A clinical researcher wishes to randomly assign 30 subjects to three treatments. The requirement 
is that each group has exactly 10 subjects and that the maximum % deviation is no larger than 
20% of the target sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Randomization Lists procedure window by clicking on 
Design of Experiments, then Randomization Lists. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Design Tab 
Number of Groups...................................3 
All Group Sizes are Equal.......................Checked 
Equal Group Size ....................................10 
Grp 1 Label .............................................A 
Grp 2 Label .............................................B 
Grp 3 Label .............................................C 
Randomization Algorithm........................Random Sorting using Max Allowable % Deviation 
Maximum Iterations in Search ................1000 
Maximum Allowable % Deviation............20% 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. Your output 
will be different because of random assignment. 

Summary and References Sections 
 

Summary 
Randomization Algorithm Random Sorting (Maximum Allowable % Deviation = 20%) 
Search Iterations 4 
Number of Groups 3 
Total Sample Size 30 
Group Sample Sizes Actual Target 
-- A 10 10 
-- B 10 10 
-- C 10 10 
 
References 
Piantadosi, S. 2005. Clinical Trials - A Methodological Perspective. John Wiley & Sons. New Jersey. 
Pocock, S.J. 1983. Clinical Trials - A Practical Approach. John Wiley & Sons. New York. 
Rosenberger, W.F., and Lachin, J.M. 2002. Randomization in Clinical Trials - Theory and Practice. John Wiley & 
     Sons. New York. 

 

This report displays the summary of the randomization algorithm and references. 

Randomization List Section 
 

Randomization List 
 
  Largest Cumulative 
 Group % Deviation Sample Size 
Subject ID Assignment from Target (A, B, C) 
1 C 6.7% (0, 0, 1)     
2 A 6.7% (1, 0, 1)     
3 B 0.0% (1, 1, 1)     
4 C 6.7% (1, 1, 2)     
5 C 13.3% (1, 1, 3)     
6 A 10.0% (2, 1, 3)     
7 C 16.7% (2, 1, 4)     
8 B 13.3% (2, 2, 4)     
9 A 10.0% (3, 2, 4)     
10 B 6.7% (3, 3, 4)     
11 A 6.7% (4, 3, 4)     
12 A 10.0% (5, 3, 4)     
13 A 16.7% (6, 3, 4)     
14 C 16.7% (6, 3, 5)     
15 B 10.0% (6, 4, 5)     
16 B 6.7% (6, 5, 5)     
17 C 6.7% (6, 5, 6)     
18 C 10.0% (6, 5, 7)     
19 B 6.7% (6, 6, 7)     
20 A 6.7% (7, 6, 7)     
21 C 10.0% (7, 6, 8)     
22 A 13.3% (8, 6, 8)     
23 A 16.7% (9, 6, 8)     
24 B 10.0% (9, 7, 8)     
25 C 13.3% (9, 7, 9)     
26 B 6.7% (9, 8, 9)     
27 C 10.0% (9, 8, 10)     
28 B 6.7% (9, 9, 10)     
29 A 6.7% (10, 9, 10)     
30 B 0.0% (10, 10, 10) 
  



Randomization Lists  880-11 

This report shows the complete randomization list with details after each assignment. The largest 
observed % deviation from the target is 16.7%. 

Subject ID 
The identification value of the current subject. 

Group Assignment 
The group to which the current subject was randomly assigned. 

Largest % Deviation from Target 
The largest observed % deviation after the current assignment was made. This measures how far 
away the group sample sizes are from the expected sample size based on the targets. 

Cumulative Sample Size (Grp 1, Grp 2, …, Grp 8) 
The cumulative sample size total for each group after the current assignment was made. 

Example 2 – Randomization with Unequal Allocation 
Ratios 
A researcher wishes to randomly assign 40 subjects to three treatments using complete 
randomization. The requirement is that first group has exactly 20 subjects and the other two have 
exactly 10 subjects each.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Randomization Lists procedure window by clicking on 
Design of Experiments, then Randomization Lists. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Design Tab 
Number of Groups...................................3 
All Group Sizes are Equal.......................Unchecked 
Grp 1 Label .............................................Control 
Grp 1 Size ...............................................20 
Grp 2 Label .............................................A 
Grp 2 Size ...............................................10 
Grp 3 Label .............................................B 
Grp 3 Size ...............................................10 
Randomization Algorithm........................Complete Randomization 
Search for randomization list…...............Checked 
Maximum Iterations in Search ................1000 
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Output 
Click the Run button to perform the calculations and generate the following output. Your output 
will be different because of random assignment. 

Results 
 

Summary 
Randomization Algorithm Complete Randomization 
Search Iterations 66 
Number of Groups 3 
Total Sample Size 40 
Group Sample Sizes Actual Target 
-- Control 20 20 
-- A 10 10 
-- B 10 10 

 
 

Randomization List 
 
  Largest Cumulative 
 Group % Deviation Sample Size 
Subject ID Assignment from Target (Control, A, B) 
1 A 7.5% (0, 1, 0)     
2 B 5.0% (0, 1, 1)     
3 B 12.5% (0, 1, 2)     
4 Control 10.0% (1, 1, 2)     
5 Control 7.5% (2, 1, 2)     
6 Control 5.0% (3, 1, 2)     
7 Control 7.5% (4, 1, 2)     
8 A 0.0% (4, 2, 2)     
9 B 7.5% (4, 2, 3)     
10 B 15.0% (4, 2, 4)     
11 B 22.5% (4, 2, 5)     
12 B 30.0% (4, 2, 6)     
13 Control 27.5% (5, 2, 6)     
14 Control 25.0% (6, 2, 6)     
15 B 32.5% (6, 2, 7)     
16 Control 30.0% (7, 2, 7)     
17 A 27.5% (7, 3, 7)     
18 B 35.0% (7, 3, 8)     
19 A 32.5% (7, 4, 8)     
20 Control 30.0% (8, 4, 8)     
21 Control 27.5% (9, 4, 8)     
22 A 25.0% (9, 5, 8)     
23 A 22.5% (9, 6, 8)     
24 A 20.0% (9, 7, 8)     
25 Control 17.5% (10, 7, 8)     
26 Control 15.0% (11, 7, 8)     
27 B 22.5% (11, 7, 9)     
28 Control 20.0% (12, 7, 9)     
29 Control 17.5% (13, 7, 9)     
30 Control 15.0% (14, 7, 9)     
31 Control 12.5% (15, 7, 9)     
32 Control 10.0% (16, 7, 9)     
33 A 7.5% (16, 8, 9)     
34 B 15.0% (16, 8, 10)  
35 Control 12.5% (17, 8, 10)     
36 Control 10.0% (18, 8, 10)     
37 Control 12.5% (19, 8, 10)     
38 A 5.0% (19, 9, 10)     
39 A 2.5% (19, 10, 10)     
40 Control 0.0% (20, 10, 10) 
 

The algorithm required 66 iterations to find a list using complete randomization in which the 
target and actual sample sizes are equal. 
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Example 3 – Saving the Randomization List to the 
Spreadsheet 
A researcher would like to randomize 20 subjects to two groups using Efron’s biased coin 
randomization and save the randomization list to the spreadsheet. The researcher is targeting 10 
per group, but will allow imbalance if it results from the algorithm. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Randomization Lists procedure window by clicking on 
Design of Experiments, then Randomization Lists. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example3 from the 
Template tab on the procedure window. 

Option Value 
Design Tab 
Number of Groups...................................2 
All Group Sizes are Equal.......................Checked 
Equal Group Size ....................................10 
Grp 1 Label .............................................High 
Grp 2 Label .............................................Low 
Randomization Algorithm........................Efron’s Biased Coin 
Search for randomization list…...............Unchecked 
Efron’s p ..................................................0.67 

Storage Tab 
Write List to Spreadsheet........................Checked 
Store Subject ID’s In ...............................1 
Store Group Assignments In...................2 

Output 
Click the Run button to perform the calculations and generate the following output. Your output 
will be different because of random assignment. 

Results 
 

Summary 
Randomization Algorithm Efron's Biased Coin (p = 0.67) 
Number of Groups 2 
Total Sample Size 20 
Group Sample Sizes Actual Target 
-- High 9 10 
-- Low 11 10 
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Randomization List 
 
  Largest Cumulative 
 Group % Deviation Sample Size 
Subject ID Assignment from Target (High, Low) 
1 High 5.0% (1, 0)     
2 High 10.0% (2, 0)     
3 Low 5.0% (2, 1)     
4 High 10.0% (3, 1)     
5 Low 5.0% (3, 2)     
6 Low 0.0% (3, 3)     
7 Low 5.0% (3, 4)     
8 High 0.0% (4, 4)     
9 Low 5.0% (4, 5)     
10 High 0.0% (5, 5)     
11 Low 5.0% (5, 6)     
12 High 0.0% (6, 6)     
13 Low 5.0% (6, 7)     
14 High 0.0% (7, 7)     
15 Low 5.0% (7, 8)     
16 Low 10.0% (7, 9)     
17 High 5.0% (8, 9)     
18 High 0.0% (9, 9)     
19 Low 5.0% (9, 10)     
20 Low 10.0% (9, 11)   
 

In this case, no search was conducted. The actual and target group sample sizes turned out to be 
slightly different. Go to the PASS Spreadsheet to view the results stored there. 
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Chapter 881 

Two-Level Designs 
Introduction 
This program generates a 2k factorial design for up to seven factors. It allows the design to be 
blocked and replicated. The design rows may be output in standard or random order. The design 
data generated by this procedure can be produced in a spreadsheet as well as the output window. 

When blocking is specified, this procedure determines whether the design is listed on page 408 of 
Box, Hunter, and Hunter (1978). If it is one of the designs specified there, the indicated 
confounding pattern is used. If not, the blocks are confounded using the standard procedure in 
which highest-order interactions are confounded first, so long as they do not cause main effects to 
be confounded with blocks. 

Experimental Design 
Experimental design is the planning of an efficient, reliable, and accurate technical study. The 
range of application of experimental design principles is as broad as science and industry. One 
person may be planning a long-term agricultural experiment, while another may have eight hours 
to rectify a production problem. 

Through the years, researchers and statisticians working together have outlined the basic steps 
necessary to conduct an effective investigation. These steps form an experimental strategy that 
seems to work well in many settings. 

The experimental design modules lend you, the investigator, a hand with the planning and 
analysis of your investigation. Once you have determined the scope of your investigation, the 
design modules will provide a data collection plan that will minimize the amount of data 
collected and maximize the amount of conclusive information available. 

The experimental design chapters will not attempt to teach you the principles of experimental 
design. There are many excellent books and pamphlets on this subject. The focus of the manual 
will be to remind you of the basic principles of experimental design and then explain where and 
how the program can help in your study. We suggest that you consult one or two of the following 
texts for detailed coverage of experimental design: Box, Hunter, and Hunter (1978), Davies 
(1971), Lawson (1987), or Montgomery (1984). 
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Experimental Design Definitions 

Alias 
Two terms are aliased if their levels are identical throughout the design (except possibly for a 
difference in sign). Aliasing occurs in designs that are less than one full replication. The two 
terms are completely confounded with one another. It is impossible to determine from the data if 
an effect is due to the first, second, or both terms. 

Blocking 
A block refers to a batch of runs conducted together. For example, a block may be the 
experiments run on a particular day, or the experiments conducted on a particular batch of 
material. 

Confounding 
Two terms are confounded when their influences on the response variable cannot be separated. 
Confounding usually occurs when blocks are equated to high-order interactions. 

Experiment (Run) 
An action to at least one of the items being studied which has an observable outcome. Each run 
produces one observation (value) of the response variable. 

Experimental Design 
The collection of experiments to be completed during an investigation or study. 

Experimental Error 
The influence on the response of all independent variables not included in the study. This error is 
a fact of life, since it is usually impossible to control every independent variable that might 
influence the response.  

Factorial Designs 
A factorial design consists of all combinations of factor levels of two or more factors. Many 
designs are two-level designs. Since the total number of factor-level combinations is the product 
of the number of levels of each factor, these two-level designs are known as 2k factorial designs 
(where k is the number of factors). 

The two levels of each factor are often referred to as the high and the low levels. For example, if 
one of the factors were agitation at 100 rpm and 200 rpm, then 100 would be the low level and 
200 would be the high level. 

The designs produced by this procedure are orthogonal. This means that an equal amount of 
information is provided about the influence of each factor. It also means that there is no 
overlapping of information. A study using these designs clearly shows the unique influence of 
each factor. 

One of the greatest strengths of the factorial experiment is that it allows the study of several 
factors at once, rather than only one factor at a time. Since each factor is paired with all possible 
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combinations of the other factors, the researcher is confident that the measured effect of the factor 
is valid under a broad range of conditions. 

Independent Variable (Factor) 
A variable whose influence on the response variable is being studied by deliberately varying it 
from run to run. 

Interaction 
The interaction among factors refers to that part of the change in the response from run to run that 
may be accounted for by a specific combination of two or more factors. Another way of 
explaining interaction is that the average effect of one factor depends on the level of another 
factor. 

The order of an interaction is the number of factors in the interaction. Hence AB is a second-order 
interaction and ABCD is a fourth-order interaction. 

The Taylor’s series expansion of a function is often used to justify the assumption that 
higher-order interactions are less significant (smaller influence on the response) than are main 
effects and low-order interactions. 

Levels 
A factor (independent variable) is set at different values or levels during an experiment. 

Main Effect 
The change in the average response as a factor is varied is called the main effect of that factor. In 
a factor with two levels, the main effect is the average of all runs at the high level of the factor 
minus the average of all runs at the low level of the factor. 

Response or Dependent Variable 
The variable whose value is observed at the completion of each run. 

Replication 
This is the number of times an experiment is repeated at identical factor levels. You must have 
some replication to determine the underlying (error) variability that occurs in the experiment. One 
rep refers to the running of every possible factor combination.  Designs may be partially 
replicated (a few treatment settings are repeated), fractionally replicated (less than one complete 
replication), or completely replicated. It should be obvious that each time a run is repeated, the 
precision of the experimental results is increased. 

Two-Level Factorial Designs 
Many of the designs that can be produced in PASS are factorial designs. Two-level designs are 
those in which all factors have only two values. This may seem like a severe restriction, but in 
many studies, this is all that is needed. 

Factorial designs allow you to fit linear (as opposed to quadratic) models with all possible 
interactions. The number of runs is often quite large, so the runs are often grouped together in 
blocks. 
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Fractional Factorial Designs 
Fractional factorial designs are constructed by taking well-chosen subsets of a complete factorial 
design. Fractional factorials are useful because they require much fewer runs, although they do 
not allow the separation of main effects from high-order interactions. 

This program gives two-level fractional factorial designs. These are usually defined as one-half 
rep, one-quarter rep, etc. They may be run all at once or in blocks. 

Screening Designs 
Screening designs are used in the initial phases of a study when you wish to investigate the main 
effects of several factors (up to 31) simultaneously.  These designs allow you to determine which 
factors warrant closer investigation and which may be ignored. 

Screening designs allow the investigation of main effects only. They use a small fraction of the 
total runs that would be needed for a complete factorial design. 

Many of the Taguchi designs are really screening designs. 

Response Surface Designs 
These designs provide for factors with more than two levels. The options for that procedure are 
Central Composite and Box-Behnken response surface designs.  

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Experimental Setup 

Replications 
The number of replications (repeats) of the entire experiment. 

Block Size 
The number of experiments (runs) per block. This determines the number of blocks. This number 
must be a power of 2 (2, 4, 8, 16, etc.). 

Sort Order 
The order of the generated rows. The rows may be in random or standard order.  

• Random 
The rows are randomly ordered (random blocks and random rows within blocks). Use this 
option when the order of application to experimental units is governed by the row number. 

• Standard 
The rows are not randomly ordered. Instead, they are placed in standard order. Use this 
option when you want to quickly see the structure of the design. 



   Two-Level Designs  881-5 

Factor Values 
Each factor has two possible values (levels) which are specified here. These are the values that 
will be written to the database. The first value is used to represent the low value. The second 
value represents the high value. You may use both text and numeric values. 

The number of variables created depends on how many of these boxes have values in them. 

Data Storage to Spreadsheet 

Store Data on Spreadsheet 
Check this box to generate the design data on the spreadsheet. The spreadsheet data will be 
identical to the design data generated on the output window. 

Block Column 
The column to contain the block identification numbers. The blocks are numbered from one to B, 
where B is the number of blocks. This column is optional. If this option is left blank, no blocks 
will be generated. 

First Factor Column 
This is where the group of columns that is to contain your design begins. The K-1 columns after 
this column are also filled with data. The number of variables used is determined by the number 
of Factor Values boxes that contain data. 

Warning: The program fills these columns with data, so any previous data will be lost. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Two-Level Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate design data, you should always 
begin with an empty spreadsheet.  

In this example, we will show you how to generate a five-factor design in blocks of eight runs 
each.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Two-Level Designs procedure window by clicking on Design 
of Experiments, then Two-Level Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

1 Specify the design parameters. 
• On the Two-Level Designs window, select the Design tab.  
• Select 1 in the Replications box.  
• Select 8 in the Block Size box.  
• Select Standard in the Sort Order box.  
• Set the Factor 1 box to 1 2. 
• Set the Factor 2 box to 10 20. 
• Set the Factor 3 box to Low High. 
• Set the Factor 4 box to -1 1. 
• Set the Factor 5 box to 0 1. 
• Check the Store Data on Spreadsheet box. 
• Enter 1 in the Block Column box.  
• Enter 2 in the First Factor Column box.  

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 



   Two-Level Designs  881-7 

Sample Design Data 
 

Experimental Design 
 
Row Block Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
1 1 1 10 Low -1 0 
2 1 2 20 Low -1 0 
3 1 2 10 High 1 0 
4 1 1 20 High 1 0 
5 1 2 10 High -1 1 
6 1 1 20 High -1 1 
7 1 1 10 Low 1 1 
8 1 2 20 Low 1 1 
9 2 2 10 Low -1 0 
10 2 1 20 Low -1 0 
11 2 1 10 High 1 0 
12 2 2 20 High 1 0 
13 2 1 10 High -1 1 
14 2 2 20 High -1 1 
15 2 2 10 Low 1 1 
16 2 1 20 Low 1 1 
17 3 2 10 High -1 0 
18 3 1 20 High -1 0 
19 3 1 10 Low 1 0 
20 3 2 20 Low 1 0 
21 3 1 10 Low -1 1 
22 3 2 20 Low -1 1 
23 3 2 10 High 1 1 
24 3 1 20 High 1 1 
25 4 1 10 High -1 0 
26 4 2 20 High -1 0 
27 4 2 10 Low 1 0 
28 4 1 20 Low 1 0 
29 4 2 10 Low -1 1 
30 4 1 20 Low -1 1 
31 4 1 10 High 1 1 
32 4 2 20 High 1 1 
    
The block and factor values were also produced on the spreadsheet. 

 
 

These values are also generated on the spreadsheet. 
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Chapter 882 

Fractional 
Factorial Designs 
Introduction 
This program generates two-level fractional-factorial designs of up to sixteen factors with 
blocking. Reports show the aliasing pattern that is used. The design rows may be output in 
standard or random order. The design data generated by this procedure can be produced in a 
spreadsheet as well as the output window. 

When generating a design, the program first checks to see if the design is among those listed on 
page 410 of Box, Hunter, and Hunter (1978). If the requested design is not listed in the above 
book, the design pattern is determined using the standard procedure in which the highest-order 
interactions are confounded first, and so on. The procedure creates the design such that main 
effects are not aliased with each other. 

An introduction to experimental design is presented in Chapter 881 on Two-Level Factorial 
Designs and will not be repeated here. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Experimental Setup 

Runs 
The desired size (number of rows) of the experiment. This number must be a power of two. This 
number determines what fraction of a complete replicate is run. For example, suppose you are 
contemplating an experiment with seven factors and have budget for sixteen runs. A full 
replication would take 27 = 128 runs. Hence, this design is a 1/8th rep (note that 16/128 = 1/8). 

Block Size 
The number of experiments (runs) per block. This determines the number of blocks. This number 
must be a power of 2 (2, 4, 8, 16, etc.). Of course, the block size must be less than or equal to one 
half the number of runs.  
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Sort Order 
The order of the generated rows. The rows may be in random or standard order.  

• Random 
The rows are randomly ordered (random blocks and random rows within blocks). Use this 
option when the order of application to experimental units is governed by the row number. 

• Standard 
The rows are not randomly ordered. Instead, they are placed in standard order. Use this 
option when you want to quickly see the structure of the design. 

Factor Values 
Each factor has two possible values (levels) which are specified here. These are the values that 
will be written to the database. The first value is used to represent the low value. The second 
value represents the high value. You may use both text and numeric values. 

The number of variables created depends on how many of these boxes have values in them. 

Data Storage to Spreadsheet 

Block Column 
The column to contain the block identification numbers. The blocks are numbered from one to B, 
where B is the number of blocks. This column is optional. If this option is left blank, no blocks 
will be generated.  

First Factor Column 
This is where the group of columns that is to contain your design begins. The K-1 columns after 
this column are also filled with data. The number of columns used is determined by the number of 
Factor Values boxes that contain data. 

Warning: The program fills these columns with data, so any previous data will be lost. 

Reports Tab 
These options designate the variables to contain the design and the values that will be placed in 
those variables. 

Select Reports 

Design Info Report 
Specifies whether to display this report. 

Aliases Report 
Specifies whether to display this report. 
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Report Options 

Aliases 
One of the reports shows the confounding pattern among the columns of the design. However, 
when several factors are confounded, the number of terms aliased with each other gets very large. 
This option lets you limit the amount of information that the program displays.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Fractional Factorial Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate data, any existing data will be 
replaced. For this reason, you should begin with an empty spreadsheet.  

In this example, we will show you how to generate a six-factor design using sixteen runs 
separated in blocks of four runs each.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fractional Factorial Designs procedure window by clicking 
on Design of Experiments, then Fractional Factorial Designs. You may then follow along here 
by making the appropriate entries as listed below or load the completed template Example1 from 
the Template tab on the procedure window. 

1 Specify the design parameters. 
• On the Fractional Factorial Designs window, select the Design tab.  
• Select 16 in the Runs box.  
• Select 4 in the Block Size box.  
• Select Standard in the Sort Order box.  
• Set the first six of the Factor Values boxes equal to -1, 1. 
• Check the Store Data on Spreadsheet box. 
• Enter 1 in the Block Column box.  
• Enter 2 in the First Factor Column box.  

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Design Information Section 
  

Design Information Section 
 
Design: 
1/4 replication of 6 factors in 4 blocks of 4 experiments. 
 
Defining Contrast: 
i = ABCE = BCDF = ADEF 
 
Design Construction: 
Generate a reduced model of the factors [ A B C D ]. 
The remaining factors are aliased with interactions  
of this reduced model as follows: 
E = ABC 
F = BCD 
 
Blocking Section 
 
Block: 
Blocks were generated by confounding them with the  
following interactions from the reduced model: 
ABCD, CD 

 

This report provides technical information about the design that was generated. 

Aliases Section 
  

One-Factor Aliases Section 
 
A+BCE+ABCDF+DEF 
B+ACE+CDF+ABDEF 
C+ABE+BDF+ACDEF 
D+ABCDE+BCF+AEF 
E+ABC+BCDEF+ADF 
F+ABCEF+BCD+ADE 
 
Two-Factor Interaction Aliases Section 
AB+CE+ACDF+BDEF 
AC+BE+ABDF+CDEF 
AD+BCDE+ABCF+EF 
AE+BC+ABCDEF+DF 
AF+BCEF+ABCD+DE 
BC+AE+DF+ABCDEF 
BD+ACDE+CF+ABEF 
BE+AC+CDEF+ABDF 
BF+ACEF+CD+ABDE 
CD+ABDE+BF+ACEF 
CE+AB+BDEF+ACDF 
CF+ABEF+BD+ACDE 
DE+ABCD+BCEF+AF 
DF+ABCDEF+BC+AE 
EF+ABCF+BCDE+AD 

 

This report lists the aliases of the main effects and low-order interactions. The number of aliases 
listed is controlled by the Aliases Shown option.  
From the first line of the report, we find that factor A (factor 1) is confounded with interactions 
BCE, DEF, and ABCDF. If any of the three-factor interactions are known to be real, this design 
would not be useful. Note that no two-factor interactions (like AB or CD) are aliased with the 
main effects. 
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1/4 Rep of a Six-Factor Design in Blocks of 4 Runs 
  

Experimental Design 
 
Row Block Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 
1 1 -1 -1 -1 -1 -1 -1 
2 1 1 1 1 1 1 1 
3 1 1 1 -1 -1 -1 1 
4 1 -1 -1 1 1 1 -1 
5 2 -1 1 -1 -1 1 1 
6 2 1 -1 -1 -1 1 -1 
7 2 -1 1 1 1 -1 1 
8 2 1 -1 1 1 -1 -1 
9 3 1 -1 1 -1 -1 1 
10 3 -1 1 -1 1 1 -1 
11 3 -1 1 1 -1 -1 -1 
12 3 1 -1 -1 1 1 1 
13 4 -1 -1 1 -1 1 1 
14 4 1 1 -1 1 -1 -1 
15 4 -1 -1 -1 1 -1 1 
16 4 1 1 1 -1 1 -1 
    
The block and factor values were also produced on the spreadsheet. 

 
 

These values are also generated on the spreadsheet. 
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Chapter 883 

Balanced 
Incomplete Block 
Designs 
Introduction 
This module generates balanced incomplete block designs. Designs for up to ten treatments are 
available. 

In order to make precise measurements of treatment means, uniform experimental conditions 
should be maintained when comparing a number of treatments. This insures that differences 
among the treatment means result from the application of the treatment and not from some 
extraneous factor. To achieve this, experimental trials are often grouped together into blocks. In 
such designs, conditions are kept constant within the blocks and allowed to vary between the 
blocks. The best known design of this type is the randomized block design. In this design, all 
treatments are present in each block. 

Occasionally, the size of convenient blocks will not accommodate all the treatments of interest. 
For example, suppose you wanted to test four types of automobile tires for wear. An obvious 
choice for a block would be an automobile. You might select ten automobiles for the study. 
Assuming that the tires were rotated among the four positions, this experiment would control for 
differences in tire wear due to the type of automobile and the terrain that each traveled. However, 
blocking difficulties arise if you want to test six types of tires. You could redesign the 
automobile, or you could adopt a balanced incomplete block design. 

In a balanced incomplete block design, the treatments are assigned to the blocks so that every pair 
of treatments occurs together in a block the same number of times. This achieves the balance that 
is described in the title of the procedure. The balance means that all differences between 
treatments are measured with equal precision.  

Following is an example of how four treatments are assigned to blocks with a natural size of three 
experimental units. Four blocks are required for this balanced incomplete block design. 

Block Treatment 
1 A B C 
2 A B D 
3 A C D 
4 B C D 
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Note that each treatment occurs three times in this experimental layout. Also note that each pair 
of treatments occurs twice. These are the basic properties of the balanced incomplete designs. 

Box, Hunter, and Hunter (1978) point out the following rules when using such designs. 

1.  Randomly assign the numbers to the blocks. 

2.  Randomly assign the letters to the treatments. 

3.  Randomly assign the treatments within the blocks. 

4.  Randomly group blocks as replicates. A replicate is a complete set of all treatments. 

If you take these steps, this design can be used effectively in those situations in which the block 
size and the number of treatments do not match. 

An introduction to experimental design is presented in Chapter 881 on Two-Level Factorial 
Designs and will not be repeated here. 

Design Limits 
The designs used in this procedure were taken from Cochran and Cox (1992). We have included 
designs with up to ten treatments. The following table shows what block sizes are available for 
each number of treatments. 

Number of Treatments Block Sizes Available 
4 2, 3 
5 2, 3, 4 
6 2, 3, 4, 5 
7 2, 3, 4, 6 
8 2, 4, 7 
9 2, 4, 5, 6, 8 
10 2, 3, 4, 5, 6, 9 
Note that some block sizes are not available for certain numbers of treatments. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Experimental Setup 

Block Size 
This option contains the size of the blocks. That is, this is the number of experimental units that 
are contained in each block. 
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Treatment Values 
The values used to represent the treatments are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of treatments is 
implied by the number of items in this list. 

Data Storage to Spreadsheet 

Store Data on Spreadsheet 
Check this box to generate the design data on the spreadsheet. The spreadsheet data will be 
identical to the design data generated on the output window. 

Store First Factor In 
The block identification numbers of each row of the design are stored in this variable. The 
treatment identification numbers (or letters) are stored in the variable immediately to the right. 

Warning: The program fills these variables with data, so any previous data will be lost. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Balanced Incomplete Block Design 
This section presents an example of how to generate a balanced incomplete block design using 
this program. CAUTION: since the purpose of this routine is to generate data, you should 
always begin with an empty spreadsheet.  

In this example, we will show you how to generate a design with four treatments in blocks of two 
experimental units each.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Balanced Incomplete Block Designs procedure window by 
clicking on Design of Experiments, then Balanced Incomplete Block Designs. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

1 Specify the design parameters. 
• On the Balanced Incomplete Block Designs window, select the Design tab.  
• Set Block Size to 2.  
• Set Treatment Values to 1 2 3 4. 
• Check the Store Data on Spreadsheet box. 
• Enter 1 in the Store First Factor In box.  

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

BIBD with Four Treatments in Blocks of Two 
  

Experimental Design 
 
Row Block Treatment 
1 1 1 
2 1 2 
3 2 3 
4 2 4 
5 3 1 
6 3 3 
7 4 2 
8 4 4 
9 5 1 
10 5 4 
11 6 2 
12 6 3 
    
These values were also produced on the spreadsheet. 

 
 

These values are also generated on the spreadsheet. 
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Chapter 884 

Latin Square 
Designs 
Introduction 
This module generates Latin Square and Graeco-Latin Square designs. Designs for three to ten 
treatments are available. 

An introduction to experimental design is presented in Chapter 881 on Two-Level Factorial 
Designs and will not be repeated here. 

Latin Square designs are similar to randomized block designs, except that instead of the removal 
of one blocking variable, these designs are carefully constructed to allow the removal of two 
blocking factors. They accomplish this while reducing the number of experimental units needed 
to conduct the experiment. 

Following is an example of a four treatment Latin Square. The experimental layout is as follows: 

 Columns 
Rows Col1  Col2  Col3  Col4 
Row 1 A B C D 
Row 2 B C D A 
Row 3 C D A B 
Row 4 D A B C 

In the above table, the four treatments are represented by the four letters: A, B, C, and D. The 
letters are arranged so that each letter occurs only once within each row and each column. Notice 
that a simple random design would require 4 x 4 x 4 = 64 experimental units. This Latin Square 
needs only 16 experimental units—a reduction of 75%! 

The influence of a fourth factor may also be removed from the design by introducing a second set 
of letters, this time lower case. This design is known as the Graeco-Latin Square. 

 Columns 
Rows Col1  Col2  Col3  Col4 
Row 1 Aa Bb Cc Dd 
Row 2 Bd Ca Db Ac 
Row 3 Cb Dc Ad Ba 
Row 4 Dc Ad Ba Cb 

Four factors at four levels each would normally require 256 experimental units, but this design 
only requires 16—a reduction in experimental units of almost 94%! 

The Graeco-Latin Square is formed by combining two orthogonal Latin Squares. Graeco-Latin 
Squares are available for all numbers of treatments except six. 
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Latin Square Assumptions 
It is important to understand the assumptions that are made when using the Latin Square design. 
The large reduction in the number of experimental units needed by this design occurs because it 
assumptions the magnitudes of the interaction terms are small enough that they may be ignored. 
That is, the Latin Square design is a main effects only design. Another way of saying this is that 
the treatments, the row factor, and the column factor affect the response independently of one 
another. 

Assuming that there are no interactions is quite restrictive, so before you use this design you 
should be able to defend this assumption. In practice, the influence of the interactions is averaged 
into the experimental error of the analysis of variance table. We say that the experimental error is 
inflated. This results in a reduced F-ratio for testing the treatment factor, and a reduced F-ratio 
lessens the possibility of achieving statistical significance. 

Randomization 
Probability statements made during the analysis of the experimental data require strict attention to 
the randomization process. The randomization process is as follows: 

1.  Randomly select a design from the set of orthogonal designs available. 

2.  Randomly assign levels of the row factor to the rows. 

3.  Randomly assign levels of the column factor to the columns. 

4.  Randomly assign treatments to the treatment letters (or numbers as the case may be). 

Orthogonal Sets 
These designs were taken from Rao, Mitra, and Matthai (1966). We have included designs with 
up to ten treatments. The number of available squares depends on the number of treatments. The 
following table shows the number of orthogonal squares stored within this procedure. 

Number of Treatments Number of Orthogonal Designs 
3 2 
4 3 
5 4 
6 1 
7 6 
8 7 
9 8 
10 2 

Graeco-Latin Squares are generated by combining two of the available orthogonal squares. Note 
that there are no six-level Graeco-Latin Squares. 
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Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Experimental Setup 

Row Values 
The values used to represent the rows are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of rows is implied by 
the number of items in this list. The number of row, column, and treatment values must be equal. 
From three to ten values are allowed. 

Column Values 
The values used to represent the columns are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of rows is implied by 
the number of items in this list. The number of row, column, and treatment values must be equal. 
From three to ten values are allowed. 

Treatment 1 Values 
The values used to represent the treatments are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of rows is implied by 
the number of items in this list. The number of row, column, and treatment values must be equal. 
From three to ten values are allowed. 

Treatment 2 Values 
The values used to represent the second set of treatments are specified here. These values may be 
letters, digits, words, or numbers. The list is delimited by commas. The number of rows is 
implied by the number of items in this list. The number of row, column, and treatment values 
must be equal. From three to ten values are allowed. 

Note that this value is left blank unless you want to generate a Graeco-Latin Square. 

Experimental Setup – Orthogonal 
Designs 

Orthogonal Design Number I 
Select one of the available orthogonal designs. The number of available orthogonal designs is 
given in the table in Orthogonal Sets section above. Good scientific protocol requires that you 
randomly choose which of these designs is used. 

Orthogonal Design Number II 
This option is only used when the Treatment 2 Values box is non-blank (when you are generating 
a Graeco-Latin Square). Select a second of the available orthogonal designs to be combined with 
the first in forming a Graeco-Latin Square. The value here must be different from the value 
specified in Orthogonal Design I. Good scientific protocol requires that you randomly choose 
which of these designs is used. 



884-4  Latin Square Designs  

Data Storage Variables 

Store Data on Spreadsheet 
Check this box to generate the design data on the spreadsheet. The spreadsheet data will be 
identical to the design data generated on the output window. 

Store First Factor In 
The row values are stored in this column of the spreadsheet. The column values are stored in the 
column immediately to the right. The treatment values are stored in the column immediately to 
the right of the column column. If specified, the values of the second treatment are stored in the 
column immediately to the right of the first treatment column. 

Warning: The program fills these column with data, so any previous data will be replaced. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Latin Square Design 
This section presents an example of how to generate a Latin Square design using this program. 
CAUTION: since the purpose of this routine is to generate data, you should begin with an 
empty spreadsheet.  

In this example, we will show you how to generate a design with four treatments.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Latin Square Designs procedure window by clicking on 
Design of Experiments, then Latin Square Designs. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

1 Specify the design parameters. 
• On the Latin Square Designs window, select the Design tab.  
• Set Row Values to R1 R2 R3 R4.  
• Set Column Values to C1 C2 C3 C4.  
• Set Treatment 1 Values to A B C D.  
• Check the Store Data on Spreadsheet box. 
• Enter 1 in the Store First Factor In box.  

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Four-Level Latin Square Design 
  

Experimental Design 
 
ID Row Column Treatment 1 
1 R1 C1 A 
2 R1 C2 B 
3 R1 C3 C 
4 R1 C4 D 
5 R2 C1 B 
6 R2 C2 A 
7 R2 C3 D 
8 R2 C4 C 
9 R3 C1 C 
10 R3 C2 D 
11 R3 C3 A 
12 R3 C4 B 
13 R4 C1 D 
14 R4 C2 C 
15 R4 C3 B 
16 R4 C4 A 
    
The values were also produced on the spreadsheet. 

 
 

These values are also generated on the spreadsheet. 
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Chapter 885 

Response Surface 
Designs 
Introduction 
Response-surface designs are the only designs provided that allow for more than two levels. 
There are two general types of response-surface designs. The central-composite designs give five 
levels to each factor. The Box-Behnken designs give three levels to each factor. 

An introduction to experimental design is presented in Chapter 881 on Two-Level Factorial 
Designs and will not be repeated here. 

The Central-Composite designs build upon the two-level factorial designs by adding a few center 
points and star points. A factor's five values are: -a, -1, 0, 1, and a. The value of a is determined 
by the number of factors in such a way that the resulting design is orthogonal. For example, if you 
are going to use either four or five factors, the value of a is 2.00. 

The actual values of the levels are determined from these five values as follows: 

1. The low-level value is assigned to -1. 

2. The high-level value is assigned to 1. 

3. The average of these two values is assigned to 0. 

4. The values of -a and a are used to find the minimum and the maximum values. 

For example, suppose we entered 50 for the low-level and 60 for the high level. Further, suppose 
there were four factors in the experiment. The levels would be 

Coded Level Actual Level 
-a 45 
-1 50 
0 55 
1 60 
a 65 
 
The values of a depend on the number of factors in the design: 

Factors  Value of a 
2 1.41 
3 1.73 
4 2.00 
5 2.00 
6 2.24 
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The Box-Behnken designs have two differences from the central-composite designs. First, they 
usually use fewer runs. Second, they only use three levels while the central-composite designs use 
five. 

The actual values of the levels are determined in the same manner as the central-composite 
designs, except that the value of a is ignored. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Experimental Setup 

Design Type 
Specify whether to generate a central-composite or a Box-Behnken design. This selection controls 
the number of runs generated as well as the block size (if a blocking variable is present). 

Sort Order 
The order of the generated rows. The rows may be in random or standard order.  

• Random 
The rows are randomly ordered (random blocks and random rows within blocks). Use this 
option when the order of application to experimental units is governed by the row number. 

• Standard 
The rows are not randomly ordered. Instead, they are placed in standard order. Use this 
option when you want to quickly see the structure of the design. 

Experimental Setup – Factor Values 

Factor Values 
Each factor has three or five possible values (levels). The values associated with -1 and 1 are 
entered here.  

If a Box-Behnken design was selected, the resulting three values will be -1,0,1. For example, if 
you entered 10 20 here, the resulting values would be 10, 15, and 20. 

If a central-composite design was selected, the resulting five values will be -a, -1, 0, 1, a. For 
example, if you had four factors and entered 50 60 here, the resulting values would be 45, 50, 55, 
60, and 65. 

These are the values that will be written to the database. You can only use numeric values. 
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Data Storage to Spreadsheet 

Store Data on Spreadsheet 
Check this box to generate the design data on the spreadsheet. The spreadsheet data will be 
identical to the design data generated on the output window. 

Block Column 
The variable to contain the block identification numbers. The blocks are numbered from one to B, 
where B is the number of blocks. This column is optional. If this option is left blank, no blocks 
will be generated.  

First Factor Column 
This is where the group of columns that is to contain your design begins. The K-1 columns after 
this column are also filled with data. The number of variables used is determined by the number 
of Factor Values boxes that contain data. 

Warning: The program fills these columns with data, so any previous data will be lost. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Response Surface Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate data, you should always begin 
with an empty spreadsheet.  

In this example, we will show you how to generate a three-factor central composite design with 
blocks.  
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Response Surface Designs procedure window by clicking on 
Design of Experiments, then Response Surface Designs. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

1 Specify the design parameters. 
• On the Response Surface Designs window, select the Design tab.  
• Select Central-Composite in the Design Type list box.  
• Select Standard in the Sort Order list box.  
• Set three of the Factor Values boxes equal to -1 1. 
• Check the Store Data on Spreadsheet box. 
• Enter 1 in the Block Column box.  
• Enter 2 in the First Factor Column box.  

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Three-Factor Response-Surface Design 
  

Experimental Design: Central-Composite 
 
Row Block Factor 1 Factor 2 Factor 3 
1 1 -1 -1 -1 
2 1 1 -1 -1 
3 1 -1 1 -1 
4 1 1 1 -1 
5 1 -1 -1 1 
6 1 1 -1 1 
7 1 -1 1 1 
8 1 1 1 1 
9 1 0 0 0 
10 1 0 0 0 
11 1 0 0 0 
12 2 -1.73 0 0 
13 2 1.73 0 0 
14 2 0 -1.73 0 
15 2 0 1.73 0 
16 2 0 0 -1.73 
17 2 0 0 1.73 
18 2 0 0 0 
19 2 0 0 0 
20 2 0 0 0 
    
The block and factor values were also produced on the spreadsheet. 

 

These values are also generated on the spreadsheet. Note that there are three replicates of the 
center points in each block. Note the star points represented by -1.73 and 1.73. 
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Chapter 886 

Screening 
Designs 
Introduction 
Screening designs are used to find the important factors from a large number (up to 31) of two-
level factors. When the number of runs is 4, 8, 16, or 32 (powers of 2), the design is a regular 
fractional replication. When the number of runs is 12, 20, 24, or 28, the design used is a Plackett-
Burman design. 

This program uses the screening designs given in Lawson (1987). These designs make it possible 
to evaluate each main effect, although these are aliased with several interactions. 

An introduction to experimental design is presented in Chapter 881 on Two-Level Factorial 
Designs and will not be repeated here. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Experimental Setup 

Runs 
The desired size (number of rows) of the experiment. This number must be 4, 8, 12, 16, 20, 24, 
28, or 32. This number determines which design is generated. 

• Random 
The rows are randomly ordered (random blocks and random rows within blocks). Use this 
option when the order of application to experimental units is governed by the row number. 

• Standard 
The rows are not randomly ordered. Instead, they are placed in standard order. Use this 
option when you want to quickly see the structure of the design. 



886-2  Screening Designs  

Sort Order 
The order of the generated rows. The rows may be in random or standard order. 

Experimental Setup – Factor Values 

Factor Values 
Each factor has two possible values (levels), which are specified here. These are the values that 
will be written to the database. The first value is used to represent the low value. The second 
value represents the high value. You may use both text and numeric values, although we 
recommend that you stick with numeric values since these may be used in the regression 
program. 

Enter a pair of values separated by a blank or comma, such as ‘-1 1’ or ‘0 1.’ 

Data Storage to Spreadsheet 

Store Data on Spreadsheet 
Check this box to generate the design data on the spreadsheet. The spreadsheet data will be 
identical to the design data generated on the output window. 

First Factor Column 
This is where the group of columns that is to contain your design begins. The K-1 columns after 
this column are also filled with data. The number of variables used is determined by the number 
of Factor Values boxes that contain data. 

Warning: The program fills these columns with data, so any previous data will be lost. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Screening Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate data, you should always begin 
with an empty spreadsheet.  

In this example, we will show you how to generate a six-factor design using 16 runs.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Screening Designs procedure window by clicking on Design 
of Experiments, then Screening Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

1 Specify the design parameters. 
• On the Screening Designs window, select the Design tab.  
• Set the number of Runs to 16. 
• Select Standard in the Sort Order list box.  
• Set six of the Factor Values boxes equal to -1 1. 
• Check the Store Data on Spreadsheet box. 
• Enter 1 in the First Factor Column box.  

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Six-Factor Screening Design in Sixteen Runs 
  

Experimental Design 
 
Row Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 
1 -1 -1 -1 -1 -1 -1 
2 1 -1 -1 -1 1 1 
3 -1 1 -1 -1 1 1 
4 1 1 -1 -1 -1 -1 
5 -1 -1 1 -1 1 -1 
6 1 -1 1 -1 -1 1 
7 -1 1 1 -1 -1 1 
8 1 1 1 -1 1 -1 
9 -1 -1 -1 1 -1 1 
10 1 -1 -1 1 1 -1 
11 -1 1 -1 1 1 -1 
12 1 1 -1 1 -1 1 
13 -1 -1 1 1 1 1 
14 1 -1 1 1 -1 -1 
15 -1 1 1 1 -1 -1 
16 1 1 1 1 1 1 
    
The values were also produced on the spreadsheet. 

 
 

These values are also generated on the spreadsheet. Usually, you would specify the number of 
runs as close to the number of variables as possible, while still leaving some degrees of freedom 
for an estimate of error. 
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Chapter 887 

Taguchi Designs 
Introduction 
Taguchi experimental designs, often called orthogonal arrays (OA’s), consist of a set of fractional 
factorial designs which ignore interaction and concentrate on main effect estimation. This 
procedure generates the most popular set of Taguchi designs.  

Taguchi uses the following convention for naming the orthogonal arrays: La(b^c), where a is the 
number of experimental runs, b is the number of levels of each factor, and c is the number of 
variables. Designs can have factors with several levels, although two and three level designs are 
the most common. The L18 design is perhaps the most popular. 

When a design is generated, the levels of each factor can be stored in the current spreadsheet--
replacing any data that is already there. 

An introduction to experimental design is presented in Chapter 881 on Two-Level Factorial 
Designs and will not be repeated here. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Experimental Setup 

Design Type 
This option designates the particular design that is to be generated. The available choices are: 

• L4   2^3 
This design consists of up to 3 factors at 2 levels each. There are 4 rows. 

• L8   2^7 
This design consists of up to 7 factors at 2 levels each. There are 8 rows. 

• L12  2^11 
This design consists of up to 11 factors at 2 levels each. There are 12 rows. 

• L16  2^15 
This design consists of up to 15 factors at 2 levels each. There are 16 rows. 
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• L32  2^31 
This design consists of up to 31 factors at 2 levels each. There are 32 rows. 

• L64  2^63 
This design consists of up to 63 factors at 2 levels each. There are 64 rows. 

• L9   3^4 
This design consists of up to 4 factors at 3 levels each. There are 9 rows. 

• L27  3^13 
This design consists of up to 13 factors at 3 levels each. There are 27 rows. 

• L27' 3^22 
This design consists of up to 22 factors at 3 levels each. There are 27 rows. 

• L16' 4^5 
This design consists of up to 5 factors at 4 levels each. There are 16 rows. 

• L25  5^6 
This design consists of up to 6 factors at 5 levels each. There are 25 rows. 

• L18  2^1 x 3^7 
This design consists of one factor at 2 levels and up to 7 factors at 3 levels each. There are 18 
rows. 

• L36  2^3 x 3^13 
This design consists of up to 3 factors at 2 levels and up to 13 factors at 3 levels each. There 
are 36 rows. 

• L36' 2^11 x 3^12 
This design consists of up to 11 factors at 2 levels and up to 12 factors at 3 levels each. There 
are 36 rows. 

• L54  2^1 x 3^25 
This design consists of one factor at 2 levels and up to 25 factors at 3 levels each. There are 
54 rows. 

• L32' 2^1 x 4^9 
This design consists of one factor at 2 levels and up to 9 factors at 4 levels each. There are 32 
rows. 

• L50  2^1 x 5^11 
This design consists of one factor at 2 levels and up to 11 factors at 5 levels each. There are 
50 rows. 
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Experimental Setup – Factor 
Specification 

2 Level Factors…5 Level Factors 
The number of columns of this type (number of levels) that are generated. For example, if you 
selected L36 2^3 x 3^13 as the Design Type, you could specify up to three two-level factors and 
up to thirteen three-level factors. You would enter the number of two-level factors in the 2-Level 
Factors box and the number of three-level factors in the 3-Level Factors box. Entries in the 
unused boxes (such as 4-Level and 5-Level in this example) are ignored. If you enter more than 
the maximum allowed, the maximum will be used. 

Data Storage to Spreadsheet 

Store Data on Spreadsheet 
Check this box to generate the design data on the spreadsheet. The spreadsheet data will be 
identical to the design data generated on the output window. 

First Factor Column 
This is where the group of columns of the spreadsheet that is to contain your design begins. The 
K-1 columns after this column are also filled with data, where K is the number of factors 
specified. 

Warning: The program fills these columns with data, so any previous data will be lost. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Taguchi Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate data, you should always begin 
with an empty spreadsheet.  

In this example, we will show you how to generate an L18 design.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Taguchi Designs procedure window by clicking on Design of 
Experiments, then Taguchi Designs. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

1 Specify the design parameters. 
• On the Taguchi Designs window, select the Design tab.  
• Select L18  2^1 x 3^7 in the Design Type list box.  
• Enter 1 in the 2-Level Factors box.  
• Enter 7 in the 3-Level Factors box.  
• Check the Store Data on Spreadsheet box. 
• Enter 1 in the First Factor Column box.  

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Taguchi L18 Design 
  

Experimental Design 
 
Row Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 
1 1 1 1 1 1 1 1 1 
2 1 1 2 2 2 2 2 2 
3 1 1 3 3 3 3 3 3 
4 1 2 1 1 2 2 3 3 
5 1 2 2 2 3 3 1 1 
6 1 2 3 3 1 1 2 2 
7 1 3 1 2 1 3 2 3 
8 1 3 2 3 2 1 3 1 
9 1 3 3 1 3 2 1 2 
10 2 1 1 3 3 2 2 1 
11 2 1 2 1 1 3 3 2 
12 2 1 3 2 2 1 1 3 
13 2 2 1 2 3 1 3 2 
14 2 2 2 3 1 2 1 3 
15 2 2 3 1 2 3 2 1 
16 2 3 1 3 2 3 1 2 
17 2 3 2 1 3 1 2 3 
18 2 3 3 2 1 2 3 1 
    
The values were also produced on the spreadsheet. 

 

These values are also generated on the spreadsheet. You can use the Find/Replace facility of the 
spreadsheet if you want to change the values from 1, 2, 3 to something more meaningful. 
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Chapter 888 

D-Optimal Designs 
Introduction 
This procedure generates D-optimal designs for multi-factor experiments with both quantitative 
and qualitative factors. The factors can have a mixed number of levels. For example, you could 
use this procedure to design an experiment with two quantitative factors having three levels each 
and a qualitative factor having seven levels. 

D-optimal designs are constructed to minimize the generalized variance of the estimated 
regression coefficients. In the multiple regression setting, the matrix X is often used to represent 
the data matrix of independent variables. D-optimal designs minimize the overall variance of the 
estimated regression coefficients by maximizing the determinant of X’X. Designs that are D-
optimal have been shown to be nearly optimal for several other criteria that have been proposed 
as well. 

D-optimal designs are used when there is a limited budget and a completely replicated factorial 
design cannot be run. For example, suppose you want to study the response to three factors: A 
with three levels, B with four levels, and C with eight levels. One complete replication of this 
experiment would require 3 x 4 x 8 = 96 points (we use the word ‘point’ to mean an experimental 
unit). If only 20 points can be afforded, the D-optimal design algorithm provides a reasonable 
choice for the 20 points. 

An introduction to experimental design is presented in Chapter 881 on Two-Level Factorial 
Designs and will not be repeated here. 

D-Optimal Design Overview 
This section provides a brief overview of how the D-optimal design algorithm works. It will 
provide a general understanding of what the algorithm is trying to accomplish so that you can 
make intelligent choices for the various options. 

Suppose you are studying the influence of height and weight on blood pressure. If you believe 
that a linear (straight line) relationship exists, you will only need to look at two height values and 
two weight values. An experiment designed to study this relationship would require four 
treatment combinations. However, if you decide that the relationship may be curvilinear, you will 
have to include at least three levels for each factor which results in nine treatment combinations. 
Clearly, the appropriate experimental design depends on the anticipated functional relationship 
between the response variable and the factors of interest.  

The D-optimal algorithm works as follows. First, specify an approximate mathematical model 
which defines the functional form of the relationship between the response (Y) and the 
independent variables (the factors). Next, generate a set of possible candidate points based on this 
model. Finally, from these candidates select the subset that maximizes the determinant of the X’X 
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matrix. This is the D-optimal design. The details of this algorithm are given in Atkinson and 
Donev (1992). 

The number of possible designs grows rapidly as the complexity of the model increases. This 
number is usually so large that an exhaustive search of all possible designs for a given sample 
size is not feasible.  

The D-optimal algorithm begins with a randomly selected set of points. Points in and out of the 
current design are exchanged until no exchange can be found that increases the determinant of 
X’X. To cut down on the running time, the number of points considered during any one iteration 
may be limited. 

Unfortunately, this method does not guarantee that the global maximum is found. To overcome 
this, the algorithm is repeated several times in hopes that at least one iteration leads to the global 
maximum. For this reason 50 or 100 random starting sets are needed. (During the testing of the 
algorithm, we found that some designs required 500 starts to obtain the global maximum.) 

Factor Scaling 
This algorithm deals with both quantitative (continuous) and qualitative (discrete) factors. The 
levels of quantitative factors are scaled so that the minimum value is -1 and the maximum value 
is 1. Qualitative factors are included as a set of variables. For example, suppose that a qualitative 
variable has four values. Three independent variables are created to represent this factor: 

Original X1 X2 X3 
1 -10 0 0 
2 0 -1 0 
3 0 0 -1 
4 1 1 1 
As you can see, each of these variables compares a separate group with the last group. Also note 
that the number of generated variables is always one less than the number of levels.  

Duplicates (Replicates) 
The measurement of experimental error is extremely important in the analysis of an experiment. 
In most cases, if an estimate of experimental error is not available, the data from the experiment 
cannot be analyzed. One of the best estimates of experimental error comes from points that are 
duplicates (often called replicates) of each other. Since D-optimal designs are often used in 
situations with limited budgets, the experimenter is often tempted to ignore the need for 
duplicates and instead add points with additional treatment combinations. The tenth 
commandment for experimental design should be “Thou shalt have at least four duplicates in an 
experiment.”  

Unfortunately, the D-optimal design algorithm ignores the need for duplicates. Instead, you have 
to add them after the experimental design has been found. You should set aside at least four 
points from the algorithm. For example, suppose you have budget for 20 design points. You 
would tell the program that you have only 16 points. The algorithm would find the best 16 point 
design. You would then duplicate four of the resulting design points to provide an estimate of 
experimental error. We recommend that you spread these duplicates out across the experiment so 
you can have some indication as to whether the magnitude of the experimental error is constant 
across all treatment settings.  
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Specifying a Model  
Selecting an appropriate model is subjective by nature. Often, you will know very little about the 
true functional form of the relationship between the response and the factor variables. A common 
approach is to assume that a second-order Taylor-series approximation will work fairly well. You 
are assuming that the true function may be approximated by parabolic surface in the 
neighborhood of interest. Cutting down on the complexity of the model reduces the number of 
points that must be added to the experimental design. 

When dealing with qualitative factors, you generally limit the model to first order interactions. 
Higher order interactions may be studied later when a complete experiment can be run. 

Augmenting an Existing Design  
Occasionally, you will want to add more points to an existing experimental design. This may be 
accomplished by forcing the algorithm to include points that are read from the spreadsheet. The 
D-optimal algorithm will pick the most useful additional points from the list of candidate points. 
One of the attractive features of the D-optimal design algorithm is that you can refine the model 
as your knowledge of it increases. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Experimental Setup 

N Per Block 
This option specifies the required sample size. If you are not using blocks, enter a single number 
giving the total sample size. The sample size must be large enough to fit the designated model. If 
it is not large enough, you will be shown the minimum number of points necessary. 

If you are using blocks, enter the sample size for each block, separated by blanks or commas. 
These sample sizes do not have to be equal, although they usually are. For example, if you have 
three blocks, you might enter 8,8,12 which would give an overall sample size of 28. The first 
block will have 8 points, the second 8 points, and the third 12 points. 

You must be careful when specifying blocks when you also have forced design points. In this 
case, the first few blocks are matched with the forced design points. The size of the blocks must 
match the number of forced points. For example, suppose you have already run two blocks of 
four each and you want to augment this with three blocks of six each. You would have eight 
forced points. The entry in this field would be 4,4,6,6,6. If you entered 4,3,7,6,6 an error would 
occur because the forced points cannot be assigned exactly to one or more blocks. The bottom 
line is, you cannot force partial blocks into the design. 
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Input Columns (Candidate and Forced) 
When specified, these columns contain either a set of points to be forced into the final design, a 
set of candidate points from which the design is to be selected, or both. The data must be arranged 
so that the forced points are located at the top of the spreadsheet followed by any candidate 
points. When candidate points are specified, no additional candidate points are generated. If you 
want to force points in the design and choose the rest from among those generated by the model 
statement, the total number of rows in these variables must equal the total number of forced rows 
specified below. 

Note that these variables are matched with the factors specified in the model after those factors 
have been sorted. 

Qualitative factors must be entered using positive integers (1, 2, 3, etc.). You cannot use any 
other identifiers. If you have data entered using some other scheme (such as A, B, C, etc.), you 
will have to recode the values so that they are positive integers. 

Quantitative factors must be scaled so that the minimum value is -1 and the maximum value is 1. 
For example, suppose an existing design has a factor whose values are 10, 15, and 20. Here the 
minimum is 10 and the maximum is 20. You would transform these using the formula  

Scaled = (Original + Original - Max - Min) / (Max - Min) 

Since, in this example, Max = 20 and Min = 10, the transformation reduces to New = (Original + 
Original - 30)/10 = Original /5 - 3. You would create a new variable using the transformation 
Original /5-3. This transformation would give 10/5 - 3 = -1, 15/5 - 3 = 0, and 20/5 - 3 = 1. That is, 
the new variable would contain -1’s, 0’s, and 1’s instead of 10’s, 15’s, and 20’s. 

Number Duplicates 
It is very important to have duplicates of at least some of the design points to provide an estimate 
of experimental error. This option designates the number of duplicates to be generated. The first 
design point is duplicated, then the second, and so on. Even though this option is convenient, we 
recommend that you pick appropriate points for duplication by looking at scatter plots of the 
design. 

If your design includes blocking, you should not create duplicates since that will give erroneous 
block sizes. Rather, you should manually create duplicates. 

Input Data Type 
If you have Input Variables specified, this option specifies the type of data contained in those 
variables. Two types of data are possible. 

• Factor Values 
Specifies that the input data contains indices of each factor. An expanded design matrix will 
be generated from these factor indices using the designated model. This is the more common 
data type. 

• Expanded Matrix 
Specifies that the input dataset contains the expanded design matrix. That is, the quadratic, 
cubic, and interaction terms have been created. The model statement is not used. You would 
use this option when you want to specify the candidate design set in more detail than is 
allowed by the program. The expanded matrix must include the intercept (a column of one’s) 
if one is to be included in the model. 
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Forced Points 
The number of rows in the Input Variables that should be forced into the final design. These rows 
must be located at the top of the database, before any candidate points. If the number of forced 
points is equal to the number of points read in, the generated design matrix is used. Otherwise, the 
additional rows are used as candidate points and no other rows are generated. 

Optimize the Design for this Model 
Your design is optimized for the model specified here. Specify main effects (factors) with names 
consisting of one or more letters, such as A B C. Specify interactions using an asterisk (*), such 
as A*B. You can use the bar (|) symbol (see examples below) as a shorthand method to specify a 
complete model. You can use parentheses. You can separate terms with blanks or the '+' (plus) 
sign. Duplicate terms are removed during the evaluation of the model. Note that the main effects 
are always sorted in alphabetical order. 

Some examples will help to indicate how the model syntax works: 

C + B + A + B*A + C*A = A+B+C+A*B+A*C (Note the sorting!) 

A|B = A+B+A*B 

B|A = A+B+A*B 

A|B A*A B*B = A+B+A*B+A*A+B*B 

A|A|B|B (Max Term Order=2) = A+B+A*B+A*A+B*B 

A|B|C  =  A+B+C+A*B+A*C+B*C+A*B*C 

(A+B)*(C+D)  = A*C+A*D+B*C+B*D 

(A+B)|C = A+B+C+(A+B)*C 

 =  A+B+C+A*C+B*C 

You can experiment with various expressions by viewing the Model Terms report. 

For quantitative factors, each term represents a single variable in the expanded design matrix. For 
qualitative variables, each term represents a set of variables in the expanded design matrix.  

Note that qualitative terms should not be squared or cubed. That is, if A is a qualitative factor, 
you would not include A*A or an A*A*A in your model. 

Max Term Order 
This option specifies that maximum number of factors that can occur in an interaction term. For 
example, A*B*C is a third order interaction term and if this option were set to 2, the A*B*C 
would be removed from the model. 

This option is particularly useful when used with the bar notation to remove unwanted terms. 

Qualitative Factors and Levels 
List any qualitative factors here followed by the number of levels given in parenthesis. Factors in 
the model which do not appear here are assumed to be quantitative (continuous). For example, 
you might enter A(5),B(4),C(7) to indicate three qualitative factors, one with five levels, the next 
with four levels, and the third with seven levels. Of course, the names used here must match the 
names used in the model statement. 
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Max Iterations 
Specify the number of times the algorithm is started with a new random design. Often 50 or 100 
iterations are necessary and 500 is not unheard of. As the number of Inclusion Points and 
Removal Points are increased (see below), the number of iterations may be decreased. 

We suggest that you increase this value until the optimal design is found on several iterations as 
reported in the Determinant Analysis report. 

Inclusion Points 
This is the number of candidate points considered for addition during an iteration. Instead of 
considering all candidate points, only this many are used. A value between 1 and Nc-1 (where Nc 
is the number of candidate points) may be used. Usually, a value near Nc/2 is adequate. 

Removal Points 
This is the number of points currently in the design that will be considered for removal during a 
particular iteration. A value between 1 and N (the desired sample size) is used. Setting this value 
smaller than N speeds up the search, but reduces the possibility of finding the optimal design.  

Include Intercept 
This option specifies whether to include the intercept in the expanded design matrix. Usually, the 
intercept is left out of mixture designs. The intercept is automatically deleted in designs with 
more than one block. 

Data Storage to Spreadsheet 

Store Data on Spreadsheet 
Check this box to generate the design data on the spreadsheet. The spreadsheet data will be 
identical to the design data generated on the output window. 

First Factor Column 
If the Input Data Type is set to Factor Values, the final design is stored in a set of contiguous 
columns of the spreadsheet, beginning with this column. Be careful not to overwrite existing data. 
If you have four factors, the design will be stored in this variable and the next three to the right. 
Existing data will be lost! 

If the Input Data Type is set to Expanded Matrix, an index is stored in this column that represents 
whether the row is used in the design. If the row is not in the optimum design, a zero is stored. If 
the row is in the optimum design, the number of times it occurs is stored here. 

First Expanded Column 
This option specifies the first column in which to store the expanded version of the selected 
design. The rest of the expanded design columns will be stored in the columns to the right. Use 
this option if you want to output the expanded design matrix for use in a multiple regression 
procedure. 

Warning: The program fills these columns with data, so existing data will be replaced. 
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Data Storage to Spreadsheet – 
Storage Options 

Rename Factor Columns with Factor Labels 
The names of the factors that were used in the model statement are used to rename the columns in 
which the design is stored. 

Clear Existing Data 
Clear all existing data in the design columns before writing the new design data. This is 
especially useful if you are experimenting with several designs of different sizes. You will not be 
warned that data is being lost. The data will be cleared and the new design written automatically. 

Reports Tab 
This panel specifies the reports that will be generated. 

Select Reports 

Factor Report - Expanded Design Matrix Report 
These options control which reports are displayed. Some of the reports may be fairly lengthy, so 
you will often want to omit them. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Decimal Places 
Specify the number of decimal places shown when displaying the design. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – D-Optimal Design with 10 Points, 3 Factors 
This section presents an example of how to generate a D-optimal design using this program. 
CAUTION: since the purpose of this routine is to generate data, you should begin with an 
empty spreadsheet.  

In this example, we will show you how to generate a 10-point design for a study involving three 
quantitative factors. We want the design optimized to estimate a second-order response surface 
model.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the D-Optimal Designs procedure window by clicking on Design 
of Experiments, then D-Optimal Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

1 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set N per Block to 10. 
• Set Optimize the Design for this Model to A|A|B|B|C|C.  
• Set Max Term Order to 2. 
• Set the First Factor Column to 1.  
• Set the First Expanded Column to 5.  
• Check Rename Factor Column with Factor Labels. 
• Check Clear Existing Data. 

2 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Check all reports. 
• Set Decimal Places to 0. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 



   D-Optimal Designs  888-9 

10-Point, 3 Factor D-Optimal Design 
  
 A B C C4 Int’t Ax Bx Cx A_A A_B A_C B_B B_C C_C 
 -1 -1 -1  1 -1 -1 -1 1 1 1 1 1 1 
 1 -1 -1  1 1 -1 -1 1 -1 -1 1 1 1 
 0 0 -1  1 0 0 -1 0 0 0 0 0 1 
 -1 1 -1  1 -1 1 -1 1 -1 1 1 -1 1 
 1 1 -1  1 1 1 -1 1 1 -1 1 -1 1 
 1 0 0  1 1 0 0 1 0 0 0 0 0 
 0 1 0  1 0 1 0 0 0 0 1 0 0 
 1 -1 1  1 1 -1 1 1 -1 1 1 -1 1 
 -1 0 1  1 -1 0 1 1 0 -1 0 0 1 
 1 1 1  1 1 1 1 1 1 1 1 1 1 
 

Several columns in the spreadsheet are filled with data. The results may vary from the values seen 
here, as there may be equally optimal designs. The first, second, and third, variables (A, B, and C) 
contain the actual design. You would replace the -1’s with the corresponding factor’s minimum 
value, the 1’s with the maximum value, and the 0’s with the average of the two. 
The variables from Intercept to C_C contain the expanded design matrix. Each variable is 
generated by multiplying the appropriate factor values. For example, in the first row, A_B is 
found by multiplying the value for A, which is -1, by the value for B, which is also -1. The result 
is 1. The intercept is set to one for all rows. The expanded matrix is usually saved so that the 
design can be analyzed using multiple regression. 

To use this design, you would randomly assign these ten points to the ten experimental units.  

Factor Section 
  

 Number 
Name Values Type Value1 Value2 Value3   
A 3 Quantitative -1.0000 0.0000 1.0000   
B 3 Quantitative -1.0000 0.0000 1.0000   
C 3 Quantitative -1.0000 0.0000 1.0000   
 
A total of 27 observations will be needed for one replication. 

 

This report summarizes the factors that were included in the design. The last line of this report 
gives the number of observations required for one complete replication of the experiment. This 
value is the product of the number of levels for each factor. 

Name 
The symbol(s) used to represent the factor. 

Number Values 
The number of values (levels) generated for each factor. For qualitative factors, this value was set 
in the Qualitative Factors and Levels box of the Design panel. For quantitative factors, this value 
is one more that the highest exponent used with this term. For example, if the model includes an 
A*A and nothing of a higher order, this value will be three. 

Type 
A factor is either quantitative or qualitative. 



888-10  D-Optimal Designs  

Value1 – Value 3 
These columns list the individual values that are used as the levels of each factor when generating 
the expanded design matrix based on the model. Notice that the smallest is always -1 and the 
largest is always 1. 

When the expanded design matrix is input directly, these values should be ignored. 

Model Terms Section 
  

Variables  
Needed Term 
1 A 
1 B 
1 C 
1 A*A 
1 A*B 
1 A*C 
1 B*B 
1 B*C 
1 C*C 
9 Model Total 

 

This report shows the terms generated by your model. You should check this report carefully to 
make sure that the generated model matches what you wanted. The last line of the report gives the 
total number of degrees of freedom (except for the intercept) required for your model. This 
number plus one is the minimum size of the D-optimal design for this model. 

Variables Needed 
The number of degrees of freedom (expanded design variables) required for this term. 

Term 
The name of each term.  

D-Optimal Design 
  

Original Factors   
Row A B C 
1 -1 -1 -1 
3 1 -1 -1 
5 0 0 -1 
7 -1 1 -1 
9 1 1 -1 
13 -1 0 0 
17 0 1 0 
20 0 -1 1 
25 -1 1 1 
27 1 1 1 

 

This report gives the points in the D-optimal design.  

Original Row 
This is the row number of the point from the list of candidate points. It is only useful in those 
cases in which you provided the list of candidate points manually. 
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Factors (A B C) 
These are the values of the factors. For example, the first row sets A, B, and C to -1. Remember 
that these are scaled values. You would transform them back into their original metric using the 
formula: 

Original = (Scaled(Max - Min) + Max + Min)/2 

For example, suppose the original metric for factor A is minimum = 10 and maximum =20. The 
original values would be calculated as follows: 

Scaled Formula Original 
-1 (-1(20-10)+20+10)/2 10 
0 (0(20-10)+20+10)/2 15 
1 (1(20-10)+20+10)/2 20 

The values 10, 15, and 20 represent the three levels of factor A that are used in the design. They 
would replace the -1, 0, and 1 displayed in this report. 

Determinant Analysis Section 
  

 Determinant D- Percent of 
Rank of X'X Efficiency Maximum 
1 1327104 40.95 100.00 
2 1327104 40.95 100.00 
3 1048576 40.00 79.01 
4 1048576 40.00 79.01 
5 1048576 40.00 79.01 
6 1048576 40.00 79.01 
7 1048576 40.00 79.01 
8 921600 39.49 69.44 
9 921600 39.49 69.44 
10 802816 38.95 60.49 
11 802816 38.95 60.49 
12 802816 38.95 60.49 
13 802816 38.95 60.49 
14 802816 38.95 60.49 
15 802816 38.95 60.49 
16 746496 38.66 56.25 
17 589824 37.76 44.44 
18 589824 37.76 44.44 
19 589824 37.76 44.44 
20 589824 37.76 44.44 
 
The maximum was achieved on 2 of 30 iterations. 

 

This report shows the largest twenty determinants. The main purpose of this report is to let you 
decide if enough iterations have been run so that a global maximum has been found. Unless the 
maximum value was achieved on at least five iterations, you should double the number of 
iterations and rerun the procedure. 
In this example, the top value occurred on only two iterations. In practice we would probably try 
another 200 iterations to find out if this is the global maximum.  

Rank 
Only the top twenty are shown on this report. The values are sorted by the determinant. 
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Determinant of X’X 
This is the value of the determinant of X’X which is the statistic that is being maximized. This 
value is sometimes called the generalized variance of the regression coefficients. Since this value 
occurs in the denominator of the variance of each regression coefficient, maximizing it has the 
effect of reducing the variance of the estimated regression coefficients. 

D-Efficiency 
D-efficiency is the relative number of runs (expressed as a percent) required by a hypothetical 
orthogonal design to achieve the same determinant value. It provides a way of comparing designs 
across different sample sizes. 

DE
X X

N

p

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟100

1' /

 

where p is the total number of degrees of freedom in the model and N is the number of points in 
the design. 

Percent of Maximum 
This is the percentage that the determinant on this row is of the best determinant found. 

Individual Degree of Freedom Section 
  

  Diagonal of Diagonal of 
Number Name X'X X'X Inv 
1 Intercept 10.0000 0.861111 
2 A 7.0000 0.250000 
3 B 8.0000 0.166667 
4 C 8.0000 0.166667 
5 A*A 7.0000 0.722222 
6 A*B 6.0000 0.250000 
7 A*C 6.0000 0.250000 
8 B*B 8.0000 0.861111 
9 B*C 7.0000 0.194444 
10 C*C 8.0000 0.861111 
 
Determinant  1327104 
D-Efficiency  40.95345 
Trace  4.583333 
A-Efficiency  21.81818 

 

This report shows the diagonal elements of the X’X and its inverse. Since the variance of each 
term is proportional to diagonal elements from the inverse of X’X, the last column of this report 
lets you compare those variances. From this report you can determine if the coefficients will be 
estimated with the relative precision that is desired. 
For example, we can see from this example that them main effects will be estimated with the 
greatest precision—usually a desirable quality in a design. 

Number 
An arbitrary sequence number. 

Name 
The name of the term. 
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Diagonal of X’X 
The diagonal element of this term in the X’X matrix. 

Diagonal of X’X Inv 
The diagonal element of this term in the X’X inverse matrix. See the discussion above for an 
understanding of how this value might be interpreted. 

Determinant 
This is the value of the determinant of X’X which is the statistic that is being maximized. This 
value is sometimes called the generalized variance of the regression coefficients. Since this value 
occurs in the denominator of the variance of each regression coefficient, maximizing it has the 
effect of reducing the variance of the estimated regression coefficients. 

D-Efficiency 
D-efficiency is the relative number of runs (expressed as a percent) required by a hypothetical 
orthogonal design to achieve the same determinant value. It provides a way of comparing designs 
across different sample sizes. 
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where p is the total number of degrees of freedom in the model and N is the number of points in 
the design. 

Trace 
This is the value of the trace of X’X-inverse which is associated with A-optimality.  

A-Efficiency 
D-efficiency is the relative number of runs (expressed as a percent) required by a hypothetical 
orthogonal design to achieve the same trace value. It provides a way of comparing designs across 
different sample sizes. 
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where p is the total number of degrees of freedom in the model and N is the number of points in 
the design. 
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Candidate Points Section 
  
Original Factors   
Row A B C 
1 -1 -1 -1 
2 0 -1 -1 
3 1 -1 -1 
4 -1 0 -1 
5 0 0 -1 
6 1 0 -1 
7 -1 1 -1 
8 0 1 -1 
9 1 1 -1 
10 -1 -1 0 
11 0 -1 0 
12 1 -1 0 
13 -1 0 0 
14 0 0 0 
15 1 0 0 
16 -1 1 0 
17 0 1 0 
18 1 1 0 
19 -1 -1 1 
20 0 -1 1 
21 1 -1 1 
22 -1 0 1 
23 0 0 1 
24 1 0 1 
25 -1 1 1 
26 0 1 1 
27 1 1 1 
 

This report gives a list of candidate points from which the D-optimal design points were selected.  

Original Row 
This is an arbitrary identification number. 

Factors (A B C) 
These are the values of the factors. For example, the first row sets A, B, and C to -1. Remember 
that these are scaled values. You would transform them back into their original metric using the 
formula: 

Original = (Scaled(Max - Min) + Max + Min)/2 

For example, suppose the original metric for factor A is minimum = 10 and maximum =20. The 
original values would be calculated as follows: 

Scaled Formula Original 
-1 (-1(20-10)+20+10)/2 10 
0 (0(20-10)+20+10)/2 15 
1 (1(20-10)+20+10)/2 20 

The values 10, 15, and 20 represent the three levels of factor A. They would replace the -1, 0, and 
1 displayed in this report. 
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Expanded Design Matrix Section 
  

 Variable       
Row Intercept A B C A*A A*B A*C B*B B*C C*C 
1 1 -1 -1 -1 1 1 1 1 1 1 
2 1 0 -1 -1 0 0 0 1 1 1 
3 1 1 -1 -1 1 -1 -1 1 1 1 
4 1 -1 0 -1 1 0 1 0 0 1 
5 1 0 0 -1 0 0 0 0 0 1 
6 1 1 0 -1 1 0 -1 0 0 1 
7 1 -1 1 -1 1 -1 1 1 -1 1 
8 1 0 1 -1 0 0 0 1 -1 1 
9 1 1 1 -1 1 1 -1 1 -1 1 
10 1 -1 -1 0 1 1 0 1 0 0 
11 1 0 -1 0 0 0 0 1 0 0 
12 1 1 -1 0 1 -1 0 1 0 0 
13 1 -1 0 0 1 0 0 0 0 0 
14 1 0 0 0 0 0 0 0 0 0 
15 1 1 0 0 1 0 0 0 0 0 
16 1 -1 1 0 1 -1 0 1 0 0 
17 1 0 1 0 0 0 0 1 0 0 
18 1 1 1 0 1 1 0 1 0 0 
19 1 -1 -1 1 1 1 -1 1 -1 1 
20 1 0 -1 1 0 0 0 1 -1 1 
21 1 1 -1 1 1 -1 1 1 -1 1 
22 1 -1 0 1 1 0 -1 0 0 1 
23 1 0 0 1 0 0 0 0 0 1 
24 1 1 0 1 1 0 1 0 0 1 
25 1 -1 1 1 1 -1 -1 1 1 1 
26 1 0 1 1 0 0 0 1 1 1 
27 1 1 1 1 1 1 1 1 1 1 
    

This report gives a list of candidate points expanded so that each individual term may be seen. 
The report is useful to show you how the expanded matrix looks. Each variable is generated by 
multiplying the appropriate factor values. For example, in the first row, A_B is found by 
multiplying the value for A, which is -1, by the value for B, which is also -1. The result is 1. The 
intercept is set to one for all rows. 
If you want to constrain the design space, you could cut and paste these values back into the 
spreadsheet and then eliminate points that cannot occur. 

Example 2 – Two Factors 
This section presents an example of how to generate and analyze a D-optimal design involving 
two factors. Suppose we want to study the effect of two factor variables, A and B, on a response 
variable, Y. A and B happen to be quantitative variables and there is reason to believe that a 
second-order response surface design will work well. A full replication of this design requires 
nine points. In addition, four more are required to provide an estimate of experimental error. 
However, we can only afford eight. We will create a D-optimal design with six of the 
experimental units and use the remaining two as duplicates to provide the estimate of 
experimental error.  

We want to analyze the response surface for values of A between 10 and 20 and values of B 
between 1 and 3.  
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the D-Optimal Designs procedure window by clicking on Design 
of Experiments, then D-Optimal Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

1 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set N Per Block to 6. 
• Set Optimize the Design for this Model to A|A|B|B.  
• Set Max Term Order to 2. 
• Check the Store Data on Spreadsheet box. 
• Set the First Factor Variable to 1.  
• Set the First Expanded Variable to 4.  
• Check Rename Factor Variables with Factor Labels. 
• Check Clear Existing Data. 

2 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 0. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

6-Point, 2 Factor D-Optimal Design 
  
 A B 

 -1 -1 
 0 -1  
 1 -1 
 0 0 
 -1 1 
 1 1 

 

Columns A and B give the design. The Determinant Analysis Section showed that the maximum 
was achieved on 25 of the 30 iterations. Hence, we assume that the algorithm converged to the 
global maximum. 
Next, we add the two duplicates to the design. When only a few duplicates are available, we like 
to have them in the middle, so we will duplicate the two rows having zero values. We choose 
random numbers for the two new response values. The resulting design appears as follows. 
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6-Point Design with Two Duplicates  
  
 A B 

 -1 -1 
 0 -1  
 0 -1  
 1 -1 
 0 0 
 0 0 
 -1 1 
 1 1 

 

Next, we change the factor values back to their original scale. Factor A went from 10 to 20 and 
factor B went from 1 to 3. We call the two new variables A1 and B1. While we are at it, we also 
create other variables of the expanded design matrix. The resulting database appears as follows. 

6-Point Design in Expanded Form  
  

A B A1 B1 A1_B1 A1_A1 B1_B1 
-1 -1 10 1 10 100 1 
0 -1 15 1 15 225 1 
0 -1 15 1 15 225 1 
1 -1 20 1 20 400 1 
0 0 15 2 30 225 4 
0 0 15 2 30 225 4 
-1 1 10 3 30 100 9 
1 1 20 3 60 400 9 
 

We could continue this exercise by running these data through a multiple regression program, 
paying particular attention to the Multicollinearity Section and the Eigenvalues of Centered 
Correlations Section. When we did this, we found that multicollinearity seemed to be a problem 
in the original scale, but not in the -1 to 1 scale used by the D-optimal algorithm.  

Example 3 – Three Factors with Blocking 
This section presents an example of how to generate and analyze a D-optimal design involving 
three factors with blocking.  

Suppose we want to study the effect of three quantitative factor variables (A, B, and C) on a 
response variable. There is reason to believe that a second-order response surface design will 
work well. A full replication of this design requires twenty-seven experimental units. The 
manufacturing process that we are studying produces items in batches of four at a time. Because 
of this and the limited budget available for this study, we decide to use three batches (which we 
will call ‘Blocks’) of four points each. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the D-Optimal Designs procedure window by clicking on Design 
of Experiments, then D-Optimal Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example3 from the Template 
tab on the procedure window. 
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1 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set N Per Block to 4,4,4. 
• Set Optimize the Design for this Model to A|B|C A*A B*B C*C.  
• Set Max Term Order to 2. 
• Set Max Iterations to 100. 
• Set Inclusion Points to 45. This is approximately (3)(3)(3)(3)/2 which is the number of 

blocks times the product of the number of levels in each factor, all divided by two. 
• Set Removal Points to 11. This is one less than the total number of points desired. 
• Check the Store Data on Spreadsheet box. 
• Set the First Factor Column to 1.  
• Check Rename Factor Variables with Factor Labels. 
• Check Clear Existing Data. 

2 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 0. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

12-Point, 3 Factor D-Optimal Design with Blocking 
  

 A B C Blocks 
 -1 -1 -1 2 
 1 -1 -1 1 
 -1 0 -1 3 
 -1 1 -1 1 
 1 1 -1 2 
 0 -1 0 3 
 -1 0 0 2 
 -1 -1 1 1 
 1 -1 1 3 
 0 0 1 2 
 -1 1 1 3 
 1 1 1 1 

 

Columns A, B, C, and Blocks give the design. The Determinant Analysis Section showed that the 
maximum was achieved on 12 of the 100 iterations. Hence, we assume that the algorithm 
converged to the global maximum.  
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Example 4 – Adding Points to an Existing Design 
This section presents an example of how to augment additional points to an existing design. 

Suppose a standard three factor design has been run. Each factor has two levels. The design was 
blocked into two blocks of four points each. The design values are contained in the DOPT3.S0 
database. This design allows only first-order (linear) terms to be fit.  

Suppose that you wish to add more points to the design so that a second-order response surface 
may be fit. Specifically, suppose you want to add one more block of four points to extend the 
model from first to second order. What four points should be added? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the D-Optimal Designs procedure window by clicking on Design 
of Experiments, then D-Optimal Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example4 from the Template 
tab on the procedure window. 

1 Open DOPT3.S0. 
• From the File menu of the PASS Spreadsheet window, select Open. 
• Select the Data directory. 
• Select the file DOPT3.S0. 
• Click the Ok button. 

2 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set N Per Block to 4,4,4. 
• Set Input Columns (Candidate and Forced) to A-C. 
• Set Forced Points to 8. 
• Set Optimize the Design for this Model to A|B|C A*A B*B C*C.  
• Set Max Term Order to 2. 
• Set Max Iterations to 30. 
• Set Inclusion Points to 5.  
• Set Removal Points to 5. 
• Check the Store Data on Spreadsheet box. 
• Set the First Factor Column to 5.  
• Check Rename Factor Columns with Factor Labels. 
• Check Clear Existing Data. 

3 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 0. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Augmented D-Optimal Design with Blocking 
  

 A B C Blocks 
 -1 -1 -1 1 
 1 1 -1 1 
 1 -1 1 1 
 -1 1 1 1 
 1 -1 -1 2 
 -1 1 -1 2 
 -1 -1 1 2 
 1 1 1 2 
 -1 0 -1 3 
 0 1 -1 3 
 1 -1 0 3 
 0 0 0 3 
 

Variables A, B, C, and Blocks give the design. The new block is shown as the last four rows of 
the design.  
The Determinant Analysis Section showed that the maximum was achieved on 9 of the 30 
iterations. Hence, we assume that the algorithm converged to the global maximum.  

Example 5 – Mixture Design 
This section presents an example of how to generate a mixture design. Mixture designs are useful 
in situations in which the factors are constrained to sum to a total. The interest is in the 
proportions of each factor, not the absolute amounts. For example, the proportions of the 
components of a chemical solution must sum to one. 

Suppose that you wish to design a first-order mixture experiment for a chemical that has three 
components (which we will label as A, B, and C). In this case, you will not code the factor levels 
from -1 to 1. Rather, the factor levels will be coded from zero to one. Because of this constraint, 
the intercept will not be fit in this model. 

In this particular case, we will constrain the design space by only entering certain points in the list 
of candidate points. The candidate points are contained in the database named 
DOPT_MIXED.S0. The following plots (not generated using PASS) show the design space for 
each pair of factors. Remember that these factors are constrained so that the missing factor is 
equal to one minus the sum of the other two. Hence, if A is 0.7 and B is 0.2, then C must be 0.1. 
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The task for the algorithm is to pick the ten best points from the thirteen that are shown here. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the D-Optimal Designs procedure window by clicking on Design 
of Experiments, then D-Optimal Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example5 from the Template 
tab on the procedure window. 

1 Open DOPT_MIXED.S0. 
• From the File menu of the PASS Spreadsheet window, select Open. 
• Select the Data directory. 
• Select the file DOPT_MIXED.S0. 
• Click the Ok button. 

2 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set N Per Block to 10. 
• Set Input Columns (Candidate and Forced) to 1-3. 
• Set Forced Points to 0. 
• Set Optimize the Design for this Model to A|B|C.  
• Set Max Term Order to 2. 
• Set Max Iterations to 30. 
• Set Inclusion Points to 5.  
• Set Removal Points to 5. 
• Remove the check from the Include Intercept check box. 
• Check the Store Data on Spreadsheet box. 
• Set the First Factor Column to 4.  
• Check Rename Factor Columns with Factor Labels. 
• Check Clear Existing Data. 

3 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 4. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Mixture Design  
  

Original  Factors   
Row A B C 
1 0.7000 0.1000 0.2000 
2 0.2000 0.6000 0.2000 
3 0.7000 0.2000 0.1000 
4 0.2000 0.2000 0.6000 
5 0.3000 0.6000 0.1000 
6 0.3000 0.1000 0.6000 
8 0.2000 0.4000 0.4000 
9 0.5000 0.1000 0.4000 
11 0.5000 0.4000 0.1000 
13 0.4000 0.3000 0.3000 
 

Columns A, B, and C give the design. The original row from the candidate list is shown as the 
first column of the report. 
The Determinant Analysis Section showed that the maximum was achieved on 30 of the 30 
iterations. Hence, we assume that the algorithm converged to the global maximum.  

In order to visually analyze the design, we generate the scatter plots (not generated using PASS) 
for each pair of variables in the design. 

Plot of Design  
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It is interesting to compare these plots with those produced earlier to see which points were kept 
by the algorithm. 
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Example 6 – Qualitative Factors 
This section presents an example of how to design an experiment with qualitative and quantitative 
factors.  

Suppose your experimental situation involves two quantitative variables, A and B, and a 
qualitative variable C that has five possible levels. You want to fit a second-order response 
surface to the quantitative variables. Also, you want to fit all two-way interactions among these 
factors. You have budget for an 18-point design (you will add four duplicates later).  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the D-Optimal Designs procedure window by clicking on Design 
of Experiments, then D-Optimal Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example6 from the Template 
tab on the procedure window. 

1 Specify the data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set N Per Block to 18. 
• Set Optimize the Design for this Model to A|B|C A*A B*B.  
• Set Max Term Order to 2. 
• Set Qualitative Factors and Levels to C(5). 
• Set Max Iterations to 30. 
• Set Inclusion Points to 20.  
• Set Removal Points to 18. 
• Remove the check from the Include Intercept check box. 
• Check the Store Data on Spreadsheet box. 
• Set the First Factor Column to 1.  
• Check Rename Factor Columns with Factor Labels. 
• Check Clear Existing Data. 

2 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 0. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Design with Qualitative Factors  
 
Original  Factors   
Row A B C 
1 -1 -1 1 
3 1 -1 1 
5 0 0 1 
9 1 1 1 
11 0 -1 2 
16 -1 1 2 
18 1 1 2 
19 -1 -1 3 
21 1 -1 3 
25 -1 1 3 
27 1 1 3 
28 -1 -1 4 
33 1 0 4 
34 -1 1 4 
38 0 -1 5 
40 -1 0 5 
42 1 0 5 
44 0 1 5 
 

Columns A, B, and C give the design. Notice that column C simply gives the level for factor C—
it was not rescaled. Also note that the levels of factor C are numbered arbitrarily. This means that 
only the pattern is important, not the particular level. For example, in this solution, there are only 
three level 2’s and three level 4’s. In the next solution, there might be three level 3’s and three 
level 4’s.  
The Determinant Analysis Section showed that the maximum was achieved on 5 of the 30 
iterations. Hence, we assume that the algorithm converged to the global maximum.  
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Chapter 889 

Design Generator 
Introduction 
This program generates factorial, repeated measures, and split-plots designs with up to ten 
factors. The design can be placed in the current spreadsheet. 

An introduction to experimental design is presented in Chapter 881 on Two-Level Factorial 
Designs and will not be repeated here. 

Crossed Factors 
Two factors are crossed if all levels of one factor occur with each level of the second factor. No 
distinction needs to be made as to whether a factor is random or fixed. Factorial and randomized 
block designs are examples of designs that contain crossed factors. 

Nested Factors 
In the repeated measures and split-plot designs, at least one of the factors is nested in another 
factor. A factor is nested when all levels of this factor do not occur with each level of another 
factor. For example, suppose a study is being made to compare the heart rate of males and 
females. Five males and five females are selected. One factor in the study would be gender with 
two levels: male and female. Another factor would be individual with ten levels: P1, P2, …, and 
P10. Since five of the ten individuals are in the males group and the other five individuals are in 
the females group, individuals are nested within gender. 

The basic structure of repeated measures and split-plot designs is identical. The difference 
between the two is in the way the factor levels are assigned within the individual factor. Consider 
an exercise study in which heart rate readings are to be made on an individual at five different 
points in time. If the amounts of exercise is assigned at random before each reading, the design is 
a split plot. If the amounts of exercise follow the same pattern for each individual, the design is a 
repeated measures.  
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Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Experimental Setup 

Factor (1 to 12) Values 
The values used to represent the rows are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of levels of a factor 
corresponds to the number of values that are listed here. 

To specify a nested factor, use the word Nested followed by the number of levels within a group. 
For example, entering ‘Nested 4’ signifies a design in which four individuals are placed in each 
group. The number of groups is found by crossing the factors before the nested factor. 

An easy way to replicate a design is to specify a nested factor as the last factor with the number of 
replicates specified as the number of levels. 

Data Storage to Spreadsheet 

Store Data on Spreadsheet 
Check this box to generate the design data on the spreadsheet. The spreadsheet data will be 
identical to the design data generated on the output window. 

Store First Factor In 
The first factor is stored in this column. Each additional factor that is specified is stored in the 
columns immediately to the right of this column. A factor is specified when values are entered 
into its Factor Values box. 

Warning: The program fills these variables with data, so any previous data will be replaced. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 
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Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Three-by-Four Factorial Design with Three 
Replicates 
This section presents an example of how to degenerate a three-by-four factorial design with three 
replicates per treatment combination. To run this example, take the following steps. CAUTION: 
since the purpose of this routine is to generate data, you should always begin with an empty 
spreadsheet.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Design Generator procedure window by clicking on Design 
of Experiments, then Design Generator. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

1 Specify the design parameters. 
• On the Design Generator window, select the Design tab.  
• Enter 1 2 3 in the Factor 1 Values (A) box.  
• Enter 1 2 3 4 in the Factor 2 Values (B) box.  
• Enter Nested 3 in the Factor 3 Values (C) box.  
• Check the Store Data on Spreadsheet box. 
• Enter 1 in the First Factor Column box.  

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Three-by-Four Design with Three Replicates 
 

Experimental Design 
 
Row Factor 1 Factor 2 Factor 3 
1 1 1 1 
2 1 1 2 
3 1 1 3 
4 1 2 4 
5 1 2 5 
6 1 2 6 
7 1 3 7 
8 1 3 8 
9 1 3 9 
10 1 4 10 
11 1 4 11 
12 1 4 12 
13 2 1 13 
14 2 1 14 
15 2 1 15 
16 2 2 16 
17 2 2 17 
18 2 2 18 
19 2 3 19 
20 2 3 20 
21 2 3 21 
22 2 4 22 
23 2 4 23 
24 2 4 24 
25 3 1 25 
26 3 1 26 
27 3 1 27 
28 3 2 28 
29 3 2 29 
30 3 2 30 
31 3 3 31 
32 3 3 32 
33 3 3 33 
34 3 4 34 
35 3 4 35 
36 3 4 36 
    
The values were also produced on the spreadsheet. 

 

These values are also generated on the spreadsheet. 
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Example 2 – Randomized Block Design 
This section presents an example of how to degenerate a randomized block design with three 
blocks and four treatments. To run this example, take the following steps. CAUTION: since the 
purpose of this routine is to generate data, you should always begin with an empty 
spreadsheet.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Design Generator procedure window by clicking on Design 
of Experiments, then Design Generator. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

1 Specify the design parameters. 
• On the Design Generator window, select the Design tab.  
• Enter 1 2 3 in the Factor 1 Values (A) box.  
• Enter A B C D in the Factor 2 Values (B) box.  
• Make sure that the Factor 3 Values (C) box is blank. 

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Randomized Block Design 
 

Experimental Design 
 
Row Factor 1 Factor 2 
1 1 A 
2 1 B 
3 1 C 
4 1 D 
5 2 A 
6 2 B 
7 2 C 
8 2 D 
9 3 A 
10 3 B 
11 3 C 
12 3 D 

 

It is important to remember that when you use this design, you must randomly assign treatments 
to the four letters and randomly assign the physical blocks to the three block numbers. 
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Example 3 – Repeated Measures Design 
This section presents an example of how to degenerate a repeated measures design with three 
groups, two individuals per group, and two treatments which we will label ‘Pre’ and ‘Post.’ To 
run this example, take the following steps. CAUTION: since the purpose of this routine is to 
generate data, you should always begin with an empty spreadsheet. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Design Generator procedure window by clicking on Design 
of Experiments, then Design Generator. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example3 from the Template 
tab on the procedure window. 

1 Specify the design parameters. 
• On the Design Generator window, select the Design tab.  
• Enter 1 2 3 in the Factor 1 Values (A) box.  
• Enter Nested 2 in the Factor 2 Values (B) box.  
• Enter Pre Post in the Factor 3 Values (C) box.  

2 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Repeated Measures Design 
 

Experimental Design 
 
Row Factor 1 Factor 2 Factor 3 
1 1 1 Pre 
2 1 1 Post 
3 1 2 Pre 
4 1 2 Post 
5 2 3 Pre 
6 2 3 Post 
7 2 4 Pre 
8 2 4 Post 
9 3 5 Pre 
10 3 5 Post 
11 3 6 Pre 
12 3 6 Post 
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Chapter 900 

Chi-Square Effect 
Size Estimator 
Introduction 
This procedure calculates the effect size of the Chi-square test for use in power and sample size 
calculations. Based on your input, the procedure provides effect size estimates for Chi-square 
goodness-of-fit tests and for Chi-square tests of independence.  

The Chi-square test is often used to test whether sets of frequencies or proportions follow certain 
patterns. The two most common cases are in tests of goodness of fit and tests of independence in 
contingency tables.  

The Chi-square goodness-of-fit test is used to test whether a set of data follows a particular 
distribution. For example, you might want to test whether a set of data comes from the normal 
distribution.  

The Chi-square test for independence in a contingency table is another common application of 
this test. Here individuals (people, animals, or things) are classified by two (nominal or ordinal) 
classification variables into a two-way contingency table. This table contains the counts of the 
number of individuals in each combination of the row categories and column categories. The Chi-
square test determines if there is dependence (association) between the two classification 
variables.  

Effect Size 
For each cell of a table containing m cells, there are two proportions considered: one specified by 
a null hypothesis and the other specified by the alternative hypothesis. Usually, the proportions 
specified by the alternative hypothesis are those occurring in the data. Define p0i to be the 
proportion in cell i given by the null hypothesis and p1i to be the proportion in cell i according to 
the alternative hypothesis. The effect size, W, is calculated using the following formula 

W =  ( p - p )
p

.
i=1

m 2
0i 1i

0i
∑  
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The formula for computing the Chi-square value, is  χ 2 ,

χ 2 =  ( O - E )
E

 =  N ( p - p )
p

,

i=1

m 2
i i

i

i=1

m 2
0i 1i

0i

∑

∑
 

where N is the total count in all the cells. Hence, the relationship between W and  is χ 2

χ 2 2 =  NW  

or 

W
N

=
χ 2

 

Contingency Table Tab 
This window allows you to enter up to an eight-by-eight contingency table. You can enter 
percentages or counts. If you enter counts, the Chi-Square and Prob Level values are correct and 
may be used to test the independence of the row and column variables. If you enter percentages, 
you should ignore the Chi-Square and Prob Level values. 

Note that if you are entering percentages, it does not matter whether you enter table percentages 
or row (or column) percentages as long as you are consistent. 

Example 
Suppose you are planning a survey with the primary purpose of testing whether marital status is 
related to gender. You decide to adopt four marital status categories: never married, married, 
divorced, widowed. In the population you are studying, previous studies have found the following 
percentages in each of these categories:   
 

Never Married 27% 

Married 39% 

Divorced 23% 

Widowed 11% 
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You decide that you want to calculate the effect size when the individual percentages for males 
and females are 
 

Gender Male Female 

Never Married 22% 32% 

Married 46% 33% 

Divorced 22% 24% 

Widowed 10% 11% 
 

To complete this example, you would load the Chi-Square Effect Size Estimator procedure from 
the PASS-Other menu and enter “22  46  22  10” across the top row and “32  33  24  11” across 
the next row. The value of W turns out to be 0.143626. 

Note that even though a Chi-square value (4.13) and probability level (0.248) are displayed, you 
would ignore them since you have entered percentages, not counts, into the table. If you had 
entered counts, these results could be used to test the hypothesis of independence. 

Multinomial Test Tab 
This window allows you to enter a multinomial table with up to fourteen cells. You can enter 
percentages or counts. If you enter counts, the Chi-Square and Prob Level values are correct and 
may be used to test the statistical significance of the table. If you enter percentages, you should 
ignore the Chi-Square and Prob Level values.  

Note that if you are using the window to perform a goodness-of-fit test on a set of data, you will 
need to adjust the degrees of freedom for the number of parameters you are estimating. For 
example, if you are testing whether the data are distributed normally and you estimate the mean 
and standard deviation from the data, you will need to reduce the degrees of freedom by two. 

Example 
Suppose you are going to use the Chi-square goodness-of-fit statistic calculated from a 
multinomial table to test whether a set of exponential data follow the normal distribution. That is, 
you want to find a reasonable effect size for comparing exponentially distributed data to the 
normal distribution. 

You decide to divide the data into five groups: 5 or less, 5-10, 10-15, 15-20, 20+ 

Using tables for the normal and exponential distributions, you find that the probabilities for each 
group are
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Category Normal Exponential 
5 or Less 11% 39% 

5 to 10 20% 26% 

10 to 15 38% 18% 

15 to 20 20% 11% 

Above 20 11% 6% 
 

To complete this example, you would set the Chi-Square Effect Size Estimator procedure to the 
Multinomial Test tab and enter “11  20  38  20  11” down the first column and “39  26  18  11  6” 
down the second column. The calculated value of W is 0.948271. You would enter this value into 
the Effect Size option of the Chi-Square Test window in PASS to determine the necessary sample 
size. 
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Chapter 905 

Standard 
Deviation 
Estimator 
Introduction 
Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed 
when calculating the power or sample size of an experiment involving one or more means. 
Finding such an estimate is difficult not only because the estimate is required before the data are 
available, but also because the interpretation of the standard deviation is vague and our 
experience with it may be low. How do you estimate a quantity without data and without a clear 
understand of what the quantity is? This section will acquaint you with the standard deviation and 
offer several ways to obtain a rough estimate of it before the experiment begins using the 
Standard Deviation Estimator.  

The Standard Deviation Estimator can also be used to calculate the standard deviation of the 
means, a quantity used in estimating sample sizes in analysis of variance designs. 

Understanding the Standard Deviation 
It is difficult to understand the standard deviation solely from the standard deviation formula. 
There are two general interpretations that can be useful in understanding the standard deviation. 

1. The standard deviation may be thought of as the average difference between an 
observation and the mean, ignoring the sign.  

2. The standard deviation may be thought of as the average difference between any two data 
values, ignoring the sign. 

The population standard deviation is calculated using the formula:  

( )
σ

μ
=

−
=
∑ X

N

i
i

N
2

1  

where N is the number of items in the population, X is the variable being measured, and μ  is the 
mean of X. This formula indicates that the standard deviation is the square root of an average. 
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This average is the average of the squared differences between each value and the mean. The 
differences are squared to remove the sign so that negative values will not cancel out positive 
values. After summing up these squared differences and dividing by N, the square root is taken to 
give the result in the original scale. That is, the standard deviation can be thought of as the 
average difference between the data values and their mean (the terms mean and average are used 
interchangeably). 

Example 
Consider the following two sets of numbers 

A: 1, 5, 9 

B: 4, 5, 6 

Both sets have the same mean of 5. However, their standard deviations are quite different. 
Subtracting the mean and squaring the three items in each set results in 

Set A 

(1-5)(1-4) = 16 

(5-5)(5-5) =  0 

(9-5)(9-5) = 16 

Sum = 32 

3
32

=ASD  = 3.266 

Set B 

(4-5)(4-5) = 1 

(5-5)(5-5) = 0 

(6-5)(6-5) = 1 

Sum = 2 

3
2

=BSD  = 0.8165 

The standard deviations show that the data in set A vary more than the data in set B. 

Divide by N or N-1? 
Note in the example above that we are dividing by N, not N-1 as is usually seen in standard 
deviation calculations. When the standard deviation is computed using all values in the 
population, N is used as the divisor. However, when the standard deviation is calculated from a 
sample, N-1 is used as the divisor. We stress that the results for a sample by using the lower-case 
n and naming the sample standard deviation S. The value of S is computed from a sample of n 
values using the formula 
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( )
S

X X

n

i
i

n

=
−

−
=
∑ 2

1

1
 

The n-1 is used instead of n to correct for bias that statisticians have discovered. That is, over the 
long run, dividing by n-1 provides a better estimate of the true standard deviation than does 
dividing by n. Although we divide by n-1 rather than n for sample standard deviations, we 
recommend that for purposes of interpretation, the divisor is assumed to be n, so that the 
operation can be thought of as computing an average. 

Average Absolute Deviation 
If we were to devise a measure of variability with no previous experience, we might first consider 
the average absolute deviation (AD), sometimes called the mean absolute deviation, or MAD, 
which is computed by forming the deviations from the mean, taking their absolute values, and 
computing their average. The absolute value is applied to remove the negative signs, which, in 
turn, avoids the cancellation of values when the average is taken. The formula for AD is 

AD
X M

N

i
i

N

=
−

=
∑

1  

This simple average of absolute deviations is much easier to understand, but is very difficult to 
work with mathematically. Opposingly, the standard deviation is more difficult to interpret 
directly, but it can be worked with mathematically in statistical problems. The ability to work 
with the standard deviation mathematically outweighs its deficiency in interpretation. Hence, we 
generally use the standard deviation rather than the average absolute deviation in practice. 

Comparing Average Absolute Deviation and Standard 
Deviation 
Fortunately, the average absolute deviation and the standard deviation are usually close in value. 
Mathematically, it can be shown that AD is always less than or equal to SD. A small simulation 
study is summarized below. It shows the relationship between AD and SD for data generated from 
various distributions. 
 

Distribution Percent SD > AD Characteristics 
Uniform 15% Level 

Normal 20% Bell-Shaped 

Gamma(5) 30% Moderately Skewed Right 

Gamma(5)^2 45% Extremely Skewed Right 
 

These distributions were selected for study because they represent a wide range of possibilities. 
The table shows that, for typical datasets, the standard deviation is from 15 to 30 percent larger 
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than the average absolute deviation. And in the case of the normal distribution, the SD is about 
20% higher than AD. 

Hence, for planning purposes, you can think of the standard deviation as an inflated version of the 
average absolute deviation. 

Example 
In out example, we can compute AD for datasets A and B as follows. 

Set A 

ADA = (4+0+4)/3 = 8/3 = 2.667. Recall that SDA = 3.266. 

Set B 

ADB = (1+0+1)/3 = 2/3 = 0.667. Recall that SDB = 0.8165. 

We see that the values are similar. The degree of difference is likely within the error that we 
would expect during the planning phase. 

Standard Deviation as the Average Difference between 
Values 
The above discussion and formula have pointed out that the standard deviation may be thought of 
as an average deviation from the mean. In this section, a second interpretation of the standard 
deviation will be given.  

We can manipulate the formula for the sum of squared deviations to show that 

( )
( )

X M
X X

Ni
i

N i j
j i

N

i

N

− =
−

=

= +=

−

∑
∑∑

2

1

2

11

1

 

This formula shows that the squared deviations from the mean are proportional to the squared 
deviations of each observation from every other observation. Note that the mean is not involved 
in the expression on the right.  

Using the above relationship, the standard deviation may be calculated using the formula 

( )
SD

X X N

N

i j
j i

N

i

N

=
−

= +=

−

∑∑
2

11

1

/
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Example 
Consider again our simple example of sets A and B. Applying this operation to the three possible 
pairs of the data in set A (1, 5, 9) gives 

(1-5)(1-5) = 16 

(1-9)(1-9) = 64 

(5-9)(5-9) = 16 

The sum is 96. Dividing 96 by 3 (the number of pairs) again yields 32. Hence, the standard 
deviation is computed as SD = SQRT(96/9) = 3.266 (which matches the previous result). 

Likewise, for set B (4, 5, 6), the formula results in 

(4-5)(4-5) = 1 

(4-6)(4-6) = 4 

(5-6)(5-6) = 1 

so that SD = SQRT(6/9) = 0.8165. 

Estimating the Standard Deviation 
Our task is to find a rough estimate of the standard deviation. Several possible methods are 
available in the Standard Deviation Estimator procedure which may be loaded from the PASS-
Other menu. PASS provides a panel that implements each of these methods for you. 

Data Tab – Standard Deviation from Data Values 
One method of estimating the standard deviation is to put in a typical set of values and calculate 
the standard deviation.  

This window is also used when you need the standard deviation of a set of hypothesized means in 
an analysis of variance sample size study. 

Pros and Cons of This Method 
This method lets you experiment with several different data values. It lets you determine the 
influence of different data configurations on the standard deviation. In so doing, you can come up 
with a likely range of SD values.  

However, investigators tend to pick trial numbers that are closer to the mean and more uniform 
than will result in practice. This results in SD’s that are underestimated. If you use this method, 
you should be careful that your range of possible SD values is wide enough to be accurate. 
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Example 1 – SD for a Set of Values 
As an example, suppose that you decide that the following values represent a typical set of data 
that you would anticipate for one group of individuals:   

10, 12, 14, 10, 11, 10, 12, 13, 9, 13, 15, 11 

To calculate the appropriate standard deviation, do the following: 

1.  Load the Standard Deviation Estimator window and click on the Data tab. 

2.  The order that the data are entered in does not matter. However, to show the use of the 
Counts column, we count up the number of times each value occurs. The values and their 
frequency counts are then entered into the Values and Counts columns. The data entry 
goes as follows: 
9  1 
10 3 
11 2 
12 2 
13 2 
14 1 
15 1 

3.  Check the Use N-1 as divisor box. (We use the N-1 divisor when estimating sigma from 
a set of data.) 

4.  Press the Calculate N, Mean, SD from Values button. The standard deviation is 
1.825742. We might round this value up to 2.0 for planning purposes. 

Example 2 – SD for a Set of Means 
In this example, we will show you how to obtain the standard deviation of a set of hypothesized 
means. Care must be taken that you select the correct divisor—N, not N-1. 

In this example, a researcher is studying the influence of a drug on heart rate. He estimates that 
the average heart rate of his group without the drug is 80. His experimental design will apply 
three different doses. The first dose is expected to lower the heart rate by 10%, the second by 
20%, and the third by 30%. Hence, the hypothesized means for the four groups are 80, 80(0.9) = 
72, 80(0.8) = 64, and 80(0.7) = 56. 

To calculate the appropriate standard deviation, do the following: 

1.  Load the Standard Deviation Estimator window and click on the Data tab. 

2.  Enter the four means into the Values column. The Counts column is left blank. 
80 
72 
64  
56 

3.  Make sure the Use N-1 as divisor box is not checked since we want the population 
standard deviation. 

4.  Press the Calculate N, Mean, SD from Values button. The standard deviation of the 
means is 8.944272. 
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Standard Error Tab – Standard Deviation from Standard Error 
If the value of the standard error of the mean is available from another experiment, it may be used 
to estimate the standard deviation. The formula estimating the standard deviation from the 
standard error is 

SD SE N=  

where N is the sample size.  

Pros and Cons of This Method 
This method is only useful when you have a standard error value available. 

Example 
To calculate the appropriate standard deviation when a previous study of 23 individuals had a 
standard error of the mean of 2.7984, do the following: 

1.  Load the Standard Deviation Estimator window and click on the Standard Error tab. 

2.  Enter 23 for N. 

3.  Enter 2.7984 for Standard Error. 

4.  Press the Calculate Standard Deviation button. The standard deviation is 1.825742. We 
might round this value up to 2.0 for planning purposes. 

Range Tab – Standard Deviation from Population or Sample Data 
Range 
There are two cases in which the range may be used to estimate the standard deviation. In the first 
case, the sample size and data range may be available from a previous study. In the second case, a 
reasonable estimate of the population range may be obtainable. This window allows you to 
estimate SD in both of these situations. 

The basic formula for estimating the standard deviation from the range is 

SD Range
C

=  

where C is determined by the situation. 

Determining C 
If the population range can be established, it may be used to estimate sigma by dividing by an 
appropriate constant. To determine an appropriate value of the constant, statisticians use the fact 
that most of the data is contained within three standard deviations of the mean—so they set C to 
six. However, consultants have found that for some reasons (e.g., understated range, or non-
normal population) dividing by six tends to understate the standard deviation. So they divide by 
five or even four. Dividing by a smaller number increases the estimated standard deviation. Our 
recommendation is to divide by four. To use this method, enter the divisor (4, 5, or 6) in the C 
(Divisor) box. 



905-8  Standard Deviation Estimator 

If the data range is available from a previous study, the constant C may be calculated as the 
median of the distribution of the range for that sample range. This distribution assumes that the 
data themselves are normally distributed. The median of the distribution of the range is calculated 
in NCSS using numerical methods, and similar calculations can be made using the Probability 
Calculator. To use this method, enter the data range and the sample size in the lower region of the 
Range tab. 

Pros and Cons of This Method 
The range is a poor substitute for having the standard deviation. This method should be used as a 
‘last resort’. 

Example 1 – Population Range ‘Known’ 
To calculate an estimate of the standard deviation when the population range is known to be 150, 
do the following: 

1.  Load the Standard Deviation Estimator window and click on the Range tab. 

2.  Enter 150 for Range (of Population) in the upper region of the tab. 

3.  Enter 4 for C (Divisor).  

4.  Press the Calculate Standard Deviation button. The estimate of the standard deviation 
is 37.5. The value of C used is 4. 

Example 2 – Previous Sample Available 
To calculate an estimate of the standard deviation when a previous study of 20 animals had a 
minimum value of 15.3 and a maximum of 18.7, do the following: 

1.  Load the Standard Deviation Estimator window and click on the Range tab. 

2.  Enter 20 for N (Sample Size) in the lower region of the tab. 

3.  Enter 3.4 for Range (of Sample Data) in the lower region of the tab. This is 18.7 minus 
15.3. 

4.  Press the Calculate Standard Deviation button. The estimate of the standard deviation 
is 0.92243. The value of C used is 3.685916. 

Percentiles Tab – Standard Deviation from Percentiles 
If you are willing to assume that the population values are normally distributed (bell-shaped), you 
can use the values of two percentiles to estimate the standard deviation. 

The basic formula for estimating the standard deviation from two percentiles is 

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
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−
=

100
1

100
2

12
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XXSD  

where X1 and X2 are the two percentiles, P1 and P2 are the two percentages, and Z(P) is the 
standard normal deviate that has a tail area of P to the left. 



Standard Deviation Estimator  905-9 

Pros and Cons of This Method 
This method works well if you have two accurate percentiles available and the underlying 
distribution of the data is normal. 

Example 
To calculate an estimate of the standard deviation when you know that the 25th percentile of the 
population is 80.25, the 75th percentile of the population is 116.38, and that the population is 
normally distributed, do the following: 

1.  Load the Standard Deviation Estimator window and click on the Percentiles tab. 

2.  Enter 25 for Percentage 1. 

3.  Enter 80.25 for Percentile Value 1. 

4.  Enter 75 for Percentage 2. 

5.  Enter 116.38 for Percentile Value 2. 

6.  Press the Calculate Standard Deviation button. The estimate of the standard deviation 
is 26.78321. 

COV Tab – Standard Deviation from Coefficient of Variation 
The coefficient of variation (COV) is equal to SD divided by the mean. Hence, if you know the 
coefficient of variation and the mean, you can estimate SD.  

Note that t-tests and the analysis of variance assume that the standard deviations are equal for all 
groups. If the standard deviations are proportional to their group means, you should use a data 
transformation (such as the square root or the logarithm) to make the standard deviations equal. 

The basic formula for estimating the standard deviation from the COV is 

( )( )SD COV Mean=  

Pros and Cons of This Method 
This method works well if you have estimates of the mean and COV. 

Example 
To calculate an estimate of the standard deviation when you know that the mean is 127 and the 
COV is 0.832, do the following: 

1.  Load the Standard Deviation Estimator window and click on the COV tab. 

2.  Enter 0.832 for Coefficient of Variation (COV). 

3.  Enter 127 for Mean. 

4.  Press the Calculate Standard Deviation button. The estimate of the standard deviation 
is 105.664. 
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Confidence Limits Tab – Confidence Limits of the Standard 
Deviation 
Often, you will obtain an estimate of the standard deviation from a previous study or a pilot 
study. Since this estimate is based on a sample, it is important to understand its precision. This 
can easily be calculated since the square of the sample standard deviation follows a chi-squared 
distribution. This confidence interval does assume that the population you are sampling from is 
normally distributed. 

Once a confidence interval has been obtained, it would be wise to enter both values (the 
confidence limits) into the appropriate place in the sample size calculations to provide a range of 
possible sample size values (or of statistical power). 

Example 
Suppose a pilot study of 10 individuals yields a standard deviation of 83.21. Calculate a 95% 
confidence interval for the population standard deviation using these results. 

1.  Load the Standard Deviation Estimator window and click on the Confidence Limits 
tab. 

2.  Enter 10 for N. 

3.  Enter 83.21 for Standard Deviation. 

4.  Enter 0.05 for Alpha. 

5.  Press the Calculate Confidence Limits button. The confidence limits are 57.23477 and 
151.909.  
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Chapter 910 

Odds Ratio and 
Proportions 
Estimator 
Introduction 
The Odds Ratio tab of this procedure calculates any one of three parameters, odds ratio, , or , 
from the other two parameters. Note that  and  are the proportions in groups one and two, 
respectively. This provides you with a tool to study the relationship between these three parameters. 
This procedure is most often used when planning the sample size for a test involving two 
proportions. The procedure may be loaded by selecting Odds Ratio Estimator from the PASS-Other 
menu.  

p1 p2

p1 p2

As an expanded version of the Odds Ratio tab, the Proportions tab calculates , , the 
difference, ratio, odds ratio, or Ln(OR) from various combinations of these parameters. 

p1 p2

When planning studies involving two proportions, two parameters,  and , need to be specified. 
At times, it may be difficult to propose a value for . In these cases, it might be easier to propose a 
value for the odds ratio (OR).   

p1 p2

p2

The odds of obtaining the response of interest in group 1 are ( )p1 1/ p1− and the odds of obtaining 
the response in group 2 are ( )p2 1/ p2− . The ratio of these odds, called the odds ratio, is defined as 
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( )
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To understand better how to interpret an odds ratio, consider the following example. Suppose the 
proportion dying from a particular disease during the first five years is 80%. The odds of dying 
are thus 0.8 / 0. 2 = 4.0 Suppose a treatment reduces the death rate from 80% to 60%. The odds of 
dying are now 0.6 / 0.4 = 1.5. The odds ratio is 4.0 / 1.5 =  2.7. That is, the odds of dying have 
been reduced by a factor of 2.67. 
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The odds ratio is reversible. In this example, suppose we talk in terms of surviving instead of 
dying. The odds of the two groups are now 0.2 / 0.8 = 0.25 and 0.4 / 0.6 = 0.67. The odds ratio is 
0.67 / 0.25 = 2.67. The odds of surviving have increased by a factor of 2.67. 

In some situations, it may be easier to define a meaning treatment effect in terms of the odds 
ratio. That is, it might be meaningful to say that a certain treatment increases the odds of survival 
by 50% (OR = 1.5) or by 200% (OR = 2.0). If this is the case, a value for  can be calculated 
from p1 and OR by solving the above equation for  to find that 

p2

p2

( )
( )

p
p OR

p p OR2
1

1 11
=

− +
 

Hence, given a value for  and OR, you can calculate an appropriate value for . p1 p2

Odds Ratio Tab 
This window lets you calculate , , or the odds ratio (OR) from the other two parameters. p1 p2

Example 1 – Solving for P1 
Suppose you know that  and that OR = 4 and you want to find the corresponding value 
of .   

p2 0 8= .
p1

1.  Load the Odds Ratio and Proportions Estimator procedure by selecting it from the 
PASS-Other menu. 

2.  Select the Odds Ratio tab. 

3.  Set P2 equal to 0.8. 

4.  Set Odds Ratio equal to 4. 

5.  Press the Calculate P1 button. 

6.  Read the result in the P1 box. The result is 0.5. 

Example 2 – Solving for P2 
Suppose you know that  and that OR = 1.5 and you want to find the corresponding value 
of . 

p1 0 4= .
p2

1.  Load the Odds Ratio and Proportions Estimator procedure by selecting it from the 
PASS-Other menu. 

2.  Select the Odds Ratio tab. 

3.  Set P1 equal to 0.4. 

4.  Set Odds Ratio equal to 1.5. 

5.  Press the Calculate P2 button. 

6.  Read the result in the P2 box. The result is 0.5. 
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Example 3 – Solving for Odds Ratio 
Suppose you know that  and that p1 0 4= . p2 0 8= .  and you want to find the corresponding value 
of the odds ratio. 

1.  Load the Odds Ratio and Proportions Estimator procedure by selecting it from the 
PASS-Other menu. 

2.  Select the Odds Ratio tab. 

3.  Set P1 equal to 0.4. 

4.  Set P2 equal to 0.8. 

5.  Press the Calculate Odds Ratio button. 

6.  Read the result in the Odds Ratio box. The result is 6. 

Proportions Tab 
This window lets you calculate , , the difference, ratio, odds ratio, or Ln(OR) from various 
combinations of these parameters. 

p1 p2

Example 1 – Calculating Ln(OR) 
Suppose you know that  and thatp1 0 4= . p2 0 8= .  and you want to find the corresponding value 
of Ln(OR). 

1.  Load the Odds Ratio and Proportions Estimator procedure by selecting it from the 
PASS-Other menu. 

2.  Select the Proportions tab. 

3.  Set P1 equal to 0.4. 

4.  Set P2 equal to 0.8. 

5.  Press the P1 & P2 button. 

6.  Read the result in the Ln(O.R.) box. The result is 1.79176. 
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Chapter 915 

Probability 
Calculator 
Introduction 
Most statisticians have a set of probability tables that they refer to in doing their statistical work. 
This procedure provides you with a set of electronic statistical tables that will let you look up 
values for various probability distributions.   

To run this option, select Probability Calculator from the Other menu of the Analysis menu. A 
window will appear that will let you indicate which probability distribution you want to use along 
with various input parameters. Select the Calculate button to find and display the results.  

Many of the probability distributions have two selection buttons to the left of them. The first (left) 
button selects the inverse probability distribution. An inverse probability distribution is in a form 
so that when you give it a probability, it calculates the associated critical value. The second 
(right) button selects the regular probability distribution which is formulated so that when you 
give it a critical value, it calculates the (left tail) probability. 

Probability Distributions 

Beta Distribution 
The beta distribution is usually used because of its relationship to other distributions, such as the t 
and F distributions. The noncentral beta distribution function is formulated as follows: 
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where 

0 < A, 0 < B, 0 ≤ L, and 0 ≤ x  ≤ 1 

When the noncentrality parameter (NCP), L, is set to zero, the above formula reduces to the 
standard beta distribution, formulated as 
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When the inverse distribution is selected, you supply the probability value and the program solves 
for X. When the regular distribution is selected, you supply X and the program solves for the 
cumulative (left-tail) probability. 

Binomial Distribution 
The binomial distribution is used to model the counts of a sequence of independent binary trials 
in which the probability of a success, P, is constant. The total number of trials (sample size) is N. 
R represents the number of successes in N trials. The probability of exactly R successes is: 
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The probability of from 0 to R successes is given by: 
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When the inverse distribution is selected, you supply the probability value and the program solves 
for R. When the regular distribution is selected, you supply R and the program solves for the 
cumulative (left-tail) probability. 

Bivariate Normal Distribution 
The bivariate normal distribution is given by the formula 
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where x and y follow the bivariate normal distribution with correlation coefficient r. 

 

Chi-Square Distribution 
The Chi-square distribution arises often in statistics when the normally distributed random 
variables are squared and added together. DF is the degrees of freedom of the estimated standard 
error. 

The noncentral Chi-square distribution function is used in power calculations. The noncentral 
Chi-square distribution is calculated using the formula: 
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where 
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When the noncentrality parameter (NCP), L, is set to zero, the above formula reduces to the 
(central) Chi-square distribution. 

When the inverse distribution is selected, you supply the probability value and the program solves 
for X. When the regular distribution is selected, you supply X and the program solves for the 
cumulative (left-tail) probability. 

Correlation Coefficient Distribution 
The correlation coefficient distribution is formulated as follows: 
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where 

|r| < 1, |ρ| < 1, and |R| < 1 

When the inverse distribution is selected, you supply the probability value and the program solves 
for R. When the regular distribution is selected, you supply R and the program solves for the 
cumulative (left-tail) probability. 

F Distribution 
The F distribution is used in the analysis of variance and in other places where the distribution of 
the ratio of two variances is needed. The degrees of freedom of the numerator variance is DF1 
and the degrees of freedom of the denominator variance is DF2.  

The noncentral-F distribution function is used in power calculations. We calculate the noncentral-
F distribution using the following relationship between the F and the beta distribution function. 
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When the noncentrality parameter (NCP), L, is set to zero, the above formula reduces to the 
standard F distribution 

When the inverse distribution is selected, you supply the probability value and the program solves 
for F. When the regular distribution is selected, you supply F and the program solves for the 
cumulative (left-tail) probability. 
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Hotelling’s T2 Distribution 
Hotelling’s T-Squared distribution is used in multivariate analysis. We calculate the distribution 
using the following relationship between the F and the T2 distribution function. 
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where k is the number of variables and df is the degrees of freedom associated with the 
covariance matrix. When the inverse distribution is selected, you supply the probability value and 
the program solves for T2. When the regular distribution is selected, you supply T2 and the 
program solves for the cumulative (left-tail) probability. 

Gamma Distribution 
The Gamma distribution is formulated as follows: 
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0 < A, 0 < B, and 0 ≤ G 

When the inverse distribution is selected, you supply the probability value and the program solves 
for G. When the regular distribution is selected, you supply G and the program solves for the 
cumulative (left-tail) probability. 

Hypergeometric Distribution 
The hypergeometric distribution is used to model the following situation. Suppose a sample of 
size R is selected from a population with N items, M of which have a characteristic of interest. 
What is the probability that X of the items in the sample have this characteristic. 

The probability of exactly X successes is: 
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Negative Binomial Distribution 
The negative binomial distribution is used to model the counts of a sequence of independent 
binary trials in which the probability of a success, P, is constant. The total number of trials 
(sample size) is N. R represents the number of successes in N trials. Unlike the binomial 
distribution, the sample size, N, is the variable of interest.  

The question answered by the negative binomial distribution is: how many tosses of a coin (with 
probability of a head equal to P) is necessary to achieve R heads and X tails. 

The probability of exactly R successes is: 
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Normal Distribution 
The normal distribution is formulated as follows: 
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When the mean is 0 and the variance is 1, we have the standard normal distribution. The regular 
normal distribution uses the variable X. The standard normal distribution uses the variable Z. Any 
normal distribution may be transformed to the standard normal distribution using the relationship: 

z x
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When the inverse distribution is selected, you supply the probability value and the program solves 
for R. When the regular distribution is selected, you supply R and the program solves for the 
cumulative (left-tail) probability. 

Poisson Distribution 
The Poisson distribution is used to model the following situation. Suppose the average number of 
accidents at a given intersection is 13.5 per year. What is the probability of having 2 accidents 
during the next half year? 

The probability of exactly X occurrences with a mean occurrence rate of M is: 
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Studentized Range Distribution 
The studentized range distribution is used whenever the distribution of the ratio of a range and an 
independent estimate of its standard error is needed. This distribution is used quite often in 
multiple comparison tests run after an analysis of variance. DF is the degrees of freedom of the 
estimated standard error (often the degrees of freedom of the MSE). K is the number of items 
(means) in the sample. The distribution function is given by: 
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where P(Rs|n) is the probability integral of the range. 

When the inverse distribution is selected, you supply the probability value and the program solves 
for R. When the regular distribution is selected, you supply R and the program solves for the 
cumulative (left-tail) probability. 

Student’s t Distribution 
The t distribution is used whenever the distribution of the ratio of a statistic and its standard error 
is needed. DF is the degrees of freedom of the estimated standard error. 

The noncentral-t distribution function is used in power calculations. We calculate the noncentral-t 
distribution using the following relationship between the t and the beta distribution function. 
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When the noncentrality parameter (NCP), L, is set to zero, the above formula reduces to the 
(central) Student’s t distribution 

When the inverse distribution is selected, you supply the probability value and the program solves 
for T. When the regular distribution is selected, you supply T and the program solves for the 
cumulative (left-tail) probability. 

Weibull Distribution 
The Weibull distribution is formulated as follows: 

( )Pr( | , ) exp ( )t T T≤ = − −λ γ λ γ1  

When gamma (γ) equal to one, the distribution simplifies to the exponential distribution. 

When the inverse distribution is selected, you supply the probability value and the program solves 
for T. When the regular distribution is selected, you supply T and the program solves for the 
cumulative (left-tail) probability. 
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Converting Summary Statistics to Raw Data 
Occasionally, you will have summary statistics (mean, count, and standard deviation) but not the 
raw data used to create these summary statistics. Since you need the original data values, you 
cannot run descriptive statistics, t-tests, or AOV’s on these data. This routine is useful in this case 
since it generates a set of raw data values with a given mean, count, and standard deviation. 
Although the generated values are not the same as the original values, they are good enough to 
use as input into statistical procedures such as analysis of variance or two-sample t-tests. 

Let n represent the sample size (count), M represent the sample mean, and s represent the sample 
standard deviation. (Recall that the standard error is equal to the standard deviation times the 
square root of n, so if you have been given the standard error, use s=SQR(n)(s.e.).) It is possible 
to find values, X1 and X2, so that a variable made up of one X1 and (n-1) X2’s will have the same 
values of n, M, and s. The formulas to do this are: 

X1 M n
s
n

= − −( )1  

and 

X2 M
s
n

= +  

For example, suppose you have the following two sets of summary statistics and want to run a 
two-sample t-test. 
 

 Sample Sample 
 One Two 
Sample Size 4 5 
Mean 3.2 4.5 
Standard Deviation 1.4 1.8 
 

Using the Convert Mean and S to Data Values option of the Probability Calculator and plugging 
in these values gives the following results: 
 

 Sample Sample 
 One Two 
X1 1.1 1.280062 
N1 1 1 
X2 3.9 5.304984 
N2 3 4 
 

These data would then be entered into a datasheet as follows: 
 

Row C1 C2 
1 1.1 1.280062 
2 3.9 5.304984 
3 3.9 5.304984 
4 3.9 5.304984 
5  5.304984 
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Now, a two-sample t-test or a one-way analysis of variance could be run on these two variables. 
Note that since nonparametric tests, tests of assumptions, box plots, and histograms require the 
original data values, their output would have to be ignored, but the t-test results would be 
accurate. 
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Chapter 920 

Data Simulator 
Introduction 
Because of mathematical intractability, it is often necessary to investigate the properties of a 
statistical procedure using simulation (or Monte Carlo) techniques. In power analysis, simulation 
refers to the process of generating several thousand random samples that follow a particular 
distribution, calculating the test statistic from each sample, and tabulating the distribution of these 
test statistics so that the significance level and power of the procedure may be investigated. This 
module creates a histogram of a specified distribution as well as a numerical summary of 
simulated data. By studying the histogram and the numerical summary, you can determine if the 
distribution has the characteristics you desire. The distribution formula can then be used in 
procedures that use simulation, such as the new t-test procedures. Below are examples of two 
distributions that were generated with this procedure. 

   

Technical Details  
A random variable’s probability distribution specifies its probability over its range of values. 
Examples of common continuous probability distributions are the normal and uniform 
distributions. Unfortunately, experimental data often do not follow these common distributions, 
so other distributions have been proposed. One of the easiest ways to create distributions with 
desired characteristics is to combine simple distributions. For example, outliers may be added to a 
distribution by mixing it with data from a distribution with a much larger variance. Thus, to 
simulate normally distributed data with 5% outliers, we could generate 95% of the sample from a 
normal distribution with mean 100 and standard deviation 4 and then generate 5% of the sample 
from a normal distribution with mean 100 and standard deviation 16. Using the standard notation  
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for the normal distribution, the composite distribution of the new random variable Y could be 
written as 

( ) ( ) ( ) ( )Y X N X N~ . , . . ,δ δ0 0 95 100 4 0 95 100 100 16≤ < + ≤ ≤   
where X is a uniform random variable between 0 and 1, ( )zδ is 1 or 0 depending on whether z is 
true or false, N(100,4) is a normally distributed random variable with mean 100 and standard 
deviation 4, and N(100,16) is a normally distributed random variable with mean 100 and standard 
deviation 16. The resulting distribution is shown below. Notice how the tails extend in both 
directions. 

 
The procedure for generating a random variable, Y, with the mixture distribution described above 
is  

1. Generate a uniform random number, X. 

2. If X is less than 0.95, Y is created by generating a random number from the N(100,4) 
distribution. 

3. If X is greater than or equal to 0.95, Y is created by generating a random number from the 
N(100,16) distribution. 

Note that only one uniform random number and one normal random number are generated for 
any particular random realization from the mixture distribution. 

In general, the formula for a mixture random variable, Y, which is to be generated from two or 
more random variables defined by their distribution function ( )F Zi i  is given by  

( ) ( )Y a X a F Z a a ai i i i
i

k

K~ ,δ ≤ < = < < < =+
=

+∑ 1
1

1 2 10 1L   

Note that the ’s  are chosen so that weighting requirements are met. Also note that only one 
uniform random number and one other random number actually need to be generated for a 
particular value. The ’s may be any of the distributions which are listed below.  

ai

( )F Zi i

Since the test statistics which will be simulated are used to test hypotheses about one or more 
means, it will be convenient to parameterize the distributions in terms of their means. 
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Beta Distribution 
The beta distribution is given by the density function 

( ) ( )
( ) ( )

f x
A B

A B
x C
D C

x C
D C

A B C x D
A B

=
+ −

−
⎛
⎝⎜

⎞
⎠⎟

−
−
−

⎛
⎝⎜

⎞
⎠⎟

> ≤ ≤
− −Γ

Γ Γ

1 1

1 0, , ,  

where A and B are shape parameters, C is the minimum, and D is the maximum. In statistical 
theory, C and D are usually zero and one, respectively, but the more general formulation used 
here is more convenient for simulation work. In this program module, a beta random variable is 
specified as A(M, A, B, C), where M is the mean which is  

( )E X M D C A
A B

C( ) = = −
+

⎡
⎣⎢

⎤
⎦⎥
+  

The parameter D is obtained from M, A, B, and C using the relationship  

( )( )D
M C A B

A
C=

− +
+ . 

The beta density can take a number of shapes depending on the values of A and B: 

1. When A<1 and B<1 the density is U-shaped. 

 
2. When 0 1< < ≤A B  the density is J-shaped. 
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3. When A=1 and B>1 the density is bounded and decreases monotonically to 0. 

 
4. When A=1 and B=1 the density is the uniform density. 

 
5. When A>1 and B>1 the density is unimodal. 

 
Beta random variates are generated using Cheng’s rejection algorithm as given on page 438 of 
Devroye (1986). 
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Binomial Distribution 
The binomial distribution is given by the function 

( ) ( )Pr , , , , ,X x
n
x

x nx n x= =
⎛
⎝
⎜
⎞
⎠
⎟ − =−π π1 01 K2  

In this program module, the binomial is specified as B(M, n), where M is the mean which is equal 
to nπ  and n is the number of trials. The probability of a positive response, π , is not entered 
directly, but is obtained using the relationshipπ = M n/ . For this reason, 0 < <M n . 

 
Binomial random variates are generated using the inverse CDF method. That is, a uniform 
random variate is generated, and then the CDF of the binomial distribution is scanned to 
determine which value of X is associated with that probability. 

Cauchy Distribution 
The Cauchy distribution is given by the density function 

( )f x S X M
S

S= +
−⎧

⎨
⎩

⎫
⎬
⎭

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

>

−

π 1 0
2 1

,  

Although the Cauchy distribution does not possess a mean and standard deviation, M and S are 
treated as such. Cauchy random numbers are generated using the algorithm given in Johnson, 
Kotz, and Balakrishnan (1994), page 327. 

In this program module, the Cauchy is specified as C(M, S), where M is a location parameter 
(median), and S is a scale parameter. 
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Constant Distribution 
The constant distribution occurs when a random variable can only take a single value, X. The 
constant distribution is specified as K(X), where X is the value.  

Data with a Many Zero Values 
Sometimes data follow a specific distribution in which there is a large proportion of zeros. This 
can happen when data are counts or monetary amounts. Suppose you want to generate 
exponentially distributed data with an extra number of zeros. You could use the following 
simulation model: 

K(0)[2]; E(5)[9] 

The exponential distribution alone was used to generate the histogram below on the left. The 
histogram below on the right was simulated by adding extra zeros to the exponential data. 

  

Exponential Distribution 
The exponential distribution is given by the density function 

( )f x
M

e x
x
M= >

−1 0,  

In this program module, the exponential is specified as E(M), where M is the mean. 
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Random variates from the exponential distribution are generated using the expression 
, where U  is a uniform random variate. ( )− M Uln

F Distribution 
Snedecor’s F distribution is the distribution of the ratio of two independent chi-square variates. 
The degrees of freedom of the numerator chi-square variate is A, while that of the denominator 
chi-square is D. The F distribution is specified as F(M, A), where M is the mean and A is the 
degrees of freedom of the numerator chi-square. The value of M is related to the denominator chi-
square degrees of freedom using the relationship M=D/(D-2).  

F variates are generated by first generating a symmetric beta variate, B(A/2,D/2), and 
transforming it into an F variate using the relationship 

F BD
A BAA D, =
−

 

Below is a histogram for data generated from an F distribution with a mean of 1.1 and A = 6. 

 

Gamma Distribution 
The three parameter gamma distribution is given by the density function 

( ) ( )
( )

f x
x

B A
e x A B

A

A

x
B= > >

−
−

1

0 0
Γ

, , , > 0  

where A is a shape parameter and B is a scale parameter. In this program module, the gamma is 
specified as G(M, A), where M is the mean, given by M=AB. The parameter B may be obtained 
using the relationship B = M/A.  

Gamma variates are generated using the exponential distribution when A = 1, Best’s XG 
algorithm given in Devroye (1986), page 410, when A > 1, and Vaduva’s algorithm given in 
Devroye (1986), page 415, when A < 1. 
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Multinomial Distribution 
The multinomial distribution occurs when a random variable has only a few discrete values such 
as 1, 2, 3, 4, and 5. The multinomial distribution is specified as M(P1, P2, …, Pk), where Pi is 
the is the probability of that the integer i occurs. Note that the values start at one, not zero. 

For example, suppose you want to simulate a distribution which has 50% 3’s and 1’s, 2’s, 4’s, 
and 5’s all with equal percentages. You would enter M(1 1 4 1 1). 

As a second example, suppose you wanted to have a equal percentage of 1’s, 3’s, and 7’s, and 
none of the other percentages. You would enter M(1 0 1 0 0 0 1). 

Likert-Scale Data 
Likert-scale data are common in surveys and questionnaires. To generate data from a five-point 
Likert-scale distribution, you could use the following simulation model:  

M(6 1 2 1 5) 

Note that the weights are relative—they do not have to sum to one. The program will make the 
appropriate weighting adjustments so that they do sum to one.  

The above expression generated the following histogram. 
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Normal Distribution 
The normal distribution is given by the density function 

( )f x x x=
−⎛

⎝⎜
⎞
⎠⎟

− ∞ ≤ ≤ ∞φ μ
σ

,  

where ( )φ z is the usual standard normal density. The normal distribution is specified as N(M, S), 
where M is the mean and S is the standard deviation. 

The normal distribution is generated using the Marsaglia and Bray algorithm as given in Devroye 
(1986), page 390. 

 

Poisson Distribution 
The Poisson distribution is given by the function 

( )Pr
!

, , , , ,X x e M
x

x M
M x

= = = >
−

0 1 2 0K  

In this program module, the Poisson is specified as P(M), where M is the mean.  

Poisson random variates are generated using the inverse CDF method. That is, a uniform random 
variate is generated and then the CDF of the Poisson distribution is scanned to determine which 
value of X is associated with that probability. 
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Student’s T Distribution 
Student’s T distribution is the distribution of the ratio of a unit normal variate and the square root 
of an independent chi-square variate. The degrees of freedom of the chi-square variate are the 
degrees of freedom of the T distribution. The T is specified as T(M, A), where M is the mean and 
A is the degrees of freedom. The central T distribution generated in this program has a mean of 
zero, so, to obtain a mean of M, M is added to every data value.  

T variates are generated by first generating a symmetric beta variate, B(A/2,A/2), with mean 
equal to 0.5. This beta variate is then transformed into a T variate using the relationship 

( )
T A X

X X
=

−
−
0 5

1
.

 

Here is a histogram for data generated from a T distribution with mean 0 and 5 degrees of 
freedom. 

 

Tukey’s Lambda Distribution 
Hoaglin (1985) presents a discussion of a distribution developed by John Tukey for allowing the 
detailed specification of skewness and kurtosis in a simulation study. This distribution is extended 
in the work of Karian and Dudewicz (2000). Tukey’s idea was to reshape the normal distribution 
using functions that change the skewness and/or kurtosis. This is accomplished by multiplying a 
normal random variable by a skewness function and/or a kurtosis function. The general form of 
the transformation is  

( ) ( ){ }X A B G z H z zg h= +  

where z has the standard normal density. The skewness function Tukey proposed is  

( )G z e
gzg

gz

=
−1

 

The range of g is typically -1 to 1. The value of ( )G z0 1≡ . The kurtosis function Tukey proposed 
is 

( )H z eh
hz=

2 2/  
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The range of h is also -1 to 1. 

Hence, if both g and h are set to zero, the variable X follows the normal distribution with mean A 
and standard deviation B. As g is increased toward 1, the distribution is increasingly skewed to 
the right. As g is decreased towards -1, the distribution is increasingly skewed to the left. As h is 
increased toward 1, the data are stretched out so that more extreme values are probable. As h is 
decreased toward -1, the data are concentrated around the center—resulting in a beta-type 
distribution. 

The mean of this distribution is given by 

( )
M A B e

g h
h

g h

= +
−

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤ <

−2 2 1 1
1

0 1
/

,  

which may be easily solved for A.  

Tukey’s lambda is specified in the program as L(M, B, g, h) where M is the mean, B is a scale 
factor (when g=h=0, B is the standard deviation), g is the amount of skewness, and h is the 
amount of kurtosis.  

Random variates are generated from this distribution by generating a random normal variate and 
then applying the skewness and kurtosis modifications. Here are some examples as g is varied 
from 0 to 0.4 to 0.6. Notice how the amount of skewness is gradually increased. Similar results 
are achieved when h is varied from 0 to 0.5. 

   

Uniform Distribution 
The uniform distribution is given by the density function 

( )f x
B A

A x B=
−

≤ ≤
1 ,  

In this program module, the uniform is specified as U(M, A), where M is the mean which is equal 
to (A+B)/2 and A is the minimum of x. The parameter B is obtained using the relationship B=2M-
A. 
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Uniform random numbers are generated using Makoto Matsumoto’s Mersenne Twister uniform 
random number generator which has a cycle length greater than 10E+6000 (that’s a one followed 
by 6000 zeros). 

Weibull Distribution 
The Weibull distribution is indexed by a shape parameter, B, and a scale parameter, C. The 
Weibull density function is written as 

f x B C B
C

z
C

e B C x
B x

C

B

( | , ) , , , .
( )

= ⎛
⎝⎜

⎞
⎠⎟

> > >
− −⎛

⎝⎜
⎞
⎠⎟

1

0 0 0  

Shape Parameter – B 
The shape parameter controls the overall shape of the density function. Typically, this value 
ranges between 0.5 and 8.0. One of the reasons for the popularity of the Weibull distribution is 
that it includes other useful distributions as special cases or close approximations. For example, if 

 B = 1 The Weibull distribution is identical to the exponential distribution. 

 B = 2 The Weibull distribution is identical to the Rayleigh distribution. 

 B = 2.5 The Weibull distribution approximates the lognormal distribution. 

 B = 3.6 The Weibull distribution approximates the normal distribution. 

Scale Parameter – C 
The scale parameter only changes the scale of the density function along the x axis. Some authors 
use 1/C instead of C as the scale parameter. Although this is arbitrary, we prefer dividing by the 
scale parameter since that is how one usually scales a set of numbers.  

The Weibull is specified in the program as W(M, B), where M is the mean which is given by  

M C
B

= +⎛
⎝⎜

⎞
⎠⎟

Γ 1 1
.  
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Combining Distributions 
This section discusses how distributions may be combined to form new distributions. Combining 
may be done in the form of algebraic manipulation, mixtures, or both.  

Creating New Distributions using Expressions 
The set of probability distributions discussed above provides a basic set of useful distributions. 
However, you may want to mimic reality more closely by combining these basic distributions. 
For example, paired data is often analyzed by forming the differences of the two original 
variables. If the original data are normally distributed, then the differences are also normally 
distributed. Suppose, however, that the original data are exponential. The difference of two 
exponentials is not a common distribution.  

Expression Syntax 
The basic syntax is  

C1 D1 operator1 C2 D2 operator2  C3 D3 operator3 … 

where C1, C2, C3, etc. are coefficients (numbers), D1, D2, D3, etc. are probability distributions, 
and operator is one of the four symbols: +, -, *, /. Parentheses are only permitted in the 
specification of distributions. 

Examples of valid expressions include 
N(4, 5) – N(4, 5) 

2E(3) – 4E(4) + 2E(5) 

N(4, 2)/E(4)-K(5) 

Notes about the Coefficients: C1, C2, C3 
The coefficients may be positive or negative decimal numbers such as 2.3, 5, or -3.2. If no 
coefficient is specified, the coefficient is assumed to be one.   
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Notes about the Distributions: D1, D2, D3 
The distributions may be any of the distributions listed above such as normal, exponential, or 
beta. The expressions are evaluated by generating random values from each of the distributions 
specified and then combining them according to the operators. 

Notes about the operators: +, -, *, / 
All multiplications and divisions are performed first, followed by any additions and subtractions. 

Note that if only addition and subtraction are used in the expression, the mean of the resulting 
distribution is found by applying the same operations to the individual distribution means. If the 
expression involves multiplication or division, the mean of the resulting distribution is usually 
difficult to calculate directly. 

Creating New Distributions using Mixtures 
Mixture distributions are formed by sampling a fixed percentage of the data from each of several 
distributions. For example, you may model outliers by obtaining 95% of your data from a normal 
distribution with a standard deviation of 5 and 5% of your data from a distribution with a standard 
deviation of 50. 

Mixture Syntax 
The basic syntax of a mixture is  

D1[W1]; D2[W2]; …;  Dk[Wk] 

where the D’s represent distributions and the W’s represent weights. Note that the weights must 
be positive numbers. Also note that semi-colons are used to separate the components of the 
mixture. 

Examples of valid mixture distributions include 

N(4, 5)[19]; N(4, 50)[1] 95% of the distribution is N(4, 5), and the other 5% is 
N(4, 50). 

W(4, 3)[7]; K(0)[3] 70% of the distribution is W(4, 3), and the other 30% is 
made up of zeros.  

N(4, 2)-N(4,3)[2]; E(4)*E(2)[8] 20% of the distribution is N(4, 2)-N(4,3), and the other 
80% is E(4)*E(2). 

Notes about the Distributions 
The distributions D1, D2, D3, etc. may be any valid distributional expression. 

Notes about the Weights 
The weights w1, w2, w3, etc. need not sum to one (or to one hundred). The program uses these 
weights to calculate new, internal weights that do sum to one. For example, if you enter weights 
of 1, 2, and 1, the internal weights will be 0.25, 0.50, and 0.25. 

When a weight is not specified, it is assumed to have the value of ‘1.’ Thus 
N(4, 5)[19]; N(4,50)[1] 

is equivalent to 
N(4, 5)[19]; N(4,50) 
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Special Functions 
A set of special functions is available to modify the generator number after all other operations 
are completed. These special functions are applied in the order they are given next. 

Square Root (Absolute Value) 
This function is activated by placing a ^ in the expression. When active, the square root of the 
absolute value of the number is used. 

Logarithm (Absolute Value) 
This function is activated by placing a ~ in the expression. When active, the logarithm (base e) of 
the absolute value of the number is used. 

Exponential 
This function is activated by placing an & in the expression. When active, the number is 
exponentiated to the base e. If the current number x is greater than 70, exp(70) is used rather than 
exp(x). 

Absolute Value 
This function is activated by placing a | in the expression. When active, the absolute value of the 
number is used. 

Integer 
This function is activated by placing a # in the expression. When active, the number is rounded to 
the nearest integer. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Template, go to the Procedure 
Window chapter. 

Data Tab 
The Data tab contains the parameters used to specify a probability distribution. 

Data Simulation 

Probability Distribution to be Simulated 
Enter the components of the probability distribution to be simulated. One or more components 
may be entered from among the continuous and discrete distributions listed below the data-entry 
box.  

The W parameter gives the relative weight of that component. For example, if you entered  

P(5)[1];K(0)[2], about 33% of the random numbers would follow the P(5) distribution, and 67% 
would be 0. When only one component is used, the value of W may be omitted. For example, to 
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generate data from the normal distribution with mean of five and standard deviation of one, you 
would enter N(5, 1), not N(5, 1)[1]. 

Each of the possible components were discussed earlier in the chapter. 

Data Simulation – Number of Values 
for Histogram and Summary 

Number of Simulated Values 
This is the number of values generated from the probability distribution for display in the 
histogram. We recommend a value of about 5000. 

Reports Tab 
The following options control the format of the reports. 

Select Report 

Numerical Summary 
This option controls the display of this report. 

Select Plot 

Histogram 
This option controls the display of the histogram. 

Report Options 

Precision 
This allows you to specify the precision of numbers in the report. A single-precision number will 
show seven-place accuracy, while a double-precision number will show thirteen-place accuracy. 
Note that the reports are formatted for single precision. If you select double precision, some 
numbers may run into others. Also note that all calculations are performed in double precision 
regardless of which option you select here. This is for reporting purposes only. 

Report Options – Percentile Options 

Percentile Type 
This option specifies which of five different methods is used to calculate the percentiles. 

RECOMMENDED: Ave Xp(n+1) since it gives the common value of the median.  

In the explanations below, p refers to the fractional value of the percentile (for example, for the 
75th percentile p = .75), Zp refers to the value of the percentile, X[i] refers to the ith data value 
after the values have been sorted, n refers to the total sample size, and g refers to the fractional 
part of a number (for example, if np = 23.42, then g = .42).  The options are 

• Ave Xp(n+1)  
This is the most commonly used option. The 100pth percentile is computed as  

Zp = (1-g)X[k1] + gX[k2] 
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where k1 equals the integer part of p(n+1), k2=k1+1, g is the fractional part of p(n+1), and 
X[k] is the kth observation when the data are sorted from lowest to highest.  

• Ave Xp(n) 
The 100pth percentile is computed as 

Zp = (1-g)X[k1] + gX[k2] 

where k1 equals the integer part of np, k2=k1+1, g is the fractional part of np, and X[k] is the 
kth observation when the data are sorted from lowest to highest.  

• Closest to np 
The 100pth percentile is computed as 

Zp = X[k1] 

where k1 equals the integer that is closest to np and X[k] is the kth observation when the data 
are sorted from lowest to highest.  

• EDF 
The 100pth percentile is computed as 

Zp = X[k1] 

where k1 equals the integer part of np if np is exactly an integer or the integer part of np+1 if 
np is not exactly an integer. X[k] is the kth observation when the data are sorted from lowest 
to highest. Note that EDF stands for empirical distribution function. 

• EDF w/Ave 
The 100pth percentile is computed as 

Zp = (X[k1] + X[k2])/2 

where k1 and k2 are defined as follows: If np is an integer, k1=k2=np. If np is not exactly an 
integer, k1 equals the integer part of np and k2 = k1+1. X[k] is the kth observation when the 
data are sorted from lowest to highest. Note that EDF stands for empirical distribution 
function. 

Smallest Percentile 
This option lets you assign a different value to the smallest percentile value shown on the 
percentile report. The default value is 1.0. You can select any value between 0 and 100, including 
decimal numbers. 
Largest Percentile 
This option lets you assign a different value to the largest percentile value shown on the 
percentile report. The default value is 1.0. You can select any value between 0 and 100, including 
decimal numbers. 

Report Options – Report Decimal 
Places 

Means – Values 
Specify the number of decimal places used when displaying this item. 

GENERAL: Display the entire number without special formatting. 
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Histogram Tab 
This panel sets the options used to define the appearance of the histogram. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks and Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Histogram Settings 

Plot Style File 
Designate a histogram style file. This file sets all options that are not set directly on this panel. 
Unless you choose otherwise, the default style file (Default) is used. These files are created in the 
Histograms procedure. 

Number of Bars 
Specify the number of bars to be displayed. Select 'Automatic' to direct the program to select an 
appropriate number based on the number of values. 

Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 
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Storage Tab 
The Data tab contains the parameters used to specify a probability distribution. 

Storage of Simulated Values to 
Spreadsheet 

Store Values in Column 
This is the column of the spreadsheet in which the simulated values will be stored. Any data 
already in this column will be replaced. 

Spreadsheet 
Press this button to open the spreadsheet window for storage. 

Numbers of Values Stored (Maximum of 16000) 
This is the number of generated values that are stored in the current spreadsheet. 

Example 1 – Generating Normal Data 
In this example, 5000 values will be generated from the standard normal (mean zero, variance 
one) distribution. These values will be displayed in a histogram and summarized numerically.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Data Simulator procedure window by clicking on Helps and 
Aids, then Data Simulator. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Probability Distribution to be Simulated ...............N(0, 1) 
Numbers in of Simulated Values..........................5000 
Numbers of Values Stored...................................0 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
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Descriptive Statistics of Simulated Data 
 
Statistic Value Statistic Value 
Mean 8.627304E-03 Minimum -3.453244 
Standard Deviation 0.9910903 1st Percentile -2.289698 
Skewness -6.010016E-02 5th Percentile -1.65369 
Kurtosis 2.847444 10th Percentile -1.298245 
Coefficient of Variation 114.8783 25th Percentile -0.6598607 
Count 5000 Median 2.659537E-02 
  75th Percentile 0.6922649 
  90th Percentile 1.276735 
  95th Percentile 1.620931 
  99th Percentile 2.274097 
  Maximum 3.645533 
 

This report shows the histogram and a numerical summary of the 5000 simulate normal values. It 
is interesting to check how well the simulation did. Theoretically, the mean should be zero, the 
standard deviation one, the skewness zero, and the kurtosis three. Of course, your results will 
vary from these because these are based on generated random numbers. 

Example 2 – Generating Data from a Contaminated 
Normal 
In this example, we will generate data from a contaminated normal. This will be accomplished by 
generating 95% of the data from a N(100,3) distribution and 5% from a N(110,15) distribution.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Data Simulator procedure window by clicking on Helps and 
Aids, then Data Simulator. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example2 from the Template tab on the procedure 
window. 
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Option Value 
Data Tab 
Probability Distribution to be Simulated ...............N(100 3)[95]; N(110 15)[5] 
Numbers in of Simulated Values..........................5000 
Numbers of Values Stored...................................0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
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Descriptive Statistics of Simulated Data 
 
Statistic Value Statistic Value 
Mean 100.3549 Minimum 71.11177 
Standard Deviation 4.716588 1st Percentile 92.40327 
Skewness 2.67692 5th Percentile 94.82752 
Kurtosis 23.11323 10th Percentile 96.01687 
Coefficient of Variation 4.699908E-02 25th Percentile 97.88011 
Count 5000 Median 100.0328 
  75th Percentile 102.18 
  90th Percentile 104.266 
  95th Percentile 105.9543 
  99th Percentile 120.4605 
  Maximum 145.2731 
 

This report shows the data from the contaminated normal. The mean is close to 100, but the 
standard deviation, skewness, and kurtosis have non-normal values. Note that there are now some 
very large outliers. 
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Example 3 – Likert-Scale Data 
In this example, we will generate data following a discrete distribution on a Likert scale. The 
distribution of the Likert scale will be 30% 1’s, 10% 2’s, 20% 3’s, 10% 4’s, and 30% 5’s.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Data Simulator procedure window by clicking on Helps and 
Aids, then Data Simulator. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example3 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Probability Distribution to be Simulated ...............M(30 10 20 10 30) 
Numbers in of Simulated Values..........................5000 
Numbers of Values Stored...................................0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
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Descriptive Statistics of Simulated Data 
 
Statistic Value Statistic Value 
Mean 2.9858 Minimum 1 
Standard Deviation 1.622506 1st Percentile 1 
Skewness 1.169226E-02 5th Percentile 1 
Kurtosis 1.436589 10th Percentile 1 
Coefficient of Variation 0.5434074 25th Percentile 1 
Count 5000 Median 3 
  75th Percentile 5 
  90th Percentile 5 
  95th Percentile 5 
  99th Percentile 5 
  Maximum 5 
 

This report shows the data from a Likert scale.  
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Example 4 – Bimodal Data 
In this example, we will generate data that have a bimodal distribution. We will accomplish this 
by combining data from two normal distributions, one with a mean of 10 and the other with a 
mean of 30. The standard deviation will be set at 4.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Data Simulator procedure window by clicking on Helps and 
Aids, then Data Simulator. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example4 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Probability Distribution to be Simulated ...............N(10 4);N(30 4) 
Numbers in of Simulated Values..........................5000 
Numbers of Values Stored...................................0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
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Descriptive Statistics of Simulated Data 
 
Statistic Value Statistic Value 
Mean 19.82392 Minimum -7.067288 
Standard Deviation 10.81724 1st Percentile 1.819361 
Skewness 3.503937E-02 5th Percentile 4.949873 
Kurtosis 1.500108 10th Percentile 6.473907 
Coefficient of Variation 0.545666 25th Percentile 9.863808 
Count 5000 Median 17.73235 
  75th Percentile 29.94195 
  90th Percentile 33.4243 
  95th Percentile 35.11861 
  99th Percentile 38.04005 
  Maximum 43.71141 
 

This report shows the results for the simulated bimodal data.  
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Example 5 – Gamma Data with Extra Zeros 
In this example, we will generate data that have a gamma distribution, except that we will force 
there to be about 30% zeros. The gamma distribution will have a shape parameter of 5 and a 
mean of 10.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Data Simulator procedure window by clicking on Helps and 
Aids, then Data Simulator. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example5 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Probability Distribution to be Simulated ...............G(10,5)[7];K(0)[3] 
Numbers in of Simulated Values..........................5000 
Numbers of Values Stored...................................0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
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Descriptive Statistics of Simulated Data 
 
Statistic Value Statistic Value 
Mean 7.0965 Minimum 0 
Standard Deviation 5.960041 1st Percentile 0 
Skewness 0.4635893 5th Percentile 0 
Kurtosis 2.730829 10th Percentile 0 
Coefficient of Variation 0.8398563 25th Percentile 0 
Count 5000 Median 7.24275 
  75th Percentile 11.09861 
  90th Percentile 14.94062 
  95th Percentile 17.41686 
  99th Percentile 22.18812 
  Maximum 36.13172 
 

This report shows the results for the simulated gamma data with extra zeros.  
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Example 6 – Mixture of Two Poisson Distributions  
In this example, we will generate data that have a mixture of two Poisson distributions. 60% of 
the data will be from a Poisson distribution with a mean of 10 and 40% from a Poisson 
distribution with a mean of 20.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Data Simulator procedure window by clicking on Helps and 
Aids, then Data Simulator. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example6 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Probability Distribution to be Simulated ...............P(10)[60];P(20)[40] 
Numbers in of Simulated Values..........................5000 
Numbers of Values Stored...................................0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
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Descriptive Statistics of Simulated Data 
 
Statistic Value Statistic Value 
Mean 13.8662 Minimum 0 
Standard Deviation 6.088589 1st Percentile 4 
Skewness 0.5726398 5th Percentile 6 
Kurtosis 2.580317 10th Percentile 7 
Coefficient of Variation 0.4390957 25th Percentile 9 
Count 5000 Median 13 
  75th Percentile 18 
  90th Percentile 23 
  95th Percentile 25 
  99th Percentile 29 
  Maximum 36 
 

This report shows the results for the simulated mixture-Poisson data.  
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Example 7 – Difference of Two Identically Distributed 
Exponentials 
In this example, we will demonstrate that the difference of two identically distributed exponential 
random variables follows a symmetric distribution.  This is particularly interesting because the 
exponential distribution is skewed.  In fact, the difference between any two identically distributed 
random variables follows a symmetric distribution.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Data Simulator procedure window by clicking on Helps and 
Aids, then Data Simulator. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example7 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Probability Distribution to be Simulated ...............E(10)-E(10) 
Numbers in of Simulated Values..........................5000 
Numbers of Values Stored...................................0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
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Descriptive Statistics of Simulated Data 
 
Statistic Value Statistic Value 
Mean -0.3431585 Minimum -99.37727 
Standard Deviation 14.20288 1st Percentile -41.02162 
Skewness -7.391038E-02 5th Percentile -23.19279 
Kurtosis 6.115685 10th Percentile -16.70725 
Coefficient of Variation -41.38868 25th Percentile -7.131404 
Count 5000 Median -0.1380393 
  75th Percentile 6.575472 
  90th Percentile 15.78555 
  95th Percentile 22.12444 
  99th Percentile 38.82129 
  Maximum 72.36995 
 

This report demonstrates that the distribution of the difference is symmetric. 
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Chapter 925 

The Spreadsheet 
Introduction 
This chapter discusses the operation of the Spreadsheet, used to enter data for a few select PASS 
procedures and to store simulated data. The Spreadsheet is the tool that lets you enter, view, and 
modify data. 

The operation of the PASS spreadsheet is similar to the operation of other spreadsheets with 
which you are familiar. In fact, it has most of the operational features of Microsoft Excel. Since 
the operation of these spreadsheets is so common, we will not spend a lot of space teaching them 
to you.  

Spreadsheet Menus 
You should be familiar with the operation of pull down menus. We will discuss the various 
options that are on these menus.  

File Menu 
The File Menu controls the opening and closing of spreadsheets. Note that some of the basic File 
Menu operations are also provided on the Toolbar.  

We will now discuss each of these options. 

• New  
This option closes the current spreadsheet (if any) and creates a new spreadsheet. PASS 
spreadsheets have .s0 extensions. The save operation will also create required .s1, .s2, etc. 
files depending on the number of sheets on the spreadsheet. 

• Open 
The Open option lets you open existing PASS spreadsheets. It will cause the Open Dialog 
box to appear from which you can select a file. 

When selecting a spreadsheet, note that you select the file with the .s0 extension. Attempting 
to open PASS files with other extensions (such as .s1, .s2, etc.) will produce unpredictable 
results. 

Note that the spreadsheet is copied into memory. Once you open a spreadsheet, you actually 
have two copies of it—one in memory and one on your disk. No automatic relationship is 
maintained between the loaded spreadsheet and the disk spreadsheet. Changes made to the 
copy in memory will not automatically change your disk spreadsheet files unless you save 
them! 
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• Printer Setup 
This option brings up a window that lets you set parameters of your printer(s). 

• Page Setup 
This option lets you specify the format of your datasheet printout. You can specify headers, 
footers, margins, page order (across or down), and scale (size of the print). It is often used to 
enable the printing of the row and column labels. 

Headers and footers can contain text and special formatting codes. The following table lists 
the special formatting codes. Header and footer codes can be entered in upper or lower case. 

Format Code Description  

&L Left-aligns the characters that follow. 

&C Centers the characters that follow. 

&R Right-aligns the characters that follow. 

&D Prints the current date. 

&T Printers the current time. 

&F Prints the worksheet name (this is an internal name that may not be 
useful). 

&P Prints the page number. 

&P+number Prints the page number plus number. 

&P-number Prints the page number minus number. 

&& Prints an ampersand. 

&N Prints the total number of pages in the document. 

The following font codes must appear before other codes and text or they are ignored. The 
alignment codes (e.g., &L, &C, and &R) restart each section; new font codes can be specified 
after an alignment code. 

Format Code Description  

&B Use bold font. 

&I Use an italic font. 

&U Underline the header. 

&S Strikeout the header. 

&”fontname” Use the specified font. 

&nn Use the specified font size - must be a two digit number. 

• Print 
This option prints the entire datasheet or a portion that you designate. Note that you must 
print each datasheet of a spreadsheet separately. If the row and column labels do not show in 
your printout, select Page Setup from the File menu and check the appropriate selection 
boxes. 
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• Save 
This option saves the current spreadsheet. Remember that a spreadsheet consists of several 
files (.s0, .s1, .s2, etc.). All of those files will be replaced. 

• Save As 
This option saves the current spreadsheet to a spreadsheet with a different name. For 
example, if you are working on a spreadsheet called “XYZ” and will be making changes to it, 
you might want to save a copy of it as “XYZ1” so that any mistakes you might have made 
will not destroy your original data. 

• Close Spreadsheet 
This option closes the spreadsheet. 

• Exit PASS 
This option quits the NCSS system.  

• Previously Open Files 
A list of previously open spreadsheets is presented. You may select any of them to revert to 
that spreadsheet directly. 

Edit Menu 
The Edit Menu controls the editing of spreadsheets. Note that some of the basic Edit Menu 
operations are provided on the Toolbar.  

• Undo 
Undo allows you to undo the last edit operation made. Note that only the most recent edit 
operation may be undone.  

When you make wholesale changes to your spreadsheet (by cutting or pasting, for example), 
the Undo system requires a lot of memory to store additional information needed for an undo 
operation. If you see system resources getting low, make an additional change to a single cell. 
This will reset the undo system and free up system memory. 

• Cut 
The Cut option copies the currently selected (highlighted) data to the Windows clipboard and 
clears those cells. This data may be pasted at another location within NCSS or to another 
Windows program. We will discuss the process of selecting cells later in this chapter. 

• Copy 
The Copy option copies the currently selected (highlighted) data to the Windows clipboard. 
The selected data is untouched. The copied data may be pasted at another location within 
NCSS or to another Windows program. We will discuss the process of selecting cells later in 
this chapter. 

• Paste 
The Paste option copies data from the clipboard to the current datasheet at the currently 
selected location. The contents of the clipboard may have come from a previous Cut or Copy 
operation within PASS or from another Windows program. 
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For example, an easy way to analyze the means from an analysis of variance is to copy them 
from the Output screen and paste them in a datasheet. Furthermore, a quick way to import 
data from an Excel spreadsheet is to copy the data in Excel and paste it into a PASS  
datasheet. 

The Paste option behaves differently depending on whether part of the datasheet is selected 
(highlighted). The data on the clipboard acts like a rectangular array of data (it has rows and 
columns). If there is no selection on the datasheet, the paste operation will place the data on 
your spreadsheet just as it appeared when it was copied to the clipboard. However, if the 
spreadsheet has a selected area, the paste operation will do two things. First, it will insert the 
data inside the selected area only (extra data will be omitted). Second, it will repeat either all 
or part of the clipboard so that the selected area is filled. 

• Paste Rotated 
This option works like the Paste option (above), except that the data are rotated ninety 
degrees so that the rows become the columns and the columns become the rows. The 
following example shows the result of using this option: 
Data that was Copied 
1 2 
3 4 
5 6 
7 8 

Result of Paste Rotated Operation 
1 3 5 7 
2 4 6 8 

• Clear 
The Clear option erases the data that is selected. Note that unlike the Cut option, the Clear 
option does not put the data on the clipboard. 

• Insert 
The Insert option inserts rows or columns into your datasheet at the current position of the 
cursor. When you select Insert, a dialog box appears that allows you to indicate whether you 
want to insert rows or columns (variables). The number of rows (or columns) inserted is 
determined by the number of rows (or columns) selected.  

Hence, the steps to insert columns are as follows: 

1. Select the number of columns you want to insert, beginning your selection at the 
column where you want them added. 

2. Select Insert from the Edit Menu. 

3. Select Columns from the dialog box. 

A datasheet on a spreadsheet contains exactly 256 variables. When you insert new variables, 
the current variables are shifted to the right. The variables at the right of the datasheet are 
"pushed off" the datasheet and lost. For this reason, PASS first checks to make sure that there 
are enough empty variables at the edge of the datasheet to accommodate the inserted 
variables. If you find that you don't have room to insert variables that you need, simply add a 
new datasheet, cut the last several variables at the right of the datasheet, and paste them to the 
next datasheet. This will make room for inserting variables. 
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• Delete 
The Delete option removes the currently selected rows or columns from your datasheet. 
When you select Delete, a dialog box appears that lets you indicate whether to delete rows (or 
columns). The number of rows (or columns) deleted is determined by the number of rows 
(columns) selected.  

• Fill 
This option brings up the Fill window which fills the current variable (or the currently 
selected block of cells) with the value specified. The value may be incremented so that 
special patterns such as 1,2,3,4 may be easily generated.  

• Find 
This option searches through your data for a designated value. Once you have started a find 
operation, use the Find Next button continues your search. You can search for a single digit 
or for the complete number. 

• Replace 
The Replace option allows you to quickly replace data throughout your datasheet. You can 
replace only those cells that match a certain pattern, or you can replace individual letters and 
digits. 

• Column Name 
This option allows you to change the column names. 

• Column Format 
This option allows you to change the format of spreadsheet columns.  

• Font 
This option allows you to change the font of cells in the spreadsheet. 

Window Menu 
This menu lets you transfer to one of the other PASS windows such as the PASS Home window 
or one of the currently open procedure windows.  

Help Menu 
From this menu you can launch the PASS Help System to an appropriate topic.  

Spreadsheet Toolbar 
The toolbar is provided for single-click access to the most commonly used menu options. You 
will find that each of the options on the toolbar can also be found in the menus. The toolbar has a 
feature called a "tool tip." This means that when you hold the mouse pointer over a certain square 
for at least a second, a small help box will appear that explains what this particular toolbar button 
is for. Most of the buttons on the toolbar follow Windows standards, so you will recognize them 
right away.  
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Cell Reference 
Two boxes at the bottom of the screen give the Cell Reference. The first box gives the variable 
(column) number of the current location of the cell cursor. The second box gives the row number 
of the current location of the cell cursor. The cell cursor is the active cell. You can recognize the 
current cell because it will have an extra dark border. 

Cell Edit 
The Cell Edit box provides an alternate place to edit data. As you move around the spreadsheet, 
the contents of the active cell are copied to this Cell Edit box. Occasionally, your data will be 
longer than can easily be displayed in the cell. Although you could reset the column width, you 
usually find it easier to edit the data in the Cell Edit box.  

Any changes you make will not be entered into the datasheet until you hit the ENTER key or 
position the mouse on another cell. After making changes to data in the Cell Edit box, you can 
press the ESC key to withdraw the changes. 

Datasheet 
This section of the screen shows the data. We will now describe how to use the spreadsheet to 
modify the data contained in a datasheet. You should know how to select cells, ranges, rows, and 
columns. Your work will go much faster if you learn how to quickly enter, modify, and delete 
data. These will all be described in this section. 

Navigating the Datasheet 
This section describes how to move around the datasheet using the keyboard and the mouse. In 
addition to moving around the datasheet, we will also describe how to make selections, copy data, 
and move data.  

Active Cell 
The datasheet cursor is always located on a single cell, even when a range of cells is selected. The 
cell on which the datasheet cursor is located is called the Active Cell. Any typing that is done will 
only affect the active cell. The contents of the active cell are displayed in the Cell Edit box. The 
address of the active cell is displayed in the Cell Reference boxes. 

Keyboard Commands 
The following commands are used mainly for data entry.  

Key Description  

ENTER Accepts the current entry and moves the active cell down one cell. When a 
range of cells is selected, accepts the current entry and moves down to the 
next selected cell. When the bottom of the selection is reached, the active cell 
moves to the top of the next selected column to the right. 

SHIFT-ENTER Acts like the ENTER key, except that cell-to-cell movement is upward and to 
the left instead of downward and to the right. 
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TAB Accepts the current data entry and moves the cursor one cell to the right. 
When a range of cells is selected, the tab moves the cursor to the right to the 
next cell in the selection. 

SHIFT-TAB Acts just like the TAB key, except that cell-to-cell movement is to the left 
instead of to the right. 

F2 Enters edit mode. Pressing F2 a second time brings up a cell-text data entry 
box. 

DEL Clears the current entry or selection. 
ESC Cancels the current data entry. 
 

The following commands are used mainly for moving about the datasheet. 

Key Description  

UP ARROW Moves the active cell up one row. 
DOWN ARROW Moves the active cell down one row. 
LEFT ARROW Moves the active cell left one column. 
RIGHT ARROW Moves the active cell right one column. 
CTRL UP / DOWN / LEFT / RIGHT ARROW 
 Moves to the next range of cells containing data. If there is no additional data 

in any of the cells in that direction, the active cell is moved to the edge of the 
datasheet. 

PAGE UP Moves up one screen. 
PAGE DOWN Moves down one screen. 
CTRL PAGE UP Moves left one screen. 
CTRL PAGE DOWN 
 Moves right one screen. 
HOME Moves to the first column in the current row. 
END Moves to the last column in the current row that contains data. 
CTRL HOME Moves to the upper-left corner of the datasheet (cell 1,1). 
CTRL END Moves to the last row and column that contains data. 
SCROLL LOCK Modifies the action of the above movement keys. This key causes the 

datasheet window to scroll without changing the current selection. It works 
with all movement keys except HOME, END, CTRL HOME, and CTRL 
END. 

SHIFT + any movement key 
 Extends the current selection in the direction indicated. 
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Mouse Actions 
The mouse is used mainly for positioning the active cell and making selections. You can also use 
the mouse to move a block of cells around the datasheet. 

Action Description  

Left Click 
 Accepts the current entry and moves the active cell to the position of the 

mouse. 
Right Click 
 Does nothing. 
Left Click in a Row or Column Heading 
 Selects the entire row or column. 
Left Double Click 
 In-cell editing is invoked. 
Right Double Click 
 Does nothing. 
Left Click and Drag 
 Selects a range of cells. If other ranges were selected, they are unselected. 
CTRL + Left Click and Drag 
 Selects a range of cells. If other ranges were selected, they remain selected. 

Note that edit commands, such as cut and copy, will only work on a single 
range. 

SHIFT + Left Click and Drag 
 Extends the current selection in the direction indicated. 
Dragging a Selection’s Copy Handle 
 Copies the selection to a new location. The copy handle is the small plus sign 

at the lower-right corner of a selection. 
Dragging a Selection’s Border 
 Moves the selection to a new location. Note that when you move data around 

the datasheet in this fashion, no attempt is made to update the variable 
names. You will have to do that manually. For this reason, it is best to do this 
kind of wholesale editing before you attach names and transformations to the 
variables. Note also that Cell Transformation formulas are updated. 

Selecting Cells 
Many operations require one or more cells to be selected. There are three types of selections: a 
single cell, a single rectangular range of cells, and multiple ranges of non-adjacent cells. Cells 
may be selected either with the mouse or with the keyboard. 

Selecting Cells with the Mouse 
To select a range of cells with the mouse, click and hold the left mouse button down on the upper-
left cell of the range you want to select. Drag the mouse cursor to the lower-right cell, while 
continuing to hold the left mouse button down. When the desired cells are selected, release the 
mouse button. 
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To select multiple ranges with the mouse, press the CTRL key while making each additional 
selection. Note that multiple selections are only useful for controlling cell cursor movement 
during data entry. They are not used by any of the edit functions. 

To select an entire row or column, click on the row or column heading. 

Once a range is selected, you can move the active cell within the selection using the Enter, 
SHIFT+ENTER, TAB, and SHIFT+TAB keys without destroying the selection. 

Selecting Cells with the Keyboard 
To select a range of cells with the keyboard, position the active cell at the upper-left corner of 
your desired selection. While holding down the SHIFT key, use the cursor movement keys (such 
as the arrow keys) to move to the lower-right corner of the selection. 

Editing Datasheets Interactively 
Data can be entered into a datasheet in many different ways. In this section, we will explain how 
you can quickly move and copy ranges of cells by clicking and dragging the copy handle of a 
selection. 

Copying Data Interactively 
You can copy a range of cells quickly by using only a few clicks of your mouse. The steps for 
doing this are enumerated next followed by figures that illustrate the action. 

1. Select a range of one or more cells. 

2. Select the copy handle (the small crosshair that appears at the lower-right corner of a 
selection) with your mouse cursor by positioning the mouse cursor over the copy handle 
and pressing the left mouse button. 

3. Drag the copy handle through the range of cells that are to receive the copied data. 

4. Release the left mouse button.  

 

 

The copy handle is at the lower right 
corner of the selection. 
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The cursor changes to a crosshair as 
the copy handle is dragged down.  
Note that the copied selection is repeated 
so that the whole copied area has data. 

Moving Data Interactively 
You can move a range of cells quickly by using only a few clicks of your mouse. The steps for 
doing this are enumerated next followed by figures that illustrate the action.  

1. Select a range of one or more cells. 

2. Position the mouse cursor on the border of the selection. When positioned on the border, 
the pointer changes to an arrow. 

3. Drag the selection to the new location. 

4. Release the left mouse button. 

 
First, select the cells you wish to 
move. 
Next, position the mouse pointer at the 
border of the selected area. The mouse 
pointer will change to an arrow. Once the 
pointer has changed, do not release the 
mouse button. 

 
 

 

Move the selected cells to their new 
location. 
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Release the left mouse button. The contents 
of the selected cells will move to the new 
location. 

Caution: the variable names have not 
changed. You will have to manually adjust 
variable names and transformations when 
you move data using this method. 

Changing Row Heights and Column Widths 
You can interactively resize the height of a row or the width of a column using the mouse. 
Position the pointer on the right edge of a column heading or the bottom edge of a row heading. 
The pointer will change shape. Simply drag the pointer to resize the row or column. 

If multiple rows are selected when you resize a row, all selected rows are resized as you drag a 
row border. Multiple columns can be resized in like manner.  

You can also set the size of a selected group of columns or rows to equal the size of another row 
or column. First, select the group of columns or rows you want to resize, including the column or 
row whose size you want to match. Next, click the right border of the column header or the 
bottom border of the row whose size you want to match. The columns or rows will all be resized. 

Datasheet Tabs 
The Datasheet Tabs at the bottom of the spreadsheet let you move quickly from one datasheet to 
another. These tabs are especially useful for allowing you to move to the Column Names sheet to 
make changes to variable names and formats. 
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Chapter 930 

Macros 
Introduction 
This software has an interactive (point and click) user interface which makes in easy to learn and 
use. At times, however, it is necessary to repeat the same steps over and over. When this occurs, a 
batch system becomes more desirable. This chapter documents a batch language that lets you 
create a macro (script or program) and then run that macro. With the click of a single button, you 
can have the program run a series of procedures.  

We begin with a discussion of how to create, modify, and run a macro. Next, we list all of the 
macro commands and their function. 

Macro Command Center 
This section describes how to create a macro, edit it, and run it. This is all accomplished from the 
Macro Command Center window. You can load this window by selecting Macros from the Tools 
menu or right-clicking on the Macro Button (green triangle) of the toolbar. 

We will now describe each of the objects on the Macro Command Center window. 

Active Macro 
This box displays the name of the currently selected macro file. A preview of this macro is 
displayed in the Preview window. You can change this name by typing over it or by selecting a 
different macro from the Existing Macros window.  

Existing Macros 
This box displays a list of all existing macros. Click on a macro in this list to make it the active 
macro—the macro that is used when one of the control buttons to the right is pressed. Double-
clicking a macro causes that macro to open in the window’s Notepad program for editing. 

The macros are stored in the MACROS subdirectory of the PASS 2008 folder. They always have 
the file extension “.ncm”. 

Preview of Active Macro 
This box displays the beginning of the macro that is in the Active Macro box. 

Record Macro 
Pressing this button causes the commands you issue to be written to the macro file named in the 
Active Macro box. The Macro Command Center window will be replaced by a small Macro 
window that lets you stop recording the macro. When the recording starts, if there is a previous 
macro file with the same name as that in the Active Macro Name box, the previous macro file is 
erased.  
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The PASS macro recorder does not record every keystroke and click that you make. Instead, it 
records major operations. For example, suppose you want to include calculating the sample size 
for a t-test in your macro. You would load the t-test procedure, change some options, and run it. 
The macro recorder saves a copy of the t-test settings as a template file and writes a single 
command line to the macro file that references this template. All of your settings are included in 
the template file—there is no reference in the macro to the individual settings changes. This 
makes the macro much smaller and easier to modify. 

Functions from the View, File, and Edit menus are not recorded during a macro recording. Those 
functions are performed using the SendKeys commands or other specific commands. As a general 
rule, the running of windows for which there is a template tab is recorded during a macro 
recording. 

Edit Macro 
Pressing this button causes the Active Macro to be loaded in the Windows NotePad program. 
This program lets you modify the macro and then save your changes.  

Play Macro 
Pressing this button causes the Active Macro to be run. Once the macro is finished, the Macro 
Command Center window will close and you can view the results of running your macro. 

Delete Macro 
Pressing this button causes the Active Macro to be deleted. The macro file is actually moved to 
the Recycle Bin from which it can be rescued if you decide it shouldn’t have been deleted. 

Close 
Pressing this button closes the Macro Command Center window. 

Select Button Macro 
A macro button is displayed in the toolbar of several of the windows (such as the spreadsheet and 
procedure windows). This button causes the designated macro to be run. The macro that is 
associated with the macro button is controlled by this section of the Macro Command center. To 
change the macro that is associated with this button, simply select the desired macro from the 
Existing Macros list and then click the icon. This will associate the macro to the button. This 
association will remain even if you exit the program. 

Syntax of a Macro Command Line 
PASS macros are line based. That is, each macro command expression is written on a separate 
line. The basic structure of a line is that it begins with a command followed by one or more 
options or parameters of the command, called arguments. For example, the following macro 
opens a dataset and runs the Descriptive Statistics procedure on the first five variables in that 
dataset.  

LoadProc PSProp2IP 
LoadTemplate PSProp2IP "Template1" 
RunProc PSProp2IP 
 

In this example, LoadProc, LoadTemplate, and RunProc are commands, while PSProp2IP and 
"Template1" are arguments. 



   Macros  930-3 

Comment Lines 
It is often useful to add comment lines to a macro to make it easier to understand later. Comment 
lines begin with single quotes. When the macro processor encounters a single quote at the 
beginning of a line, the rest of the line is ignored. Single quotes occurring at a location other than 
the beginning of a line are treated as text. 

Blank lines may also be added to a macro to improve readability. These are also ignored.  

Macro Constants and Macro Variables 
As stated above, macro commands lines consist of keywords followed by arguments. These 
arguments are either constants, such as "Template1" or 'PSProp2IP', or macro variables. These 
will be discussed next. 

Macro Constants 
Macro constants are fixed values. There are two types of macro constants: text and numeric. 

Numeric Constants 
Numeric constants are numbers. They may be whole or decimal numbers. They may be positive 
or negative. They may be enclosed in double quotes, although this is not necessary. When the 
macro processor expects a number but receives a text value, it sets the numeric value to zero. 

Examples of numeric constants are 

1, 3.14159, and 0. 

Text Constants 
Text constants are usually enclosed in double quotes. If a constant is a single word (made of 
letters and digits with no blanks or special characters), the double quotes are not necessary. 

Examples of text constants are 

Apple, "Apple Pie", and "D:/Program Files". 

Macro Variables 
Macro Variables are used to store temporary values for use in macro command lines. Some 
examples of assigning values to macro variables are 

A# = 4 
B# = 4 + 3 
File$ = "C:/Program Files/PASS/Data/ABC.S0" 
F$ = "4" & "5" 

 

In these examples, A#, B#, File$, and F$ are macro variables. The assigned values for each of the 
variables are 4, 7, "C:\Program Files\PASS\Data\ABC.S0", and 45, respectively. 

There are two types of macro variables: text and numeric. 

Text Macro Variables 
Text macro variables are used to hold text values. The rules for naming them are that the names 
can contain only letters and numbers (no spaces or special characters) and they must end with a 
'$'. The case of the letters is ignored (so 'A$' is used interchangeably with 'a$'). 
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Examples of text macro variable names are 

A$   
Apple$   
FileName$ 

Numeric Macro Variables 
Numeric variables are used to hold numeric values. The rules for naming them are that the names 
can contain only letters and numbers (no spaces or special characters), and they must end with a 
'#'. The case of the letters is ignored (so 'A#' is used interchangeably with 'a#'). 

Examples of numeric macro variable names are 

A#   
Apple#   
NRows# 

Assigning Values to Macro Variables 
One type of macro variable expression is that of assigning a value to a variable. The basic syntax 
for this type of expression is  

{variable} = {value} 

where the {variable} is text or numeric and {value} is a  macro variable or (text or numeric) 
macro constant. If a text value contains spaces or special characters, it must be enclosed in double 
quotes. 

A text value can be is assigned to a numeric macro variable. In this case, the text value is 
converted to a number. If it cannot be converted to a number (e.g., it is a letter), the numeric 
macro variable is set to zero. 

Following are some examples of valid assignment expressions. 

A# = 4 
X$ = John 
File$ = "C:\Program Files\PASS\Data\ABC.S0" 
X$ = File$ 
X$ = A# 
A# = F$ 
F$ = 4 

Macro Variable Combination Expressions 
Macro variables can be combined using simple mathematical expressions. The basic syntax for 
this type of expression is  

{variable} = {value} {operator} {value}. 

The available operators are + (add), - (subtract), * (multiply), / (divide), and & (concatenate). 

If a text value is involved in a mathematical expression, it is converted to a numeric value before 
the mathematical expression is evaluated. If it cannot be converted to a number, the text value is 
set to the numeric value of zero. 
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Following are some examples of valid assignment expressions. 

Expression Result 
A# = 4 + 3 A# = 7 
B# = A# * 2 B# = 14 
C$ = "C:/Pgm/"  
D$ = C$ & "ABC.S0" D$ = "C:/Pgm/ABC.S0" 
E# = C$ * 4 E# = 0 
F$ = "4" + "5" F$ = "9" 
F$ = "4" & "5" F$ = "45" 
A# = 1 
A# = A# + 1 A# = 2 

Macro variable assignments are used while the macro is running, but are not saved when the 
macro has completed.  

Displaying Macro Variables 
The value of one or more macro variables may be displayed on the output using the PRINT or 
HEADING commands.  

Print 
This command outputs the requested values to the printout.  

The syntax of this command is 

PRINT {p1} {p2} {p3} … 

where  

{p1} {p2} ... are assigned macro variables or constants.   

Following are some examples of Print commands. 

Command Printed Result 
PRINT "Hi World" Hi World 
I# = 1  
J$ = "C:/PASS/Data/ABC" 
F$ = J$ & i# 
F$ = F$ & ".s0" 
PRINT "File=" F$ File=C:/PASS/Data/ABC1.s0 
PRINT "1" "2" "3" "4" 1 2 3 4 

Heading 
This command adds a line to the page heading that is shown at the top of each page.  

The syntax of this command is 

HEADING {h1} 

where  

{h1}  is an assigned macro variable or constant.   
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Following are some examples of valid HEADING commands. 

Command Heading 

HEADING "Hi World" Hi World 
F$ = "Heart Study" 
HEADING F$ Heart Study 

Logic and Control Commands 
The lines in a macro are processed in succession. These commands allow you to alter the order in 
which macro lines are processed, allow user-input, or end the program.  

List of Logic and Control Commands: 

Flag 
GOTO 
IF 
INPUT 
END 
SendKeys 

Flag Statement 
A flag is a reference point in the program. The GOTO command sends macro line control to a 
specific flag. A flag is made up of letters and numbers (no spaces) followed by a colon.  

Following are some examples of valid flags. More extensive examples are shown in the 
description of the IF statement (below) 

Examples 
Flag1: 
A: 
Loop1: 

GOTO command 
This command transfers macro processing to the next statement after a flag.  

The syntax of this command is 

GOTO {P1} 

where  

{P1}  is a text variable or text constant.   

Following are some examples of valid GOTO commands. 

Examples 
GOTO Flag1 
or 
F$ = "Flag1" 
GOTO F$ 
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IF command 
This command transfers macro processing to the next statement after a flag if a condition is met. 
The syntax of this command is 

IF {p1} {logic} {p2} GOTO {p3} 

where  

{p1} is a variable or constant.   

{p2} is a variable or constant.   

{p3} is a flag.   

{logic}  is a logic operator. Possible logic operators are =, <, >, <=, >=, and <>.   

Following are some examples of valid IF commands. 

Examples 
IF x1# > 5 GOTO flag1 
IF y$ = "A" GOTO flag2 
IF y$ <> "A" GOTO flag3 

INPUT 
This command stops macro execution, display a message window, and waits for a value to be 
input. This value is then stored in the indicated macro variable.  

The syntax of this command is 

INPUT {variable} {prompt} {title} {default} 

where  

{variable} is the name of the variable (text or numeric) to receive the value that is input.   

{prompt} is the text phrase that is shown on the input window.   

{title} is the text phrase that is displayed at the top of the input window.   

{default} is the default value for the input.   

Following is an example of this command. 

Example 
INPUT A# "Enter the number of items" "Macro Input Window" 1 

END 
This command closes the PASS system.  

The syntax of this command is 

END 

Example 
END 
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SendKeys 
This command sends one or more keystrokes to the program as if you had typed them in from the 
keyboard. This facility allows you to create macros to accomplish almost anything you can do 
interactively within the program. 

To use this, run the program from the keyboard, noting exactly which keys are pressed. Then, 
type the appropriate commands into the sendkeys text. Note that spaces are treated as characters, 
so '{down} {tab}' is different from '{down}{tab}'. 

The syntax of this command is 

SendKeys {value} 

where {value} is a text constant or variable.  

Remarks 
Each key is represented by one or more characters. To specify a single keyboard character, use 
the character itself. For example, to represent the letter A, use "A" for value. To represent more 
than one character, append each additional character to the one preceding it. To represent the 
letters A, B, and C, use "ABC" for string. 

The plus sign (+), caret (^), percent sign (%), tilde (~), and parentheses ( ) have special meanings 
to SendKeys. To specify one of these characters, enclose it within braces ({}). For example, to 
specify the plus sign, use {+}. Brackets ([ ]) have no special meaning to SendKeys, but you must 
enclose them in braces. To specify brace characters, use {{} and {}}. 

To specify characters that are not displayed when you press a key, such as ENTER or TAB, and 
keys that represent actions rather than characters, use the following codes: 

Key Code 

Backspace {bs} 
Break {break} 
Caps Lock {capslock} 
Delete {delete} 
Down Arrow {down} 
End {end} 
Enter {enter} 
Esc {esc} 
Home {home} 
Insert {insert} 
Left Arrow {left} 
Num Lock {numlock} 
Page Down {pgdn} 
Page Up {pgup} 
Right Arrow {right} 
Tab {tab} 
Up Arrow {up} 
F1 {F1} 
F2 {F2} 
F3 {F3} 
F4 {F4} 
F5 {F5} 
F6 {F6} 
F7 {F7} 
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Key Code 

F8 {F8} 
F9 {F9} 
F10 {F10} 
F11 {F11} 
F12 {F12} 
F13 {F13} 
F14 {F14} 
F15 {F15} 
F16 {F16} 
 

To specify keys combined with any combination of the SHIFT, CTRL, and ALT keys, precede 
the key code with one or more of the following codes: 

Key Code 

Shift + 
Ctrl  ^ 
Alt % 
 
To specify that any combination of SHIFT, CTRL, and ALT should be held down while several 
other keys are pressed, enclose the code for those keys in parentheses. For example, to specify to 
hold down SHIFT while E and C are pressed, use "+(EC)". To specify to hold down SHIFT while 
E is pressed, followed by C without SHIFT, use "+EC". 

To specify repeating keys, use the form {key number}. You must put a space between key and 
number. For example, {LEFT 4} means press the LEFT ARROW key 4 times; {h 8} means press 
H 8 times. 

Spreadsheet Note: When a macro is run the usual beginning location on the screen is the new 
page icon (just below File) in the upper left of the screen. A single tab may be entered in the 
macro to go to the upper left cell position on the spreadsheet. 

Examples Action 
SendKeys "ABC {enter}" (Types ABC and then enter) 
SendKeys "{enter right}" (Enter and then down arrow) 
SendKeys "%H{down 2}{enter}" (Activates the Serial Numbers from the Help menus) 
SendKeys "{right}" (Moves to the right one cell) 

 

Window Position Commands 
These commands allow the user to position or hide windows while the macro is running. 

List of Window Commands: 

WindowLeft 
WindowTop 

WindowLeft 
This command sets the position of the left edge of the spreadsheet, panel, and output windows. 
This allows you to effectively hide these windows while a macro is running.  
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The syntax of this command is 

WINDOWLEFT {value} 

where  

{value}  is the value of the left edge in thousandths of an inch.   

Examples Action 
WINDOWLEFT 0 (positions the left edge to zero) 
WINDOWLEFT 10000 (positions the left edge ten inches to the right) 
WINDOWLEFT -10000 (positions the left edge ten inches to the left) 

WindowTop 
This command sets the position of the top of the spreadsheet, panel, and output windows. This 
allows you to effectively hide these windows while a macro is running.  

The syntax of this command is 

WINDOWTOP {value} 

where  

{value} is the value of the left edge in thousandths of an inch.   

Examples Action 
WINDOWTOP 0 (positions the top to zero) 
WINDOWTOP -10000 (positions the top ten inches up) 

Spreadsheet Commands 
The following commands open, close, and modify an PASS spreadsheet. 

List of Dataset Commands: 

DataOpen 
DataNewS0 
DataSaveS0 
AddASheet 
RemoveLastSheet 
ResizeRowsCols 
GetCell 
SetCell 
NumRows 
GetMaxRows 
VarName 
VarFormat 
NumVars 
VarFromList 
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DataOpen 
This command opens the database given by {file name}. 

The syntax of this command is 

DataOpen {filename} 

where  

{file name} a text variable or text phrase enclosed in double quotes that gives the name of the 
database to be opened. 

Following are some examples of macro snippets that use this command. 

DataOpen "C:/Program Files/PASS/Sample.s0" 
or 
F1$="C:/Program Files/PASS/" 
F2$="Sample.s0" 
F$=F1$ & F2$ 
DataOpen F$ 

DataNewS0 
This command creates a new, untitled spreadsheet-type database. Note that these databases are 
limited to 16,384 rows of data.  

The syntax of this command is 

DataNewS0 

Following is an example of this command. 

DataNewS0 

DataSaveS0 
This command saves the current spreadsheet-type database to a file. 

The syntax of this command is 

DataSaveS0 {file name}  

where 

{file name}  is a text variable or text phrase enclosed between double quotes. Note that the 
extension of the file name must be "s0". If any data already exists in this database, it 
will be replaced. 

Following are some examples of macro snippets that use this command. 

DataSaveS0 "C:/Program Files/PASS/Sample.s0" 
or 
F1$="C:/Program Files/PASS/" 
F2$="Sample.s0" 
F$=F1$ & F2$ 
DataSaveS0 F$ 
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AddASheet 
This command adds another 'sheet' to the current spreadsheet file. Note that each sheet contains 
256 variables. You should only add a second sheet if you have used up the 256 variables on the 
first sheet. 

The syntax of this command is 

AddASheet 

Example 
AddASheet 

RemoveLastSheet 
This command removes the last 'sheet' of the current spreadsheet file. Note that a sheet cannot be 
removed if it contains data. Also, the first sheet cannot be removed.  

The syntax of this command is 

RemoveLastSheet 

Example 
RemoveLastSheet 

ResizeRowsCols 
This command resizes all rows and columns in the spreadsheet or database according to the user-
specified resize type. All three types create columns (rows) no narrower (shorter) than the default 
width (height). If this command is used with a spreadsheet (.S0), the resulting row heights and 
column widths are saved when the spreadsheet is saved. When this operation is used with a 
database (.S0Z), the resulting row heights and column widths are not saved when the database is 
saved. The command must be used each time the database is opened. 

The syntax of this command is 

ResizeRowsCols {rtype} 

where 

{rtype} is an integer corresponding to the type of row/column resizing to be done (0 = resize 
using defaults, 1 = resize using data and titles, 2 = resize using data only). 

Example 
ResizeRowsCols 1 

GetCell  
This command obtains the value of a spreadsheet cell. The syntax of this command is 

GetCell {variable} {row} {macro variable} 

where 

{variable} is the name or number of the variable (column) with the cell to be read. 

{row} is the row number of the cell to be read. 

{macro variable} is the text or numeric macro variable that holds the value of the spreadsheet 
cell. 
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Examples 
GetCell "HeartRate" 27 H# 
GetCell Name 16 Name16$ 

SetCell  
This command sets a spreadsheet cell to a specified value. The syntax of this command is 

SetCell {v1} {row1} {row2} {value} 

where 

{v1} is the name or number of the variable to receive the new value. 

{row1} is the first row in a range of rows to receive the new value. 

{row2} is the last row in a range of rows to receive the new value 

{value} is the new value. This value may be text or numeric. 

Examples 
SetCell "HeartRate" 10 10 "100" 
SetCell 1 10 20 100 

NumRows  
This command loads the number of rows used in a dataset column into a program variable. The 
syntax of this command is 

NumRows {v1} {n} 

where 

{v1} is a variable name or number on the current database. 

{n} is a numeric macro variable. 

Examples 
NumRows "HeartRate" n1# 
NumRows 1 n# 

GetMaxRows  
This command loads the maximum number of rows used by any variable into a program variable.  

The syntax of this command is 

GetMaxRows {n} 

where 

{n} is a numeric macro variable. 

Examples 
GetMaxRows n1# 
GetMaxRows n# 
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VarName  
This command sets the name of the specified variable.  

The syntax of this command is 

VARNAME {variable} {name} 

where 

{variable} is the current name or number of the variable to be renamed. 

{name} is the new name of the variable. This name must follow standard PASS variable 
name restrictions. 

Examples 
VARNAME C1 "HeartRate" 
VARNAME 1 "HeartRate" 

VarFormat  
This command sets the display format of the specified variable.  

The syntax of this command is 

VARFORMAT {variable} {format} 

where 

{variable} is the name or number of the variable to be formatted. 

{format} is the format.  

Examples 
VARFORMAT C1 "0.00" 
VARFORMAT 2 "MM/DD/YYYY" 

NumVars  
This command causes the number of variables contained in a list of variables to be loaded into a 
macro variable.  

The syntax of this command is 

NUMVARS {varlist} {x} 

where 

{varlist} is an expression containing variable names. 

{x} is macro variable. 

Example 
NUMVARS "C2:C10, C15" nvars# 

VarFromList  
This command causes number of the ith variable in a list to be loaded into a macro variable.  

The syntax of this command is 

VarFromList {varlist} {i} {v} 
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where 

{varlist} is an expression containing variable names. 

{i} is the item number to be selected from the variable list. 

{v} is the macro variable that receives the number of the ith item in the list. 

Example 
VARFROMLIST "C1,C2,C3,C10,C20" 4 V1# (V1 becomes 10) 
VARFROMLIST "C1,C2,C3,C10,C20" 5 V2# (V2 becomes 20) 

Procedure Commands 
The following commands open, modify, run and close procedures. 

List of Procedure Commands: 

LoadProc 
RunProc 
SaveTemplate 
UnloadProc 
Option 

LoadProc 
This command loads the designated procedure window. Once loaded, the options of the 
procedure may be modified and then the procedure can be executed. 

The syntax of this command is 

LoadProc {proc} {template} 

where  

{proc} is a variable or constant that gives the name or number of the procedure to be 
loaded. Each procedure’s name and number is displayed near the bottom of the 
window under the Template tab.   

{template}  is an optional text variable or text constant that gives the name of a template file that 
is loaded with this procedure. If this value is omitted, the default (last) template for 
this procedure is loaded. Note that the text value does not include the extension or 
the folder information for the template file. 

Following are some examples of valid LOADPROC commands. 

Example 
LOADPROC 24 "macro 1" 
LOADPROC PSProp2IP "macro 1" 
LOADPROC PSProp2IP 
LOADPROC 24  

RunProc  
This command executes the indicated procedure. The syntax of this command is 

RunProc {proc} {template} 
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where  

{proc} is a variable or constant that gives the name or number of the procedure to be run. 
Each procedure’s name and number is displayed near the bottom of the window 
under the Template tab.   

{template} is a required variable or text constant that gives the name of the resulting template 
file. Note that the text value does not include the extension or the folder information 
for the template file.   

SaveTemplate  
This command saves the settings in the last procedure loaded to a template file. Once loaded, the 
options of the procedure may be modified and then the procedure can be executed. 

The syntax of this command is 

SaveTemplate {proc} {template} {id} 

where  

{proc} is a variable or constant that gives the name or number of the procedure whose 
template is to be saved. Each procedure’s name and number is displayed near the 
bottom of the window under the Template tab.   

{template} is a required variable or text constant that gives the name of the resulting template 
file. Note that the text value does not include the extension or the folder information 
for the template file.   

{id}  is an optional text variable or text constant that is stored with the file. This text is 
displayed with the file name under the Template tab. 

Following are some examples of valid SaveTemplate commands. 

Example 
SaveTemplate PSProp2IP "Template1" 
SaveTemplate PSProp2IP "Template1" "This template was created by a macro on January 1" 

UnloadProc 
This command closes the indicated procedure window. The syntax of this command is 

UnloadProc {proc} 

where  

{proc} is a variable or constant that gives the name or number of the procedure. Each 
procedure’s name and number is displayed near the bottom of the window under the 
Template tab.   

Option 
This command lets you set the values of the individual options of a procedure. If the option 
numbers are not displayed on the procedure windows, go to View or File, Options, View, and 
check the box next to ‘Show Option Numbers’. 

For example, you may want to change the value of Alpha or the type of test that is run. 
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The syntax of this command is 

Option {proc} {number} {value1} {value2} {value3} … 

where  

{proc} is a variable or constant that gives the name or number of the procedure. Each 
procedure’s name and number is displayed near the bottom of the window under the 
Template tab.   

{number} is the number of the option that is to be set. This number is displayed at the lower, 
left corner of the procedure window when the mouse is positioned over that option.  

 If the 'Opt' value is not displayed, activate it by doing the following: from the 
spreadsheet menus select File or View, Options, and View. Check the option labeled 
'Show Option Numbers'.  

{value1}  is the new value of the option.  

{value2}…  are the new values of the remaining parameters of the option. Most options only 
have one value, so a second value is not necessary. However, a few options, such as 
text properties, bring up a window for option selection. These options have two or 
more parameters. 

Following are some examples of valid OPTION commands. 

Example 
OPTION 24 2 4 
OPTION “PSProp2IP” 3 0.8 

Output Commands 
The following commands manage the output (word processor) windows. 

List of Output Commands: 

SaveOutput 
ClearOutput 
PrintOutput 
AddToLog 
NewLog 
SaveLog 
OpenLog 

SaveOutput 
This command saves the current output to the designated file name. 

The syntax of this command is 

SaveOutput {filename} 

{filename} a text constant or variable that gives the name of the file to receive the output. Note 
that the extension of the file name should be '.RTF'. 

Example 
SAVEOUTPUT "C:/Program Files/PASS/Sample.rtf" 
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ClearOutput 
This command clears (erases) the current output. 

The syntax of this command is 

ClearOutput 

Example 
CLEAROUTPUT 

PrintOutput 
This command prints the current output. 

The syntax of this command is 

PrintOutput 

Example 
PRINTOUTPUT 

AddToLog 
This command copies the output in the output window to the log window. Note that nothing is 
saved by this command. 

The syntax of this command is 

AddToLog 

Example 
ADDTOLOG 

NewLog 
This command clears log window. 

The syntax of this command is 

NewLog 

Example 
NEWLOG 

SaveLog 
This command saves the current contents of the log output window to the designated file name. 

The syntax of this command is 

SaveLog {filename} 

{filename} a text constant or variable that gives the name of the file to receive the log. Note that 
the extension of the file name should be '.RTF'. 

Example 
SAVELOG "C:/Program Files/PASS/Reports/Sample.rtf" 
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OpenLog 
This command opens and displays the contents of the specified file. 

The syntax of this command is 

OpenLog {filename} 

{filename} a text constant or variable that gives the name of the file to opened. Note that only 
RTF files can be opened.  

Example 
OPENLOG "C:/Program Files/PASS/Sample.rtf" 

Alphabetical Macro Command List 
AddASheet 
AddToLog 
ClearOutput 
DataNewS0 
DataOpen {filename} 
DataSaveS0 {file name}  
End 
GetCell {variable} {row} {macro variable} 
GetMaxRows {n} 
Goto {P1} 
Heading {h1} 
If {p1} {logic} {p2} goto {p3} 
Input {variable} {prompt} {title} {default} 
LoadProc {proc} {template} 
LoadTemplate {proc} {template} 
NewLog 
NumRows {v1} {n} 
NumVars {varlist} {x} 
OpenLog {filename} 
Option {number} {value1} {value2} {value3} … 
Print {p1} {p2} {p3} … 
PrintOutput 
RemoveLastSheet 
ResizeRowsCols  
RunProc {proc} 
SaveLog {filename} 
SaveOutput {filename} 
SaveTemplate {proc} {template} {id} 
SendKeys {value} 
SetCell {v1} {row1} {row2} {value} 
SortBy {v1} {o1} {v2} {o2} {v3} {o3} 
UnloadProc {proc} 
VarFormat {variable} {format} 
VarFromList {varlist} {i} {v} 
VarName {variable} {name} 
WindowLeft {value} 
WindowTop {value} 
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Examples 
The following section provides examples of PASS macros. Our intention is that these examples 
will help you learn how to write macros to accomplish various repetitive tasks with PASS. 

Example 1 – Automatically Run a Procedure 
This macro opens the two-sample T-test procedure and runs the procedure with the default 
values. 
'***  Load the Two-Sample T-Test procedure 
'***  Note that the default values are used. 
LoadProc PSMean2ID 
 
'***  Run the analysis 
RunProc PSMean2ID 
'*** End of Macro 1 

Example 2 – Run Several Procedures 
This macro runs three procedures. The two-sample T-test procedure is run with the default values, 
except that Alpha is set to 0.10. The one-sample T-test procedure is run with default values, 
except that Alpha is set to 0.15. The linear regression procedure is run with the values set by the 
template ‘My LinReg Template’. 
'***  Load the Two-Sample T-Test procedure 
LoadProc PSMean2ID 
'***  Set Alpha (Option 8) to 0.10 
Option PSMean2ID 8 0.10 
'***  Run the analysis 
RunProc PSMean2ID 
 
'***  Load the One-Sample T-Test procedure 
LoadProc PSMeanCorr 
'***  Set Alpha (Option 8) to 0.15 
Option PSMeanCorr 8 0.15 
'***  Run the analysis 
RunProc PSMeanCorr 
 
'***  Load the Linear Regression procedure 
LoadProc PSLinReg 
'***  Load the ‘My LinReg Template’ template 
LoadTemplate PSLinReg "My LinReg Template" 
'***  Run the analysis 
RunProc PSLinReg 
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output window, 5-4 
spreadsheet, 925-3 

Effect size, 7-5 
ANOVA, 560-2, 560-7 
chi-square estimator, 900-1 
chi-square test, 250-2 
multiple regression, 865-2 
one-way ANOVA, 550-3 
randomized block ANOVA, 565-2 

Efron’s biased coin randomization, 880-3 
Entering matrices, 925-1 
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Entering procedure options, 4-1 
Equivalence 

correlated proportions, 165-1 
means (two), 460-1 
means (two) - ratio, 470-1 
means (two) - simulation, 465-1 
one proportion, 110-1 
two proportions, 215-1 

Equivalence - two correlated proportions 
examples, 165-11 
validation, 165-14 

Equivalence hypothesis, 7-9 
Equivalence limits - paired means 

simulation, 495-7 
Equivalence margin 

two means, 450-8 
two means - non-inferiority, 455-5 

Equivalence test data 
simulating, 495-3 

Error rates - simulation 
multiple comparison, 580-1, 585-2 
multiple contrasts, 590-1 

Errors, 7-2 
Exact binomial test 

one proportion, 100-4 
Examples 

balanced incomplete block designs, 883-4 
Chi-square estimator, 900-2 
Chi-square test, 250-6 
Cochran-Armitage test, 255-12 
correlation (one) - confidence interval, 801-4 
Cox regression, 850-4 
cross-over - higher-order - equivalence, 540-7 
cross-over - higher-order - non-inferiority, 530-9 
cross-over - ratio - equivalence, 525-7 
cross-over - ratio - higher-order - equivalence, 545-

9 
cross-over - ratio - higher-order - non-inferiority, 

535-10 
cross-over - ratio - non-inferiority, 515-6 
cross-over (two means), 500-7 
cross-over (two means) - equivalence, 520-7 
cross-over (two means) - non-inferiority, 510-7 
cross-over (two means) - ratio, 505-6 
data simulation, 920-19 
design generator, 889-3 
D-optimal designs, 888-8 
equivalence - two correlated proportions, 165-11 
exponential mean (one), 405-8 
exponential means (two), 435-5 
fixed effects ANOVA, 560-13 
fractional factorial designs, 882-4 
Hotelling’s T2, 600-8 
intraclass correlation, 810-4 
kappa, 811-6 
Latin square designs, 884-5 
linear regression, 855-5 
logistic regression, 860-9 
logrank tests - non-inferiority, 706-7 
logrank tests (Lakatos), 715-16 
Mann-Whitney test, 430-16 

MANOVA, 605-12 
many proportions - trend, 255-12 
matched case-control - proportions, 155-6 
McNemar test - two correlated proportions, 150-7 
mean ratio - non-inferiority, 455-6 
microarray one-sample or paired t-test, 610-12 
microarray two-sample t-test, 615-12 
mixed models, 571-35 
multiple comparisons, 575-13 
multiple comparisons - simulation, 580-13 
multiple comparisons - vs control - simulation, 

585-12 
multiple contrasts - simulation, 590-14 
multiple regression, 865-6 
non-inferiority - two correlated proportions, 160-

10 
normality - simulation, 670-8 
odds ratio estimator, 910-2 
one coefficient alpha, 815-4 
one correlation, 800-4 
one mean - confidence interval, 420-5 
one mean - tolerance - confidence interval, 421-6 
one proportion, 100-13 
one proportion - confidence interval, 115-6 
one proportion - equivalence, 110-11 
one proportion - non-inferiority, 105-10 
one standard deviation - confidence interval, 640-5 
one standard deviation - relative error - confidence 

interval, 642-4 
one standard deviation - tolerance - confidence 

interval, 641-6 
one variance - confidence interval, 651-4 
one variance - relative error - confidence interval, 

653-4 
one variance - tolerance - confidence interval, 652-

6 
one-way ANOVA, 550-10 
one-way ANOVA - simulation, 555-10 
paired means - confidence interval, 496-5 
paired means - tolerance - confidence interval, 

497-6 
Poisson regression, 870-7 
post-marketing surveillance, 135-6 
proportions estimator, 910-2 
randomization lists, 880-9 
randomized block ANOVA, 565-9 
ratio of two means, 445-6 
ratio of two means - equivalence, 470-7 
regression - confidence interval, 856-7 
repeated measures - two means, 431-13 
repeated measures - two proportions, 201-16 
repeated measures ANOVA, 570-29 
response surface designs, 885-3 
ROC curve (one), 260-8 
ROC curves (two), 265-8 
screening designs, 886-3 
single-stage phase II trials, 120-3 
standard deviation estimator, 905-6 
survival - group sequential, 710-11 
survival - logrank, 700-6 
survival - logrank - advanced, 705-8 
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Taguchi designs, 887-4 
three-stage phase II trials, 130-8 
t-test (one mean), 400-8 
t-test (one mean) - non-inferiority, 415-9 
t-test (one mean) - simulation, 410-10 
t-test (paired means) - equivalence - simulation, 

495-11 
t-test (paired means) - simulation, 490-11 
t-test (paired), 400-13 
t-test (two means), 430-10 
t-test (two means) - simulation, 440-12 
two coefficient alphas, 820-6 
two correlated proportions - equivalence, 165-11 
two correlated proportions - non-inferiority, 160-

10 
two correlations, 805-5 
two means - cluster randomized, 480-4 
two means - confidence interval, 471-5 
two means - equivalence, 460-5 
two means - equivalence - simulation, 465-12 
two means - group sequential, 475-10 
two means - non-inferiority, 450-10 
two means - ratio, 445-6 
two means - ratio - equivalence, 470-7 
two means - tolerance - confidence interval, 472-6 
two proportions - cluster - equivalence, 240-8 
two proportions - cluster - non-inferiority, 235-7 
two proportions - cluster randomized, 230-9 
two proportions - confidence interval, 216-26 
two proportions - equivalence, 215-17 
two proportions - group sequential, 220-9 
two proportions - inequality, 200-14 
two proportions - non-inferiority, 210-17 
two proportions - offset, 205-18 
two proportions - stratified design, 225-8 
two-level designs, 881-6 
two-stage phase II trials, 125-8 
variance (one), 650-4 
variance ratio - confidence interval, 656-5 
variance ratio - relative error - confidence interval, 

657-4 
variances (two), 655-4 

Exiting PASS, 4-4 
Experiment (run) 

two-level designs, 881-2 
Experimental design, 881-1 

two-level designs, 881-2 
Experimental error 

two-level designs, 881-2 
Experimentwise error rate 

simulation, 580-1, 585-2, 590-1 
Exponential 

logrank, 705-3 
log-rank, 715-2 

Exponential distribution 
simulation, 920-6 

Exponential mean (one), 405-1 
examples, 405-8 
validation, 405-10 

Exponential means (two), 435-1 
examples, 435-5 

validation, 435-7 
Exponential test 

simulation, 410-4 
Exposure 

Poisson regression, 870-1 
Exposure probability 

matched case-control, 155-4 

F 
F distribution 

probablility calculator, 915-3 
simulation, 920-7 

Factor scaling 
D-optimal designs, 888-2 

Factorial ANOVA, 560-1 
Factorial designs 

two-level designs, 881-1, 881-2 
False discovery rate adjustment 

t-test 
two groups, 615-4 

t-test - one group, 610-6 
Familywise error rate 

simulation, 580-1, 585-2, 590-1 
Farrington-Manning confidence interval 

two proportions, 216-5 
Farrington-Manning test 

two proportions - equivalence, 215-9 
two proportions - non-inferiority, 210-10 
two proportions - offset, 205-9 

File menu 
output window, 5-2 
procedure window, 4-3 
spreadsheet, 925-1 

Finite population correction 
t test, 400-8 

Finite population size 
one mean - confidence interval, 420-2 

Fisher's exact test 
two proportions, 200-4 

Fisher-z transformation 
two correlations, 805-1 

Fixed effects ANOVA 
examples, 560-13 
validation, 560-19 

Fixed effects models 
mixed models, 571-1 

Fixed factor 
ANOVA, 560-5 

Fleiss Confidence intervals 
two proportions, 216-12, 216-16 

Fleming algorithm 
single-stage phase II trials, 120-1 

Follow-up 
logrank, 705-4 

Fonts 
changing, 5-6 

Forced points 
D-optimal designs, 888-5 
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Format 
tick labels, 4-14 

Format menu 
output window, 5-6 

Format toolbar, 5-5 
FPR 

ROC curve (one), 260-7 
ROC curves (two), 265-1 

Fractional factorial designs, 882-1 
examples, 882-4 

Freedman 
logrank, 700-1 

F-test 
Geisser-Greenhouse, 570-4 
simulation, 555-1 
two variances, 655-1 

G 
Games-Howell - simulation 

multiple comparison, 580-1 
Games-Howell test 

simulation, 580-3 
Gamma data 

simulation, 920-24 
Gamma distribution 

probablility calculator, 915-4 
simulation, 920-7 

Gart-Nam confidence interval 
two proportions, 216-7 

Gart-Nam test 
two proportions - equivalence, 215-10 
two proportions - non-inferiority, 210-11 
two proportions - offset, 205-10 

Geisser-Greenhouse 
repeated measures ANOVA, 570-1 

Geisser-Greenhouse F-test 
repeated measures ANOVA, 570-4 

General linear multivariate model 
MANOVA, 605-2 
repeated measures ANOVA, 570-3 

Generating data, 920-1 
Goodness of fit 

chi-square estimator, 900-1 
Chi-square test, 250-1 

Graeco-Latin square designs, 884-1 
Grid color, 4-12 
Grid line style, 4-12 
Grid lines, 4-12 
Group sequential test 

log-rank, 710-1 
survival, 710-1 
two means, 475-1 
two proportions, 220-1 

H 
Hazard rate 

Cox regression, 850-1 
Hazard rate parameterization 

logrank, 715-2 
Hazard rates 

logrank, 700-2 
logrank - advanced, 705-2 
time dependent, 715-22 

Hazard ratio 
group sequential, 710-2 

Help menu 
output window, 5-7 
PASS home window, 3-3 
procedure window, 4-6 
spreadsheet, 925-5 

Help system, 1-5 
contents window, 1-7 
index window, 1-6 
navigating, 1-6 
printing documentation, 1-9 
search window, 1-8 

Heterogeneous variances 
mixed models, 571-46 

Home window, 3-1 
Horizontal viewing angle, 4-17 
Hotelling’s T2, 600-1 

examples, 600-8 
validation, 600-11 

Hotelling’s T2 distribution 
probablility calculator, 915-4 

Hotelling-Lawley trace, 605-1 
MANOVA, 605-3 
repeated measures ANOVA, 570-1, 570-7 

Hypergeometric distribution 
probablility calculator, 915-4 

Hypergeometric model 
one proportion, 100-2 

Hypothesis 
equivalence, 7-9 
inequality, 7-7 
introduction, 7-1 
means, 9-1 
non-inferiority, 7-7 
superiority, 7-8 
types, 7-6 

Hypothesis testing 
introduction, 7-1 

I 
Icons 

output window, 5-7, 6-2 
PASS home window, 3-3 
procedure window, 4-6 

Incidence rate 
post-marketing surveillance, 135-2 
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Inclusion points 
D-optimal designs, 888-6 

Independence test, 250-1 
Inequality 

one proportion, 100-1 
two means ratio, 445-1 
two proportions, 200-1 
two proportions - offset, 205-1 

Inequality hypothesis, 7-7 
Installation, 1-1 

folders, 1-1 
Interaction 

two-level designs, 881-3 
Intercept 

linear regression, 855-1 
Interim analysis 

survival, 710-1 
three-stage trial, 130-1 
two means, 475-1 
two proportions, 220-1 

Intraclass correlation, 810-1 
examples, 810-4 
validation, 810-6 

Intracluster correlation 
cluster randomization - two means, 480-3 
cluster randomized - non-inferiority, 235-4 
cluster randomized design, 230-2 

Introduction to power analysis, 7-1 
Isometric, 4-17 
Iterations 

maximum, 4-20 
Iterations tab, 4-20 

K 
Kappa 

examples, 811-6 
validation, 811-11 

Kappa test for rater agreement, 811-1 
Kenward and Roger method 

mixed models, 571-11 
Kolmogorov-Smirnov test, 670-2 
Kruskal-Wallis 

multiple comparisons - simulation, 580-1 
simulation, 555-1 

Kruskal-Wallis test 
multiple comparisons - simulation, 580-3, 585-1 
simulation, 585-3 

L 
Labels of plots, 4-13 
Lachin and Foulkes 

logrank test, 705-1 
Lakatos 

logrank, 715-1 
Lan-DeMets 

survival - group sequential, 710-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Latin square 
ANOVA, 560-17 

Latin square designs, 884-1 
examples, 884-5 

Legend 
color, 4-14 
parameter, 4-12 
percent of vertical space, 4-12 
position, 4-12 

Likelihood ratio test 
two proportions, 200-7 

Likert-scale 
simulation, 410-21, 920-8 
simulation, 920-22 

Lilliefors' critical values 
normality tests, 670-2 

Line chart options, 4-16 
Linear model 

ANOVA, 560-2 
repeated measures ANOVA, 570-3 

Linear regression, 855-1 
confidence interval, 856-1 
examples, 855-5 
validation, 855-7 

Load template button, 4-4, 4-21 
Loading a procedure, 2-2 
Log file, 5-2 
Log transformation 

cross-over, 505-2 
cross-over - equivalence, 525-2 
cross-over - higher-order - equivalence, 545-4 
cross-over - higher-order - non-inferiority, 535-4 
cross-over - non-inferiority, 515-2 
mean ratio, 445-2 
mean ratio - equivalence, 470-2 
mean ratio - non-inferiority, 455-2 

Logistic regression, 860-1 
examples, 860-9 
validation, 860-14 

Logit 
logistic regression, 860-2 

Logrank 
hazard rate parameterization, 715-2 
median survival time parameterization, 715-2 
mortality parameterization, 715-2 
proportion surviving parameterization, 715-2 

Log-rank 
group sequential test, 710-1 

Logrank procedure comparison, 715-3 
Logrank test, 700-1, 715-1 

Lachin and Foulkes, 705-1 
non-inferiority, 706-1 

Logrank tests - non-inferiority 
examples, 706-7 
validation, 706-11 

Logrank tests (Lakatos) 
examples, 715-16 
validation, 715-21 
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Longitudinal data models 
mixed models, 571-2 

Longitudinal models, 571-1 

M 
Macros, 930-1 

command list, 930-19 
commands, 930-6 
examples, 930-20 
syntax, 930-2 

Mann-Whitney test, 430-1 
assumptions, 430-4 
examples, 430-16 
non-inferiority, 450-5 
simulation, 440-5 

Mann-Whitney test - equivalence 
simulation, 465-5 

Mann-Whitney test - simulation 
equivalence, 465-1 

MANOVA, 605-1 
assumptions, 605-1 
examples, 605-12 
validation, 605-17 

Mantel Haenszel test 
two proportions, 200-7 

Mantel-Haenszel, 225-1 
Many proportions - trend 

examples, 255-12 
validation, 255-19 

Map window, 6-1 
Margin of equivalence 

two means, 450-8 
two means - non-inferiority, 455-5 

Martinez-Iglewicz test, 670-3 
Matched case-control, 155-1 

post-marketing surveillance, 135-2 
Matched case-control - proportions 

examples, 155-6 
validation, 155-10 

Matrices, 925-1 
Maximum iterations, 4-20 
Maximum likelihood 

mixed models, 571-8 
Maximum on axis, 4-11 
McNemar test, 150-1 
McNemar test - two correlated proportions 

examples, 150-7 
validation, 150-9 

Mean (one) 
confidence interval, 420-1 
exponential, 405-1 
simulation, 410-1 

Mean (one) - confidence interval 
examples, 420-5 
validation, 420-7 

Mean (one) - tolerance - confidence interval 
examples, 421-6 
validation, 421-8 

Mean (one) - tolerance probability 
confidence interval, 421-1 

Mean absolute deviation 
standard deviation estimator, 905-3 

Mean ratio 
equivalence, 470-1 
inequality, 445-1 

Means 
introduction, 9-1 
one-way - simulation, 555-1 

Means - ratio - equivalence 
cross-over, 525-1 

Means - ratio - equivalence - higher-order 
cross-over, 545-1 

Means - ratio - non-inferiority 
cross-over, 515-1 

Means - ratio - non-inferiority - higher-order 
cross-over, 535-1 

Means - ratio - superiority 
cross-over, 515-1 

Means - ratio - superiority - higher-order 
cross-over, 535-1 

Means (paired) 
confidence interval, 496-1 
simulation, 490-1 

Means (paired) - confidence interval 
examples, 496-5 
validation, 496-6 

Means (paired) - equivalence 
simulation, 495-1 

Means (paired) - tolerance - confidence interval 
examples, 497-6 
validation, 497-8 

Means (paired) - tolerance probability 
confidence interval, 497-1 

Means (two) 
cluster randomized design, 480-1 
confidence interval, 471-1 
cross-over, 500-1 
equivalence, 460-1 
exponential, 435-1 
group sequential test, 475-1 
interim analysis, 475-1 
non-inferiority, 450-1 
ratio, 445-1 
simulation, 440-1 
T-test, 430-1 
t-test - equivalence, 460-1 
T-test - non-inferiority, 450-1 

Means (two) - cluster randomized design 
examples, 480-4 
validation, 480-6 

Means (two) - confidence interval 
examples, 471-5 
validation, 471-7 

Means (two) - equivalence 
cross-over, 520-1 
examples, 460-5 
validation, 460-7 

Means (two) - equivalence - higher-order 
cross-over, 540-1 
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Means (two) - equivalence - simulation 
examples, 465-12 
validation, 465-19 

Means (two) - group sequential 
examples, 475-10 
validation, 475-17 

Means (two) - non-inferiority 
cross-over, 510-1 
examples, 450-10 
validation, 450-13 

Means (two) - non-inferiority - higher-order 
cross-over, 530-1 

Means (two) - ratio 
cross-over, 505-1 
equivalence, 470-1 
non-inferiority, 455-1 
superiority, 455-1 

Means (two) - ratio - non-inferiority 
examples, 455-6 
validation, 455-8 

Means (two) - simulation 
equivalence, 465-1 
t-test - equivalence, 465-1 

Means (two) - superiority 
cross-over, 510-1 

Means (two) - superiority - higher-order 
cross-over, 530-1 

Means (two) - tolerance - confidence interval 
examples, 472-6 
validation, 472-8 

Means (two) - tolerance probability 
confidence interval, 472-1 

Means matrix 
MANOVA, 605-4 
repeated measures ANOVA, 570-7 

Measurement error 
randomized block ANOVA, 565-2 

Median survival time parameterization 
logrank, 715-2 

Menus 
output window, 5-2 
PASS home window, 3-2 
procedure window, 4-3 
spreadsheet, 925-1 

Microarray data 
one sample t-test, 610-1 
paired T-test, 610-1 
two sample t-test, 615-1 

Microarray one-sample or paired t-test 
examples, 610-12 
validation, 610-19 

Microarray two-sample t-test 
examples, 615-12 
validation, 615-19 

Miettinen-Nurminen confidence interval 
two proportions, 216-6 

Miettinen-Nurminen test 
two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 
two proportions - offset, 205-7 

Minimum detectable difference 

mixed models, 571-14 
multiple comparisons, 575-11 
one-way ANOVA, 550-17 
t-test, 400-12 
two-sample t test, 430-14 

Minimum on axis, 4-11 
Mixed model 

defined, 571-2 
Mixed models, 571-1 

differential evolution, 571-12 
examples, 571-35 
F test, 571-11 
Fisher scoring, 571-12 
fixed effects, 571-1 
G matrix, 571-5 
heterogeneous variances, 571-46 
Kenward and Roger method, 571-11 
L matrix, 571-9 
likelihood formulas, 571-8 
maximum likelihood, 571-8 
minimum detectable difference, 571-14 
MIVQUE, 571-12 
Newton-Raphson, 571-12 
pairwise contrasts, 201-6, 431-7 
R matrix, 571-5 
restricted maximum likelihood, 571-9 
simulation steps, 571-17 
types, 571-1 
validation, 571-41 

Mixture data 
simulation, 920-25 

Mixture design 
D-optimal designs, 888-20 

Monte Carlo, 9-3 
Monte Carlo simulation, 920-1 
Mortality parameterization 

logrank, 715-2 
Moving data, 925-10 
MTBF 

exponential mean (one), 405-1 
Multinomial 

chi-square estimator, 900-3 
Multinomial distribution 

simulation, 920-8 
Multiple comparisons, 575-1 

Dunnett's test - simulation, 585-1 
examples, 575-13 
Games-Howell - simulation, 580-1 
pair-wise - simulation, 580-1 
validation, 575-19 
vs control - simulation, 585-1 
with a control, 575-2 
with best, 575-5 

Multiple comparisons - simulation 
examples, 580-13 
power, 580-4 
validation, 580-22 

Multiple comparisons - vs control - simulation 
examples, 585-12 
validation, 585-21 

Multiple contrasts 
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simulation, 590-1 
Multiple contrasts - simulation 

examples, 590-14 
validation, 590-24 

Multiple regression, 865-1 
examples, 865-6 
validation, 865-10 

Multiple testing adjustment 
t-test - two groups, 615-2 
t-test -one group, 610-4 

Multivariate analysis of variance, 605-1 

N 
Navigating the help system, 1-6 
Negative binomial distribution 

probablility calculator, 915-5 
Nested factors 

design generator, 889-1 
New template, 4-3 
Noncentrality 

one-way ANOVA, 550-3 
Noncentrality parameter 

one-way ANOVA, 550-4 
Non-inferiority 

correlated proportions, 160-1 
logrank, 705-13, 706-1 
means (two), 450-1 
means (two) - ratio, 455-1 
one proportion, 105-1 
paired t-test, 415-1 
survival, 706-1 
two proportions, 210-1 

Non-inferiority - two correlated proportions 
examples, 160-10 
validation, 160-13 

Non-inferiority hypothesis, 7-7 
Non-Inferiority test (two means) 

simulation, 440-17 
Nonparametric 

t-test, 400-7 
Nonparametric tests 

Wilcoxon test, 400-1 
Normal distribution 

probablility calculator, 915-5 
simulation, 920-9, 920-19 

Normality - simulation 
examples, 670-8 
validation, 670-11 

Normality tests, 670-1 
Anderson-Darling test, 670-2 
D’Agostino kurtosis, 670-2 
D’Agostino omnibus, 670-3 
D’Agostino skewness, 670-4 
Kolmogorov-Smirnov, 670-2 
Lilliefors' critical values, 670-2 
Martinez-Iglewicz, 670-3 
range, 670-4 
Shapiro-Wilk, 670-4 

Nuisance parameter, 9-2 
Nuisance parameters, 7-6 
Null hypothesis, 7-1, 9-1 

O 
O’Brien-Fleming 

survival - group sequential, 710-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Odds ratio 
logistic regression, 860-2 
matched case-control, 155-1 
McNemar test, 150-3 
one proportion, 100-6 
proportions, 8-3 
two proportions, 200-3 

Odds ratio estimator, 910-1 
examples, 910-2 

One proportion 
equivalence, 110-1 
inequality, 100-1 
non-inferiority, 105-1 
superiority, 105-1 

One-sample t-test 
microarray data, 610-1 

One-way ANOVA, 550-1 
examples, 550-10 
simulation, 555-1 
validation, 550-19 

One-way ANOVA - simulation 
examples, 555-10 
validation, 555-16 

Open template, 4-3 
Options, 4-4 
Orthogonal arrays, 887-1 
Orthogonal sets of Latin squares, 884-2 
Outliers 

multiple comparisons - simulation, 580-23 
one-way ANOVA - simulation, 555-18 

Outliers (two means) 
simulation, 440-19 

Outline 
PASS home window, 3-4 

Output, 2-4 
Output window, 5-1 

edit menu, 5-4 
file menu, 5-2 
format menu, 5-6 
help menu, 5-7 
toolbar, 5-7, 6-2 
view menu, 5-5 
window menu, 5-6 
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P 
P value, 7-4 
Page setup 

spreadsheet, 925-2 
Paired design 

microarray data, 610-1 
Paired designs 

non-inferiority, 415-1 
Paired distributions 

simulating, 490-2 
Paired means 

simulation, 490-1 
Paired means - equivalence 

simulation, 495-1 
Paired proportions 

equivalence, 165-1 
non-inferiority, 160-1 

Paired t-test, 400-1 
assumptions, 400-3 
microarray data, 610-1 
non-inferiority, 415-1 
superiority, 415-1 

Pairwise comparisons 
multiple comparisons, 575-7 

Pair-wise comparisons 
simulation, 580-1 

Pairwise contrasts 
mixed models, 201-6 

Pairwise contrasts 
mixed models, 431-7 

Panel, 4-1 
Parameters 

3D, 4-18 
abbreviations, 4-15 
axis, 4-11 
entering, 4-7 
legend, 4-12 

PASS help system, 1-5 
PASS home window, 3-1 

help menu, 3-3 
outline, 3-4 
procedure menus, 3-2 
toolbar, 3-3 
tools menu, 3-2 
view menu, 3-2 
window menu, 3-3 

Password, 5-7 
Patient entry 

logrank, 705-3 
Perspective, 4-17, 4-18 
Phase I trials 

definition, 120-1 
Phase II clinical trials 

single-stage one proportion, 120-1 
three-stage one proportion, 130-1 
two-stage one proportion, 125-1 

Phase II trials 
definition, 120-1 

Pillai-Bartlett trace, 605-1 

MANOVA, 605-3 
repeated measures ANOVA, 570-1, 570-6 

Plackett-Burman designs, 886-1 
Planned comparisons 

one-way ANOVA, 550-1 
Plot labels, 4-13 
Plot text tab, 4-13 
Plot titles, 4-13 
Plot type, 4-15 
Plot type tab, 4-15 
Pocock 

survival - group sequential, 710-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Poisson distribution 
probablility calculator, 915-5 
simulation, 920-9 

Poisson incidence 
post-marketing surveillance, 135-1 

Poisson regression, 870-1 
examples, 870-7 
validation, 870-9 

Population size 
t-test, 400-8 

Post-marketing surveillance, 135-1 
examples, 135-6 
validation, 135-8 

Power 
calculating, 7-4 
introduction, 7-1 
means, 9-1 
multiple comparisons - simulation, 580-4 

Prevalence 
correlated proportions, 160-2, 165-2 

Printer setup 
spreadsheet, 925-2 

Printing documentation, 1-9 
Printing output, 5-4 
Probability calculator, 915-1 

Beta distribution, 915-1 
Binomial distribution, 915-2 
Bivariate normal distribution, 915-2 
Chi-square distribution, 915-2 
Correlation coefficient distribution, 915-3 
F distribution, 915-3 
Gamma distribution, 915-4 
Hotelling’s T2 distribution, 915-4 
Hypergeometric distribution, 915-4 
Negative binomial distribution, 915-5 
Normal distribution, 915-5 
Poisson distribution, 915-5 
Student’s t distribution, 915-6 
Studentized range distribution, 915-6 
Weibull distribution, 915-6 

Procedure menus 
PASS home window, 3-2 
procedure window, 4-5 

Procedure options, 4-1 
Procedure window, 4-1 

file menu, 4-3 
help menu, 4-6 
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procedure menus, 4-5 
run menu, 4-5 
tabs, 4-7 
toolbar, 4-6 
tools menu, 4-5 
window menu, 4-5 

Producer’s risk 
exponential mean (one), 405-2 

Projection method, 4-17 
Proportion (one) 

binomial model, 100-2 
confidence interval, 115-1 
continuity correction, 100-5 
equivalence, 110-1 
exact binomial test, 100-4 
examples, 100-13 
hypergeometric model, 100-2 
inequality, 100-1 
non-inferiority, 105-1 
odds ratio, 100-6 
saw-tooth power function, 100-16 
single-stage phase II trials, 120-1 
superiority, 105-1 
three-stage phase II trials, 130-1 
two-stage phase II trials, 125-1 
validation, 100-20 
Z test, 100-4 

Proportion (one) - confidence interval 
examples, 115-6 
validation, 115-9 

Proportion (one) - equivalence 
examples, 110-11 
validation, 110-17 
Z test, 110-6 

Proportion (one) - non-inferiority 
examples, 105-10 
validation, 105-16 

Proportion surviving parameterization 
logrank, 715-2 

Proportion trend test, 255-1 
Proportional hazards regression, 850-1 
Proportions 

comparing, 8-1 
difference, 8-2 
interpretation, 8-3 
introduction, 8-1 
logistic regression, 860-1 
odds ratio, 8-3 
odds ratio estimator, 910-1 
paired (equivalence), 165-1 
paired (non-inferiority), 160-1 
ratio, 8-2 

Proportions (many) 
trend, 255-1 

Proportions (many) - trend 
examples, 255-12 
validation, 255-19 

Proportions (multiple) 
Chi-square test, 250-1 

Proportions (two) 
Chi-square test, 200-5 

cluster randomized - equivalence, 240-1 
cluster randomized - non-inferiority, 235-1 
cluster randomized - superiority, 235-1 
cluster randomized design, 230-1 
confidence intervals, 216-1 
equivalence, 215-1 
Fisher's exact, 200-4 
group sequential test, 220-1 
independent, 200-1 
independent - equivalence, 215-1 
independent - non-inferiority & superiority, 210-1 
independent - offset, 205-1 
inequality, 200-1 
inequality - offset, 205-1 
interim analysis, 220-1 
matched case control, 155-1 
McNemar test, 150-1 
non-inferiority & superiority, 210-1 
stratified, 225-1 

Proportions (two) - cluster - equivalence 
examples, 240-8 
validation, 240-12 

Proportions (two) - cluster - non-inferiority 
examples, 235-7 
validation, 235-11 

Proportions (two) - cluster randomized design 
examples, 230-9 
validation, 230-17 

Proportions (two) - confidence interval 
examples, 216-26 
validation, 216-28 

Proportions (two) - equivalence 
examples, 215-17 
validation, 215-23 

Proportions (two) - group sequential 
examples, 220-9 
validation, 220-17 

Proportions (two) - inequality 
examples, 200-14 
validation, 200-19 

Proportions (two) - non-inferiority 
examples, 210-17 
validation, 210-24 

Proportions (two) - offset 
examples, 205-18 
validation, 205-24 

Proportions (two) - stratified design 
examples, 225-8 
validation, 225-11 

Proportions (two) correlated 
equivalence, 165-1 
non-inferiority, 160-1 

Proportions estimator, 910-1 
examples, 910-2 

Q 
Qualitative factors 

D-optimal designs, 888-5 
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Quick launch window, 6-1 
Quick-access buttons 

map window, 6-2 
output window, 5-9 
PASS home window, 3-3 
procedure window, 4-6 

Quitting PASS, 4-4 

R 
Random assignment, 880-1 
Random effects models, 571-1 

mixed models, 571-1 
Random factor 

ANOVA, 560-5 
Random numbers, 920-1 

multiple comparisons - simulation, 580-5 
simulation, 585-5, 590-5 

Random sorting, 880-3 
Random sorting using max % deviation, 880-5 
Randomization 

complete, 880-3 
Efron’s biased coin, 880-3 
Latin square designs, 884-2 
random sorting, 880-3 
random sorting using max % deviation, 880-5 
Smith, 880-4 
Wei’s urn, 880-4 

Randomization lists, 880-1 
examples, 880-9 

Randomized block ANOVA, 565-1 
examples, 565-9 
validation, 565-11 

Randomized block design 
design generator, 889-5 

Range on axis, 4-11 
Range test, 670-4 
Rater agreement - kappa, 811-1 
Rating data 

ROC curve (one), 260-4 
ROC curves (two), 265-3 

Ratio 
proportions, 8-2 
two means, 445-1 
two means - equivalence, 470-1 

Ratio (two means) 
non-inferiority, 455-1 

Ratio of two means 
examples, 445-6 
validation, 445-8 

Ratio of two means - equivalence 
examples, 470-7 
validation, 470-9 

Ratio -two means 
cross-over, 505-1 

Regression 
confidence interval, 856-1 
Cox, 850-1 
linear, 855-1 

logistic, 860-1 
multiple, 865-1 
Poisson, 870-1 

Regression - confidence interval 
examples, 856-7 
validation, 856-10 

Rejection region, 7-3 
Repeated measures 

mixed models, 571-1 
two means, 431-1 
two proportions, 201-1 

Repeated measures - two means 
examples, 431-13 
validation, 431-19 

Repeated measures - two proportions 
examples, 201-16 
validation, 201-24 

Repeated measures ANOVA, 570-1 
examples, 570-29 
validation, 570-49 

Repeated measures design 
design generator, 889-6 

Replication 
two-level designs, 881-3 

Reports tab, 4-8 
Resetting a template, 4-3 
Response surface designs, 885-1 

examples, 885-3 
Restricted maximum likelihood 

mixed models, 571-9 
Risk ratio 

Blackwelder, 205-26 
ROC curve (one), 260-1 

examples, 260-8 
validation, 260-12 

ROC curves (two), 265-1 
examples, 265-8 
validation, 265-13 

Row heights, 925-11 
R-squared 

logistic regression, 860-8 
multiple regression, 865-1 

RTF, 5-3 
RTF files, 5-1 
Ruler, 5-5 
Run menu 

procedure window, 4-5 
Running a procedure, 2-3 
Running PASS, 2-1 

S 
Sample size 

introduction, 7-1 
Save template, 4-4 
Save template button, 4-4, 4-22 
Saw-tooth power function 

one proportion, 100-16 
Scaling factors 
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D-optimal designs, 888-2 
Score test 

two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 
two proportions - offset, 205-7 

Screening designs, 886-1 
examples, 886-3 

Sensitivity 
correlated proportions, 160-2, 165-2 
ROC curve (one), 260-1 

Serial numbers, 1-4, 5-7 
Setting options, 4-4 
Shapiro-Wilk test, 670-4 
Show tickmarks, 4-13 
Sign test 

simulation, 410-3 
Sign test - paired means 

simulation, 490-4 
Sign test - paired means - equivalence 

simulation, 495-5 
Significance level, 7-3 

adjusting, 9-5 
Significance level - simulation 

multiple comparisons, 580-1, 585-2 
multiple contrasts, 590-1 

Simon 
two-stage phase II trials, 125-1 

Simple linear regression 
confidence interval, 856-1 

Simulation, 9-3, 920-1 
Beta distribution, 920-3 
Binomial distribution, 920-5 
Cauchy distribution, 920-5 
Constant distribution, 920-6 
contaminated normal, 920-20 
Exponential distribution, 920-6 
F distribution, 920-7 
Gamma distribution, 920-7 
Likert-scale, 920-8, 920-22 
Multinomial distribution, 920-8 
multiple comparisons, 580-1, 580-5, 585-1, 585-4 
multiple contrasts, 590-1, 590-4 
Normal distribution, 920-9, 920-19 
normality tests, 670-1 
one mean, 410-1 
one-way ANOVA, 555-1 
paired means, 490-1 
paired means - equivalence, 495-1 
Poisson distribution, 920-9 
random number generation, 580-5, 585-5, 590-5 
size, 9-3 
skewed distribution, 920-10 
Student's T distribution, 920-10 
syntax, 920-13 
T distribution, 920-10 
Tukey's lambda distribution, 920-10 
two means, 440-1 
two means - equivalence, 465-1 
Uniform distribution, 920-11 
Weibull distribution, 920-12 

Simulation steps 

mixed models, 571-17 
Single-stage design 

one proportion, 120-1 
Single-stage phase II trials 

examples, 120-3 
validation, 120-3 

Skewed data 
one-way ANOVA - simulation, 555-20 
simulation, 410-12 

Skewed data (two means) 
simulation, 440-20 

Skewed distribution 
simulation, 920-10 

Skewness test, 670-4 
Slope 

linear regression, 855-1 
Slope - simple linear regression 

confidence interval, 856-1 
Smith’s randomization, 880-4 
Specificity 

correlated proportions, 160-2, 165-2 
ROC curve (one), 260-1 

Spending functions 
survival - group sequential, 710-3 
two means - group sequential, 475-2 
two proportions - group sequential, 220-2 

Split plot analysis 
mixed models, 571-1 

Spreadsheet, 925-1 
data entry, 925-6 
edit menu, 925-3 
file menu, 925-1 
help menu, 925-5 
menus, 925-1 
navigating, 925-6 
window menu, 925-5 

Standard deviation, 9-2 
estimator, 905-1 
interpretation, 905-1 

Standard deviation (one) 
confidence interval, 640-1 

Standard deviation (one) - confidence interval 
examples, 640-5 
validation, 640-7 

Standard deviation (one) - relative error 
confidence interval, 642-1 

Standard deviation (one) - relative error - confidence 
interval 
examples, 642-4 
validation, 642-6 

Standard deviation (one) - tolerance - confidence 
interval 
examples, 641-6 
validation, 641-8 

Standard deviation (one) - tolerance probability 
confidence interval, 641-1 

Standard deviation estimator 
examples, 905-6 

Standard deviation test 
one, 650-1 
two, 655-1 
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Starting PASS, 1-3, 2-1 
Stratified designs 

two proportions, 225-1 
Student’s t distribution 

probablility calculator, 915-6 
Studentized range distribution 

probablility calculator, 915-6 
Student's T distribution 

simulation, 920-10 
Style 

grid lines, 4-12 
Superiority 

means (two), 450-1 
means (two) - ratio, 455-1 
one proportion, 105-1 
paired t-test, 415-1 
two proportions, 210-1 

Superiority hypothesis, 7-8 
Surface chart options, 4-17 
Survival 

logrank, 700-1, 715-1 
logrank - Lachin and Foulkes, 705-1 
non-inferiority, 706-1 

Survival - group sequential 
examples, 710-11 
validation, 710-18 

Survival - logrank 
examples, 700-6 
validation, 700-9 

Survival - logrank - Lachin and Foulkes 
examples, 705-8 
validation, 705-12 

Syntax 
macros, 930-2 

System requirements, 1-1 

T 
T distribution 

simulation, 920-10 
T test 

two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 

T2 
Hotelling’s, 600-1 

Tabs 
axes/legend/grid, 4-11 
data, 4-7 
iterations, 4-20 
plot text, 4-13 
plot type, 4-15 
reports, 4-8 
template, 4-21 

Tabs on the procedure window, 4-7 
Taguchi designs, 887-1 

examples, 887-4 
Technical support, 1-11 
Template tab, 4-21 
Templates, 4-1 

automatic, 4-2 
creating a new, 4-3 
default, 4-2 
definition, 4-3 
deleting, 4-4, 4-22 
file extension, 4-4, 4-22 
file name, 4-21 
loading, 4-3, 4-4, 4-21 
opening, 4-3 
saving, 4-4, 4-22 
storage location, 4-4, 4-22 
template id, 4-21 

Test statistics, 7-6 
Thin walls, 4-18 
Three-stage design 

one proportion, 130-1 
Three-stage phase II trials 

examples, 130-8 
validation, 130-8 

Tickmarks, 4-12 
show, 4-13 

Time averaged difference 
binary data, 201-1 
normal data, 431-1 
power for, 201-2, 431-2 
two means, 431-1 
two proportions, 201-1 

Titles of plots, 4-13 
Toolbar 

output window, 5-7, 6-2 
PASS home window, 3-3 
procedure window, 4-6 

Toolbars 
customizing, 3-4 
customizing using drag-and-drop, 6-3 
format, 5-5 

Tools menu 
PASS home window, 3-2 
procedure window, 4-5 

Trend in proportions, 255-1 
Trimmed t-test (two means) 

simulation, 440-4 
Trimmed t-test (two means) - equivalence 

simulation, 465-4 
T-test 

cross-over, 500-3 
microarray data, 610-1, 615-1 
one group - multiple testing adjustment, 610-4 
one mean, 400-1 
one mean - simulation, 410-1 
paired, 400-1 
paired - equivalence - simulation, 495-1 
paired - simulation, 490-1 
two groups - multiple testing adjustment, 615-2 
two means, 430-1 
two means - equivalence, 460-1 
two means - non-inferiority, 450-1 
two means - simulation, 440-1 
two proportions, 200-8 

T-test - equivalence 
cross-over, 520-3 
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T-test - simulation 
two means - equivalence, 465-1 

T-test (one mean) 
assumptions, 400-3 
examples, 400-8 
non-inferiority, 415-1 
superiority, 415-1 
validation, 400-17 

T-test (one mean) - non-inferiority 
examples, 415-9 
validation, 415-12 

T-test (one mean) - simulation 
examples, 410-10 
validation, 410-16 

T-test (paired means) - equivalence - simulation 
examples, 495-11 
validation, 495-17 

T-test (paired means) - simulation 
examples, 490-11 
validation, 490-16 

T-test (paired) 
examples, 400-13 

T-test (two means) 
examples, 430-10 
validation, 430-18 

T-test (two means) - simulation 
examples, 440-12 
validation, 440-16 

T-tests (two means) 
assumptions, 430-3 

Tukey-Kramer 
simulation, 580-1 

Tukey-Kramer test 
multiple comparisons, 575-7 
simulation, 580-3 

Tukey's lambda distribution 
simulation, 920-10 

Two correlated proportions - equivalence 
examples, 165-11 
validation, 165-14 

Two correlated proportions - non-inferiority 
examples, 160-10 
validation, 160-13 

Two means 
cluster randomized design, 480-1 
cross-over, 500-1 

Two means - cluster randomized design 
examples, 480-4 
validation, 480-6 

Two means - equivalence 
cross-over, 520-1 
examples, 460-5 
validation, 460-7 

Two means - equivalence - higher-order 
cross-over, 540-1 

Two means - equivalence - simulation 
examples, 465-12 
validation, 465-19 

Two means - group sequential 
examples, 475-10 
validation, 475-17 

Two means - non-inferiority 
cross-over, 510-1 
examples, 450-10 
validation, 450-13 

Two means - non-inferiority - higher-order 
cross-over, 530-1 

Two means - ratio 
cross-over, 505-1 
examples, 445-6 
validation, 445-8 

Two means - ratio - equivalence 
cross-over, 525-1 
examples, 470-7 
validation, 470-9 

Two means – ratio - equivalence - higher-order 
cross-over, 545-1 

Two means - ratio - non-inferiority 
cross-over, 515-1 

Two means - ratio - non-inferiority - higher-order 
cross-over, 535-1 

Two means - ratio - superiority 
cross-over, 515-1 

Two means - ratio - superiority - higher-order 
cross-over, 535-1 

Two means - superiority 
cross-over, 510-1 

Two means - superiority - higher-order 
cross-over, 530-1 

Two means (ratio) - non-inferiority 
examples, 455-6 
validation, 455-8 

Two proportions 
cluster randomized - equivalence, 240-1 
cluster randomized - non-inferiority, 235-1 
cluster randomized - superiority, 235-1 
cluster randomized design, 230-1 
equivalence, 215-1 
inequality, 200-1 
inequality - offset, 205-1 
matched case-control, 155-1 
McNemar test, 150-1 
non-inferiority & superiority, 210-1 

Two proportions - cluster - equivalence 
examples, 240-8 
validation, 240-12 

Two proportions - cluster - non-inferiority 
examples, 235-7 
validation, 235-11 

Two proportions - cluster randomized design 
examples, 230-9 
validation, 230-17 

Two proportions - equivalence 
examples, 215-17 
validation, 215-23 

Two proportions - group sequential 
examples, 220-9 
validation, 220-17 

Two proportions - inequality 
examples, 200-14 
validation, 200-19 

Two proportions - non-inferiority 
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examples, 210-17 
validation, 210-24 

Two proportions - offset 
examples, 205-18 
validation, 205-24 

Two proportions - stratified design 
examples, 225-8 
validation, 225-11 

Two-channel arrays, 610-1 
Two-level designs, 881-1 

examples, 881-6 
Two-level factorial designs, 881-1 
Two-sample t-test, 430-1 

equivalence, 460-1 
microarray data, 615-1 
non-inferiority, 450-1 
superiority, 450-1 

Two-sample t-test - simulation 
equivalence, 465-1 

Two-stage design 
one proportion, 125-1 

Two-stage phase II trials 
examples, 125-8 
validation, 125-10 

Type-I error, 7-2 
Type-II error, 7-2 

U 
Uniform distribution 

simulation, 920-11 

V 
Validation 

Chi-square test, 250-9 
Cochran-Armitage test, 255-19 
correlation (one) - confidence interval, 801-7 
Cox regression, 850-6 
cross-over - higher-order - equivalence, 540-10 
cross-over - higher-order - non-inferiority, 530-12 
cross-over - ratio - equivalence, 525-9 
cross-over - ratio - higher-order - equivalence, 545-

12 
cross-over - ratio - higher-order - non-inferiority, 

535-13 
cross-over - ratio - non-inferiority, 515-8 
cross-over (two means), 500-10 
cross-over (two means) - equivalence, 520-10 
cross-over (two means) - non-inferiority, 510-10 
cross-over (two means) - ratio, 505-8 
equivalence - two correlated proportions, 165-14 
exponential mean (one), 405-10 
exponential means (two), 435-7 
fixed effects ANOVA, 560-19 
Hotelling’s T2, 600-11 
intraclass correlation, 810-6 

kappa, 811-11 
linear regression, 855-7 
logistic regression, 860-14 
logrank tests - non-inferiority, 706-11 
logrank tests (Lakatos), 715-21 
MANOVA, 605-17 
many proportions - trend, 255-19 
matched case-control - proportions, 155-10 
McNemar test - two correlated proportions, 150-9 
mean ratio - non-inferiority, 455-8 
microarray one-sample or paired t-test, 610-19 
microarray two-sample t-test, 615-19 
mixed models, 571-41 
multiple comparisons, 575-19 
multiple comparisons - simulation, 580-22 
multiple comparisons - vs control - simulation, 

585-21 
multiple contrasts - simulation, 590-24 
multiple regression, 865-10 
non-inferiority - two correlated proportions, 160-

13 
normality - simulation, 670-11 
one coefficient alpha, 815-7 
one correlation, 800-7 
one mean - confidence interval, 420-7 
one mean - tolerance - confidence interval, 421-8 
one proportion, 100-20 
one proportion - confidence interval, 115-9 
one proportion - equivalence, 110-17 
one proportion - non-inferiority, 105-16 
one standard deviation - confidence interval, 640-7 
one standard deviation - relative error - confidence 

interval, 642-6 
one standard deviation - tolerance - confidence 

interval, 641-8 
one variance - confidence interval, 651-6 
one variance - relative error - confidence interval, 

653-6 
one variance - tolerance - confidence interval, 652-

8 
one-way ANOVA, 550-19 
one-way ANOVA - simulation, 555-16 
paired means - confidence interval, 496-6 
paired means - tolerance - confidence interval, 

497-8 
Poisson regression, 870-9 
post-marketing surveillance, 135-8 
randomized block ANOVA, 565-11 
ratio of two means, 445-8 
ratio of two means - equivalence, 470-9 
regression - confidence interval, 856-10 
repeated measures - two means, 431-19 
repeated measures - two proportions, 201-24 
repeated measures ANOVA, 570-49 
ROC curve (one), 260-12 
ROC curves (two), 265-13 
single-stage phase II trials, 120-3 
survival - group sequential, 710-18 
survival - logrank, 700-9 
survival - logrank - Lachin and Foulkes, 705-12 
three-stage phase II trials, 130-8 

 



  Index-19 

t-test (one mean), 400-17 
t-test (one mean) - non-inferiority, 415-12 
t-test (one mean) - simulation, 410-16 
t-test (paired means) - equivalence - simulation, 

495-17 
t-test (paired means) - simulation, 490-16 
t-test (two means), 430-18 
t-test (two means) - simulation, 440-16 
two coefficient alphas, 820-10 
two correlated proportions - equivalence, 165-14 
two correlated proportions - non-inferiority, 160-

13 
two correlations, 805-8 
two means - cluster randomized, 480-6 
two means - confidence interval, 471-7 
two means - equivalence, 460-7 
two means - equivalence - simulation, 465-19 
two means - group sequential, 475-17 
two means - non-inferiority, 450-13 
two means - ratio, 445-8 
two means - ratio - equivalence, 470-9 
two means - tolerance - confidence interval, 472-8 
two proportions - cluster - equivalence, 240-12 
two proportions - cluster - non-inferiority, 235-11 
two proportions - cluster randomized, 230-17 
two proportions - confidence interval, 216-28 
two proportions - equivalence, 215-23 
two proportions - group sequential, 220-17 
two proportions - inequality, 200-19 
two proportions - non-inferiority, 210-24 
two proportions - offset, 205-24 
two proportions - stratified design, 225-11 
two-stage phase II trials, 125-10 
variance (one), 650-7 
variance ratio - confidence interval, 656-8 
variance ratio - relative error - confidence interval, 

657-6 
variances (two), 655-8 

Variance (one) 
confidence interval, 651-1 
examples, 650-4 
validation, 650-7 

Variance (one) - confidence interval 
examples, 651-4 
validation, 651-6 

Variance (one) - relative error 
confidence interval, 653-1 

Variance (one) - relative error - confidence interval 
examples, 653-4 
validation, 653-6 

Variance (one) - tolerance - confidence interval 
examples, 652-6 
validation, 652-8 

Variance (one) - tolerance probability 
confidence interval, 652-1 

Variance ratio 
confidence interval, 656-1 

Variance ratio - confidence interval 
examples, 656-5 
validation, 656-8 

Variance ratio - relative error 

confidence interval, 657-1 
Variance ratio - relative error - confidence interval 

examples, 657-4 
validation, 657-6 

Variance test 
one, 650-1 
two, 655-1 

Variances (two) 
examples, 655-4 
validation, 655-8 

Vertical viewing angle, 4-18 
View menu 

output window, 5-5 
PASS home window, 3-2 

Viewing angle 
horizontal, 4-17 
vertical, 4-18 

Viewing output, 2-4 

W 
Wall color, 4-18 
Walter’s confidence intervals 

two proportions, 216-11 
Wei’s urn randomization, 880-4 
Weibull distribution 

probablility calculator, 915-6 
simulation, 920-12 

Welch test 
multiple contrasts - simulation, 590-4 

Welch's test - simulation 
equivalence, 465-1 

Welch's t-test 
non-inferiority, 450-5 
simulation, 440-3 

Wilcoxon test, 400-1, 400-7, 415-7, 450-9 
assumptions, 400-3 
non-inferiority, 415-1 
simulation, 410-3 
superiority, 415-1 

Wilcoxon test - paired means 
simulation, 490-4 

Wilcoxon test - paired means - equivalence 
simulation, 495-4 

Wilks’ Lambda, 605-1 
MANOVA, 605-2 
repeated measures ANOVA, 570-1, 570-6 

Wilson score limits 
one proportion, 115-2 

Wilson’s score confidence interval 
two proportions, 216-7 

Window menu 
output window, 5-6 
PASS home window, 3-3 
procedure window, 4-5 
spreadsheet, 925-5 

Winsorized test (two means) - equivalence 
simulation, 465-4 

Within standard deviation 
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repeated measures ANOVA, 570-15 
Within-subjects design 

repeated measures ANOVA, 570-3 
Word processor, 5-1 

Z 
Z test 

one proportion, 100-4 
one proportion - equivalence, 110-6 
two proportions - equivalence, 215-5 
two proportions - non-inferiority, 210-6 
two proportions - offset, 205-6 
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